
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

RVfpga: Using a RISC-V Core Targeted to an

FPGA in Computer Architecture Education

Sarah L. Harris

Dept. of Electrical & Computer

Engineering

University of Nevada, Las

Vegas

Las Vegas, USA

sarah.harris@unlv.edu

M. Hamza Liaqat

AZKY Tech Labs

Islamabad, Pakistan

hamza@azkytech.com

Daniel Chaver

Dept. of Computer Architecture

and System Engineering

University Complutense of

Madrid

Madrid, Spain

dani02@ucm.es

Zubair L. Kakakhel

AZKY Tech Labs

Birmingham, United Kingdom

zubair@azkytech.com

Luis Piñuel

Dept. of Computer Architecture

and System Engineering

University Complutense of

Madrid

Madrid, Spain

lpinuel@ucm.es

Olof Kindgren

Qamcom Research &

Technology

Gothenburg, Sweden

olof.kindgren@qamcom.se

J.I. Gomez-Perez

Dept. of Computer Architecture

and System Engineering

University Complutense of

Madrid

Madrid, Spain

jigomez@ucm.es

Robert Owen

Imagination Technologies

Kings Langley, United

Kingdom

robert.owen@imgtec.com

Abstract—RISC-V FPGA, also written RVfpga, is a set of

two freely available courses developed by the authors and

Imagination Technologies that enable users to understand and

use the RISC-V instruction set architecture (ISA), a commercial

RISC-V core and system, and the RISC-V ecosystem. The first

course, RVfpga, includes comprehensive instructions, tools, and

labs for targeting a commercial RISC-V processor to a field

programmable gate array (FPGA) and then using and

expanding it to learn about computer architecture, digital

design, embedded systems, system-on-chip (SoC) design, and

programming. The topics covered include targeting the RISC-V

SoC to an FPGA, programming in C and RISC-V assembly,

running programs in simulation or, optionally, in hardware,

using peripherals and adding new ones to the SoC, and

analyzing and modifying the RISC-V core and memory system,

including adding new instructions to the core. The follow-on

course, RVfpga-SoC, shows how to build a RISC-V SoC from

building blocks and then run the Zephyr real-time operating

system (RTOS) on it. At the completion of these courses, users

will have a working RISC-V system and have hands-on

experience exploring and using both the RISC-V SoC and the

RISC-V toolchain, including compilers and simulators.

Keywords—RVfpga, RVfpga-SoC, RISC-V, FPGA, SweRV,

SweRVolf, computer architecture, education, system-on-chip, SoC

I. INTRODUCTION

RISC-V is an open-source instruction set architecture
(ISA), introduced in 2010, that is becoming increasingly used
in industry, academia, and research. While other open-source
ISAs have existed, including OpenSPARC, which was
developed in 2005, RISC-V is the first open-source
architecture that has been widely adopted, thanks in part to
RISC-V International [1], a group of industry and academic
collaborators that ratify the RISC-V specifications and build
the RISC-V community.

Because RISC-V is open source, the time-consuming and
costly barrier of licensing is removed and collaboration is
encouraged. However, the barrier of entry into using the tools
and understanding the RISC-V core remains. This RISC-V
FPGA course (RVfpga) removes these barriers by providing
step-by-step instructions on topics ranging from installing and
using the tools and programming in C and RISC-V assembly
to expanding the processor to add peripherals such as serial
interfaces and to modify the RISC-V core and memory
system, including adding instructions to the core.

The RVfpga Getting Started Guide shows how to install
and use the RISC-V toolchain to compile and run programs,
how to program Digilent’s Nexys A7 FPGA board with the
RVfpga System, and how to run RISC-V programs in
simulation using either Verilator or Western Digital’s
Whisper instruction set simulator (ISS). The twenty RVfpga
Labs show how to program the core in C and RISC-V
assembly, how to use peripherals and add new ones to the
RVfpga System, and how to understand and modify the
microarchitecture and memory system of the commercial,
open-source SweRV EH1 core [2] provided by Western
Digital. Finally, the RVfpga-SoC follow on course shows how
to design, synthesize, and load a RISC-V SoC and how to run
the open-source Zephyr real-time operating system (RTOS)
on it.

