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Abstract—RISC-V FPGA, also written RVfpga, is a set of 

two freely available courses developed by the authors and 

Imagination Technologies that enable users to understand and 

use the RISC-V instruction set architecture (ISA), a commercial 

RISC-V core and system, and the RISC-V ecosystem. The first 

course, RVfpga, includes comprehensive instructions, tools, and 

labs for targeting a commercial RISC-V processor to a field 

programmable gate array (FPGA) and then using and 

expanding it to learn about computer architecture, digital 

design, embedded systems, system-on-chip (SoC) design, and 

programming. The topics covered include targeting the RISC-V 

SoC to an FPGA, programming in C and RISC-V assembly, 

running programs in simulation or, optionally, in hardware, 

using peripherals and adding new ones to the SoC, and 

analyzing and modifying the RISC-V core and memory system, 

including adding new instructions to the core. The follow-on 

course, RVfpga-SoC, shows how to build a RISC-V SoC from 

building blocks and then run the Zephyr real-time operating 

system (RTOS) on it. At the completion of these courses, users 

will have a working RISC-V system and have hands-on 

experience exploring and using both the RISC-V SoC and the 

RISC-V toolchain, including compilers and simulators. 

Keywords—RVfpga, RVfpga-SoC, RISC-V, FPGA, SweRV, 

SweRVolf, computer architecture, education, system-on-chip, SoC 

I. INTRODUCTION 

RISC-V is an open-source instruction set architecture 
(ISA), introduced in 2010, that is becoming increasingly used 
in industry, academia, and research. While other open-source 
ISAs have existed, including OpenSPARC, which was 
developed in 2005, RISC-V is the first open-source 
architecture that has been widely adopted, thanks in part to 
RISC-V International [1], a group of industry and academic 
collaborators that ratify the RISC-V specifications and build 
the RISC-V community. 

Because RISC-V is open source, the time-consuming and 
costly barrier of licensing is removed and collaboration is 
encouraged. However, the barrier of entry into using the tools 
and understanding the RISC-V core remains. This RISC-V 
FPGA course (RVfpga) removes these barriers by providing 
step-by-step instructions on topics ranging from installing and 
using the tools and programming in C and RISC-V assembly 
to expanding the processor to add peripherals such as serial 
interfaces and to modify the RISC-V core and memory 
system, including adding instructions to the core.  

The RVfpga Getting Started Guide shows how to install 
and use the RISC-V toolchain to compile and run programs, 
how to program Digilent’s Nexys A7 FPGA board with the 
RVfpga System, and how to run RISC-V programs in 
simulation using either Verilator or Western Digital’s 
Whisper instruction set simulator (ISS). The twenty RVfpga 
Labs show how to program the core in C and RISC-V 
assembly, how to use peripherals and add new ones to the 
RVfpga System, and how to understand and modify the 
microarchitecture and memory system of the commercial, 
open-source SweRV EH1 core [2] provided by Western 
Digital. Finally, the RVfpga-SoC follow on course shows how 
to design, synthesize, and load a RISC-V SoC and how to run 
the open-source Zephyr real-time operating system (RTOS) 
on it. 

This RVfpga course supports the open-source philosophy 
itself because the course materials are freely available upon 
request from Imagination Technologies [3]. In addition, all of 
the software tools are free, as well as the core and SoC, which 
are based on SweRV EH1 [2] and SweRVolf [4] respectively, 
both of which are open-source with an Apache 2.0 license. All 
of the materials can be completed in simulation, so the course 
may be completed without cost. The optional Nexys A7 FPGA 
board from Digilent Inc. that is used in the course costs $200, 
but many academics and researchers already have access to an 
FPGA board to which they could adapt the materials. (Note 
that the older Nexys 4 DDR board from Digilent can be used 
interchangeably with the Nexys A7 board.) Using the FPGA 
as the hardware target is optional, but it enhances the hands-
on learning. Future versions of the RVfpga course will target 
lower-cost boards. 

The rest of this paper provides an overview of the RVfpga 
course and materials (Section II), a description of the Getting 
Started Guide and Labs (Sections III and IV), and an overview 
of the RVfpga-SoC course (Section V). The paper concludes 
by describing related and future work (Sections VI and VII). 