This RVfpga course supports the open-source philosophy
itself because the course materials are freely available upon
request from Imagination Technologies [3]. In addition, all of
the software tools are free, as well as the core and SoC, which
are based on SweRV EH1 [2] and SweRVolf [4] respectively,
both of which are open-source with an Apache 2.0 license. All
of the materials can be completed in simulation, so the course
may be completed without cost. The optional Nexys A7 FPGA
board from Digilent Inc. that is used in the course costs $200,
but many academics and researchers already have access to an
FPGA board to which they could adapt the materials. (Note
that the older Nexys 4 DDR board from Digilent can be used
interchangeably with the Nexys A7 board.) Using the FPGA
as the hardware target is optional, but it enhances the hands-
on learning. Future versions of the RVfpga course will target
lower-cost boards.

The rest of this paper provides an overview of the RVfpga
course and materials (Section II), a description of the Getting
Started Guide and Labs (Sections III and IV), and an overview
of the RVfpga-SoC course (Section V). The paper concludes
by describing related and future work (Sections VI and VII).

II. RVFPGA OVERVIEW

RVfpga is a RISC-V computer architecture course
developed by the authors and Imagination Technologies in
collaboration with industry partners including Western Digital
Corporation. The course enables users to gain hands-on
experience with the RISC-V architecture and its ecosystem,

which includes the RISC-V toolchain, simulators, open-
source hardware cores and SoCs, and software tools.

The course includes a comprehensive Getting Started
Guide, slides, and twenty extensive labs. A stand-alone
RVfpga-SoC course is also provided. The RVfpga Getting
Started Guide and Labs 1-10 have been available since
November 2020. The remaining labs, Labs 11-20, will be
released in fall 2021, and the stand-alone RVfpga-SoC course
is available as of summer 2021.

The target audience is anyone who wants to learn or teach
about the RISC-V architecture and how to use it – including
professors, industry professionals, researchers, and students.
Before completing the RVfpga or RVfpga-SoC course, it is
expected that users have at least some understanding of the
following topics: digital logic design, high-level programming
(preferably C), assembly programming, hardware description
languages (HDL), instruction set architecture (ISA),
input/output (I/O) systems, processor microarchitecture, and
memory systems. These topics are covered in the textbook
Digital Design and Computer Architecture: RISC-V Edition,
Harris & Harris, © Morgan Kaufmann, 2021. Other textbooks,
including Computer Organization and Design RISC-V
Edition, Patterson & Hennessy, © Morgan Kaufmann 2017,
cover some of this material. The RVfpga course develops and
expands on these topics.

In the remainder of this section, we describe three cores
and systems that are fundamental to the RVfpga System: the
open-source commercial SweRV EH1 RISC-V core provided
by Western Digital (Section IIa), the SweRVolfX SoC, an
SoC that uses the EH1 core (Section IIb), and
RVfpgaNexys/RVfpgaSim, which expand the SweRVolfX
SoC (Section IIc). RVfpgaNexys targets the Nexys A7 FPGA
board and RVfpgaSim is a wrapper that targets simulation.

A. SweRV EH1 Core and SweRV EH1 Core Complex

Western Digital has developed three open-source RISC-V
cores over the past few years: SweRV EH1, SweRV EH2, and
SweRV EL2. The SweRV EH1 Core (provided with the
RVfpga package and also available from [2]) is a 32-bit, 2-
way superscalar, 9-stage pipeline core that supports the
multiply/divide (M) and compressed (C) RISC-V extensions.
EH1 is preferred over EL2 or EH2 for its high
performance/MHz and its simple thread structure, but future
versions of RVfpga might also target the other cores.

We overview the SweRV EH1 core, but the

Programmer’s Reference Manual of the SweRV EH1 core [5]

describes the core in detail. SweRV EH1 (see Figure 1)

supports four arithmetic logic units (ALUs) in two pipelines:

instruction way 0 (I0) and way 1 (I1). These ways support

ALU operations, loads/stores and multiplications. The

processor also has one out-of-pipeline 34-cycle latency

divider. Four stall points exist in the pipeline in the following

stages: Fetch 1, Align, Decode, and Commit. The Fetch 1

stage includes a Gshare branch predictor [6]. In the Align

stage, instructions are retrieved from three fetch buffers. In

the Decode stage, up to two instructions from four instruction

buffers are decoded. In the Commit stage, up to two

instructions per cycle are committed. Finally, in the

Writeback stage, the architectural registers are updated.

Fig. 1. SweRV EH1 core microarchitecture (figure from [5])

Figure 2 shows a comparison of existing commercial cores
and processors. The SweRV EH1 Core performance per MHz
is impressively high at 4.9 CM/MHz (CoreMark per MHz): it
is twice as fast as the ARM Cortex A8 and its performance
even surpasses the ARM Cortex A15 performance.

Fig. 2. Benchmark comparison per thread and MHz (figure from [7])

Western Digital also provides an extension to the SweRV

EH1 Core called the SweRV EH1 Core Complex (see

Figure 3), which adds the following elements to the EH1

Core:

• Two dedicated memories that are tightly coupled to the

core: one for instructions (ICCM: instruction closely

coupled memory), and the other for data (DCCM)..

• An optional 4-way set-associative instruction cache

with parity or ECC protection.

• An optional Programmable Interrupt Controller (PIC),

that supports up to 255 external interrupts.

• Four system bus interfaces for instruction fetch, data

accesses, debug accesses, and external direct memory

accesses (DMA) to closely coupled memories.

• Core Debug Unit.

Fig. 3. SweRV EH1 Core Complex (figure from [5])

B. SweRVolf System on Chip and RVfpga Extensions

The SoC used in RVfpga is an extension of the SweRVolf SoC
version 0.7.3, available at [8]. In RVfpga, we call this
extended SoC SweRVolfX (SweRVolf eXtended). The
SweRVolfX SoC is shown in Figure 4 as part of a bigger
structure that we will describe in the next section.

The SweRVolfX SoC is built around the SweRV EH1
Core Complex shown in Figure 3. In addition, the SweRVolfX
SoC also includes a Boot ROM, a UART, a System
Controller, two SPI controllers, a GPIO and a Timer. Given
that the SweRV EH1 Core uses an AXI bus and the
peripherals use a Wishbone bus, the SweRVolfX SoC also has
an AXI-to-Wishbone Bridge. Table I gives the memory-
mapped addresses of the peripherals that are connected to the
SweRV EH1 core via the Wishbone interconnect.

TABLE I. MEMORY-MAPPED ADDRESSES OF SWERVOLFX

System Address
Boot ROM 0x80000000 - 0x80000FFF

System Controller 0x80001000 - 0x8000103F

SPI1 0x80001040 - 0x8000107F

SPI2* 0x80001100 - 0x8000113F

Timer* 0x80001200 - 0x8000123F

GPIO* 0x80001400 - 0x8000143F

UART 0x80002000 - 0x80002FFF
 * Peripherals added in SweRVolfX

C. RVfpgaNexys and RVfpgaSim

The SweRVolfX SoC can run either on the Nexys A7 (or
Nexys4 DDR) FPGA board or in simulation. Figure 5 shows
the hierarchical organization of the RVfpga System that we
will describe further in this section.

RVfpgaNexys is the SweRVolfX SoC targeted to the
Digilent Nexys A7 FPGA board (Figure 4). The main
components of RVfpgaNexys are listed below and illustrated
in Figure 4.

• RVfpga Hardware:

o SweRVolfX SoC

o Lite DRAM controller

o Clock Generator: the Nexys A7 board includes a single

100 MHz crystal oscillator that is used by the Lite

DRAM controller. The frequency of this clock is scaled

down to 50 MHz to use in the SweRVolf SoC.

o Clock Domain Crossing (CDC) module: connection of

2 clock domains: SweRVolf SoC and Lite DRAM.

o BSCAN logic for the JTAG port

• Nexys A7 FPGA board memory and peripherals used by
RVfpga:

o DDR2 memory (accessed through the Lite DRAM
controller)

o USB connection
o SPI Flash memory and SPI Accelerometer.
o 16 LEDs and 16 Switches
o 8-digit 7-Segment Displays

The Nexys A7 board [9] (or similarly the Nexys 4 DDR

board) is a recommended trainer board for electrical and
computer engineering curricula. This board costs $265 (or a
discounted price of $199 with academic pricing). In future
RVfpga versions we plan to include support for other Digilent
boards such as Basys 3, Arty A7 or Cmod A7. Because these
boards include FPGAs that are smaller than the Artix 7 FPGA

that is on the Nexys A7 board, we will likely use the smaller
SweRV EL2 core for these smaller boards.

Fig. 4. RVfpgaNexys

RVfpgaSim is the SweRVolfX SoC wrapped in a testbench
to be used by HDL simulators. In the RVfpga course, we show
how to use Verilator [10]. This open-source and free HDL
simulator claims to be the fastest Verilog/SystemVerilog
simulator; it is widely used in industry and academia; it
provides out-of-the-box support from ARM and RISC-V
vendor IPs; and it is guided by Chips Alliance and the Linux
Foundation.

SweRV EH1
Core

SweRV EH1
Core Complex

ICCM, DCCM, I$, PIC, Bus Interface,
Debug Unit

Boot ROM, UART, System Controller, Interconnect,
SPI Controller

+
GPIO, PTC, additional SPI and 7-Segment Displays

SweRVolfX SoC

RVfpgaNexys
DDR2, CDC, BSCAN, Clock Generator

Target: Nexys A7 Board

RVfpgaSim
DDR2, CDC, BSCAN, Clock Generator

Target: Simulation

Th
e

R
V

fp
ga

 S
ys

te
m

Fig. 5. The RVfpga System Hierarchy

D. Hardware and Software Requirements

The software required by the RVfpga course is all freely
available and the hardware is optional, as listed in Table II.
RVfpga requires two main software tools: PlatformIO, which
is an extension of Visual Studio (VS) Code, and Verilator. The
other software will either be installed as part of other
installations or is optional. RVfpga can be used on Windows,
Linux, or macOS platforms.

The RVfpga System source code, which includes the
SweRVolfX and the SweRV EH1 Core Complex, as well as
the RVfpgaNexys and RVfpgaSim wrappers, is provided with
the RVfpga course materials, but links to the GitHub
distributions of SweRVolf and the EH1 core are provided for

reference in Table II. Descriptions of how to install the needed
software and use the RVfpga System are provided in the
RVfpga Getting Started Guide, which is discussed next.

TABLE II. RVFPGA SOFTWARE AND HARDWARE

Software

Name Website Cost

Vivado 2019.2

WebPACK*

https://www.xilinx.com/suppor

t/download/index.html/content/
xilinx/en/downloadNav/vivado

-design-tools/2019-2.html

free

VS Code https://code.visualstudio.com/
Download

free

PlatformIO https://platformio.org/

Installed within VSCode

free

Verilator (an HDL
simulator) and

GTKWave

https://github.com/verilator/ver
ilator

http://gtkwave.sourceforge.net/

free

Whisper (Western
Digital’s RISC-V

Instruction Set

Simulator)

https://github.com/chipsallianc
e/SweRV-ISS

Installed within PlatformIO

free

RISC-V Toolchain

and OpenOCD

https://github.com/riscv/riscv-

gnu-toolchain

https://github.com/riscv/riscv-
openocd

Installed within PlatformIO

free

Hardware

Name Website Cost

Nexys A7 FPGA

Board*

https://store.digilentinc.com/ne

xys-a7-fpga-trainer-board-
recommended-for-ece-

curriculum/

$265

(academic
price:

$199)

RISC-V Core and System-on-Chip (SoC)

Name Website Cost

Western Digital’s

SweRV EH1 Core

https://github.com/chipsallianc

e/Cores-SweRV

free

SweRVolf https://github.com/chipsallianc

e/Cores-SweRVolf

free

* optional

III. RVFPGA GETTING STARTED GUIDE

The RVfpga Getting Started Guide (GSG) is the
introductory document of the RVfpga materials. It is an
extensive document that includes 8 sections plus appendices.

The Quick Start Guide, which is Section 2 of the GSG,
describes the minimal software installation needed for
RVfpga and then shows how to download and execute a
simple example program on the RVfpga System, both in
simulation and hardware.

Sections 3 and 4 give a brief introduction to the RISC-V
computer architecture and the RVfpga System, including the
organization of the Verilog and SystemVerilog files that make
up the RVfpga System.

The remaining sections of the GSG show how to use the
RVfpga System in both hardware (RVfpgaNexys) and
simulation (RVfpgaSim). Section 5 shows how to install the
software tools needed to use the RVfpga System. Section 6
shows how to use PlatformIO to both download
RVfpgaNexys onto the Nexys A7 FPGA board and how to
download and run several example programs on it. Sections 7
and 8 show how to simulate RVfpgaSim using Verilator and
how to simulate RISC-V code on the Whisper instruction set
simulator (ISS), respectively.

IV. RVFPGA LABS

The twenty RVfpga laboratory assignments provided with
the RVfpga course are listed in TABLE III. In this section we
describe each lab and highlight each lab’s objectives.

TABLE III. RVFPGA LABS

 # Title

P
a
rt

 1

0 RVfpga Labs Overview

1 Creating a Vivado Project

2 C Programming

3 RISC-V Assembly Language

4 Function Calls

5 Image Processing: Projects with C & Assembly

6 Introduction to I/O

7 7-Segment Displays

8 Timers

9 Interrupt-Driven I/O

10 Serial Buses

P
a
rt

 2

11 SweRV EH1 Configuration and Organization.
Performance Monitoring

12 Arithmetic/Logical Instructions: the add instruction

13 Memory Instructions: the lw and sw instructions

14 Structural Hazards

15 Data Hazards

16 Control Hazards. Branch Instructions: the beq Instruction.
The Branch.

17 Superscalar Execution

18 Adding New Features (Instructions, Hardware Counters)
to the Core

19 Memory Hierarchy. The Instruction Cache.

20 ICCM and DCCM

Lab 0 overviews all of the labs. Each lab includes
instructions that introduce and describe the topics and
exercises for guiding the users in then experimenting with the
concepts on their own. The RVfpga package also includes
solutions for all exercises.

Lab 1 shows how to use Xilinx’s Vivado to target the
RVfpga System to the Artix 7 FPGA on the Nexys A7 FPGA
board. When the user modifies the RVfpga System in labs 6-
20, they will rely on what they learned from Lab 1 to
resynthesize and debug their modified RVfpga systems.

Labs 2 through 5 show how to write C and RISC-V
assembly programs and run them – either in simulation
(Whisper) or in hardware using PlatformIO and the Nexys A7
board. Lab 2 shows how to write, compile, debug, simulate,
and run C programs on the RVfpga System. PlatformIO offers
a seamless environment for doing this. Lab 2 also shows how
to access the peripherals (such as the LEDs and switches) in
C programs and how to use PlatformIO’s serial monitor to
view a program’s print output.

Lab 3 shows how to write and run RISC-V assembly
programs. Lab 4 shows how to use function calls, including
C library functions. Lab 5 shows how to create a project that
uses both C and assembly source files and how to perform
image processing algorithms.

Labs 6 through 10 show how to use the peripherals
available in the RVfpga System (i.e., the switches, LEDs,
seven-segment displays, timer, and SPI accelerometer) and
also how to modify it to add new peripherals (pushbuttons and
tri-color LEDs). Users are guided to modify the RVfpga

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2019-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2019-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2019-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2019-2.html
https://code.visualstudio.com/Download
https://code.visualstudio.com/Download
https://platformio.org/
https://github.com/verilator/verilator
https://github.com/verilator/verilator
http://gtkwave.sourceforge.net/
https://github.com/chipsalliance/SweRV-ISS
https://github.com/chipsalliance/SweRV-ISS
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-openocd
https://github.com/riscv/riscv-openocd
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf

System source code (Verilog/SystemVerilog code) and also to
write programs to exercise their added hardware. Lab 9
introduces the concept of interrupts and shows how to use
them in the RVfpga System.

Labs 11 through 20, which will be released in fall 2021,
show how to investigate, analyze, and modify the RISC-V
core and memory system. Lab 11 provides a detailed
introduction to the SweRV EH1 microarchitecture, explaining
each of its 9 pipeline stages and each of the execution pipes.
This lab also shows how to use the performance counters and
real benchmarks to test the RVfpga System. Labs 12 and 13
investigate arithmetic/logic and memory (load and store)
instructions. Labs 14-16 investigate structural/data/control
hazards, branch instructions, and the (Gshare) branch
predictor. Lab 17 analyzes 2-way superscalar execution. Lab
18 shows how to add new instructions to the core, including
bit manipulations and floating-point instructions, as well as
new hardware counters. Labs 19 and 20 show how to use the
instruction cache and the closely-coupled instruction and data
memories (ICCM and DCCM).

V. RVFPGA-SOC COURSE

While the RVfpga course focuses on using and expanding
the RISC-V core and its peripherals, the RVfpga-SoC course,
available in summer 2021, shows how to create a RISC-V
SoC, based on SweRVolfX, from building blocks.

The five RVfpgaSoC laboratory assignments are listed in
TABLE IV. Lab 1 gives an overview and shows how to create
the RVfpga SoC from scratch by connecting modules
including the SweRV EH1 core, interconnect, and peripherals.
We use Xilinx’s Vivado Block design tool to both add
modules and then connect them pin-by-pin to create a subset
of the RVfpga System. We then show how to target this
RVfpga System to the Nexys A7 FPGA board. Lab 2 shows
how to run programs on the RVfpga System built in Lab 1.

TABLE IV. RVFPGA-SOC LABS

Title

1 Introduction to RVfpga-SoC

2 Running Software on the RVfpga SoC

3 Introduction to SweRVolf and FuseSoC

4 Building and Running Zephyr on the SweRVolf

5 Running Tensorflow Lite on SweRVolf

Users may run the programs either in simulation or in
hardware. Lab 3 introduces FuseSoC, an open-source tool for
building systems, and SweRVolf, the open-source SoC based
on the SweRV EH1 core. Lab 3 also compares the FuseSoC
approach with the block design approach from Lab 1. Lab 4
shows how to build, run, and use Zephyr, an open-source real-
time operating system (RTOS), on the RVfpga System.
Finally, Lab 5 shows how to build a Tensorflow Lite project
for Zephyr (a real-time operating system) and then run that
Zephyr program on SweRVolf.

VI. RELATED WORK

RVfpga fulfills the ACM’s (Association from Computing
Machinery’s) Computing two main computer engineering
competencies established in its Curricula 2020 for computer
architecture and organization: “Manage the design of
computer hardware components and integrate such
components” and “Simulate and evaluate the performance of
... hardware solutions” [11].

Traditionally, undergraduate and graduate architecture
courses relied extensively on simulators [12], such as gem5
[13] or Mars [14], which allow the students to evaluate the
performance of different architectural choices. Architectural
simulators are not too hard to set up and, to a certain extent,
are highly configurable, which enables rapid exploration of an
architecture. However, they are far from real systems.

Recently, HDL-based environments have arisen, offering
a more detailed view of the core internals but with the trade-
off of more complexity and decreased flexibility. However,
these HDL systems offer a powerful alternative for computer
architecture labs. Two such systems and accompanying
programs are based on MIPS [15] and ARM [16] processors.
MIPSfpga, introduced in 2015, is an architecture course built
around a soft-core commercial MIPS processor [15] that
includes labs on computer architecture covering topics similar
to those in RVfpga. In 2020, the Arm University Program
launched its “Arm-based Computer Architecture Education
kit” [16] using a simplified non-commercial Arm core.

In addition to these existing programs, the emergence of
the RISC-V architecture has led to a plethora of open-source
educational materials [17] and design alternatives, ranging
from very simple in-order designs to more aggressive out-of-
order proposals. Two such designs are the BRISC-V Toolbox
[18] and LeaRnV [19]. BRISC-V represents a huge effort to
build a complete web-based ecosystem including a compiler,
simulator, and a generator of fully-synthesizable hardware
systems. However, this toolbox provides only the cores but
not accompanying labs or exercises. The LeaRnV course aims
to train students in hardware-software co-design.

VII. CONCLUSIONS AND FUTURE WORK

We have developed two courses, RVfpga and RVfpga-
SoC, that show how to target a commercial RISC-V core and
system to an FPGA and to a simulator, use and modify the
system, and use RISC-V tools such as compilers and
debuggers. RVfpga, the first course, shows how to use,
modify, and extend the system, including adding new
peripherals and instructions, and analyzing the core
microarchitecture and the cache and memory system by means
of different mechanisms (Verilator simulations, performance
counters and other tools). The second course, RVfpga-SoC,
shows how to build a subset of the RVfpga System from
scratch and how to run the Zephyr RTOS on it.

In the future, we plan on developing online and in-person
workshops as well as a self-guided MOOC (massive open
online course) based on this RVfpga course, both in English
and Chinese. These will include videos and demonstrations to
guide users through the materials. RVfpga written materials
are currently available in English and Chinese (simplified and
traditional) and will soon be translated into Spanish, Turkish,
Japanese, and Korean. As mentioned, we also aim to target
RVfpga to smaller FPGAs found on less expensive boards,
such as the Basys 3, Arty A7, or Cmod A7 boards, by using
one of Western Digital’s smaller RISC-V open cores such as
the SweRV EL2.

ACKNOWLEDGMENTS

We would like to acknowledge the support and
contributions of David Patterson, Ted Marena, Ivan Kravets,
Valerii Koval, Roy Kravitz, Daniel León, Katzalin Olcoz,
Alberto del Barrio, Fernando Castro, Manuel Prieto, Ataur
Patwary, Christian Tenllado, Francisco Tirado, Román

Hermida, Cathal McCabe, Dan Hugo, Braden Harwood,
David Burnett, Gage Elerding, Brian Cruickshank, Deepen
Parmar, Thong Doan, Oliver Rew, Niko Nikolay, and
Guanyang He. We would also like to acknowledge the support
of project MINECO RTI2018-093684-B-I00.

REFERENCES

[1] RISC-V International: https://riscv.org/

[2] SweRV EH1 Core: https://github.com/chipsalliance/Cores-SweRV
[3] Imagination Technologies – Teaching Resources:

https://university.imgtec.com/teaching-download/

[4] SweRVolf SoC – Master Branch:
https://github.com/chipsalliance/Cores-SweRVolf

[5] Programmer’s Reference Manual of SweRV EH1:

https://github.com/chipsalliance/Cores-
SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf

[6] S.McFarling. “Combining branch predictors”. Technical note TN-36,

DEC-WRL, 1993.
[7] SweRV Cores Roadmap: https://content.riscv.org/wp-

content/uploads/2019/12/12.11-14.20a3-Bandic-

WD_SweRV_Cores_Roadmap_v4SCR.pdf

[8] SweRVolf SoC – Version 0.7.3: https://github.com/chipsalliance/Cores-

SweRVolf/releases/tag/v0.7.3

[9] Nexys A7 Reference Manual:
https://reference.digilentinc.com/_media/reference/programmable-

logic/nexys-a7/nexys-a7_rm.pdf

[10] Verilator: https://www.veripool.org/wiki/verilator
[11] ACM/IEEE Computing Curricula 2020:

https://www.acm.org/binaries/content/assets/education/curricula-

recommendations/cc2020.pdf

[12] Prasad, P.W.C., Alsadoon, A., Beg, A. and Chan, A. (2016), “Using
simulators for teaching computer organization and architecture”.

Comput Appl Eng Educ, 24: 215-224.

https://doi.org/10.1002/cae.21699.
[13] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K.

Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,

Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.

2011. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2

(May 2011), 1–7. DOI:https://doi.org/10.1145/2024716.2024718.
[14] K. Vollmar and P. Sanderson. “Mars: An education-oriented MIPS

assembly language simulator”. In Proceedings of the 37th SIGCSE

Technical Symposium on Computer Science Education, SIGCSE ’06,
pages 239–243, New York, NY, USA, 2006. ACM.

[15] Harris, Sarah & Harris, David & Chaver, Daniel & Owen, Robert &

Kakakhel, Zubair & Sedano Algarabel, Enrique & Panchul, Yuri and
Ableidinger, Bruce. (2017). “MIPSfpga: Using a Commercial MIPS

Soft-Core in Computer Architecture Education”. IET Circuits, Devices

& Systems. 11. 10.1049/iet-cds.2016.0383.
[16] Arm Introduction to Computer Architecture:

https://www.arm.com/resources/education/education-kits/computer-

architecture

[17] RISC-V International University Resources:

https://riscv.org/community/learn/educational-materials

[18] Agrawal, Rashmi & Bandara, Sahan & Ehret, Alan & Isakov, Mihailo
& Mark, Miguel & Kinsy, Michel. (2019). The BRISC-V Platform: A

Practical Teaching Approach for Computer Architecture. 1-8.
10.1145/3338698.3338891.

[19] Grenoble Institute of Technology. (2020). LeaRnV: RISC-V based

SoC Platform for Research Development and Education. https://tima-
amfors.gricad-pages.univ-grenoble-alpes.fr/learnv/

https://riscv.org/
https://github.com/chipsalliance/Cores-SweRV
https://university.imgtec.com/teaching-download/
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.11-14.20a3-Bandic-WD_SweRV_Cores_Roadmap_v4SCR.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.11-14.20a3-Bandic-WD_SweRV_Cores_Roadmap_v4SCR.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.11-14.20a3-Bandic-WD_SweRV_Cores_Roadmap_v4SCR.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-a7/nexys-a7_rm.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-a7/nexys-a7_rm.pdf
https://www.veripool.org/wiki/verilator
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2020.pdf
https://doi.org/10.1002/cae.21699
https://www.arm.com/resources/education/education-kits/computer-architecture
https://www.arm.com/resources/education/education-kits/computer-architecture
https://riscv.org/community/learn/educational-materials
https://tima-amfors.gricad-pages.univ-grenoble-alpes.fr/learnv/
https://tima-amfors.gricad-pages.univ-grenoble-alpes.fr/learnv/