II. RVFPGA OVERVIEW 

RVfpga is a RISC-V computer architecture course 
developed by the authors and Imagination Technologies in 
collaboration with industry partners including Western Digital 
Corporation. The course enables users to gain hands-on 
experience with the RISC-V architecture and its ecosystem, 



which includes the RISC-V toolchain, simulators, open-
source hardware cores and SoCs, and software tools. 

The course includes a comprehensive Getting Started 
Guide, slides, and twenty extensive labs. A stand-alone 
RVfpga-SoC course is also provided. The RVfpga Getting 
Started Guide and Labs 1-10 have been available since 
November 2020. The remaining labs, Labs 11-20, will be 
released in fall 2021, and the stand-alone RVfpga-SoC course 
is available as of summer 2021. 

The target audience is anyone who wants to learn or teach 
about the RISC-V architecture and how to use it – including 
professors, industry professionals, researchers, and students. 
Before completing the RVfpga or RVfpga-SoC course, it is 
expected that users have at least some understanding of the 
following topics: digital logic design, high-level programming 
(preferably C), assembly programming, hardware description 
languages (HDL), instruction set architecture (ISA), 
input/output (I/O) systems, processor microarchitecture, and 
memory systems. These topics are covered in the textbook 
Digital Design and Computer Architecture: RISC-V Edition, 
Harris & Harris, © Morgan Kaufmann, 2021. Other textbooks, 
including Computer Organization and Design RISC-V 
Edition, Patterson & Hennessy, © Morgan Kaufmann 2017, 
cover some of this material. The RVfpga course develops and 
expands on these topics. 

In the remainder of this section, we describe three cores 
and systems that are fundamental to the RVfpga System: the 
open-source commercial SweRV EH1 RISC-V core provided 
by Western Digital (Section IIa), the SweRVolfX SoC, an 
SoC that uses the EH1 core (Section IIb), and 
RVfpgaNexys/RVfpgaSim, which expand the SweRVolfX 
SoC (Section IIc). RVfpgaNexys targets the Nexys A7 FPGA 
board and RVfpgaSim is a wrapper that targets simulation.  

A. SweRV EH1 Core and SweRV EH1 Core Complex 

Western Digital has developed three open-source RISC-V 
cores over the past few years: SweRV EH1, SweRV EH2, and 
SweRV EL2. The SweRV EH1 Core (provided with the 
RVfpga package and also available from [2]) is a 32-bit, 2-
way superscalar, 9-stage pipeline core that supports the 
multiply/divide (M) and compressed (C) RISC-V extensions.  
EH1 is preferred over EL2 or EH2 for its high 
performance/MHz and its simple thread structure, but future 
versions of RVfpga might also target the other cores.  

We overview the SweRV EH1 core, but the 

Programmer’s Reference Manual of the SweRV EH1 core [5] 

describes the core in detail. SweRV EH1 (see Figure 1) 

supports four arithmetic logic units (ALUs) in two pipelines: 

instruction way 0 (I0) and way 1 (I1). These ways support 

ALU operations, loads/stores and multiplications. The 

processor also has one out-of-pipeline 34-cycle latency 

divider. Four stall points exist in the pipeline in the following 

stages: Fetch 1, Align, Decode, and Commit. The Fetch 1 

stage includes a Gshare branch predictor [6]. In the Align 

stage, instructions are retrieved from three fetch buffers. In 

the Decode stage, up to two instructions from four instruction 

buffers are decoded. In the Commit stage, up to two 

instructions per cycle are committed. Finally, in the 

Writeback stage, the architectural registers are updated. 

 
Fig. 1. SweRV EH1 core microarchitecture (figure from [5]) 

Figure 2 shows a comparison of existing commercial cores 
and processors. The SweRV EH1 Core performance per MHz 
is impressively high at 4.9 CM/MHz (CoreMark per MHz): it 
is twice as fast as the ARM Cortex A8 and its performance 
even surpasses the ARM Cortex A15 performance.  

 

Fig. 2. Benchmark comparison per thread and MHz (figure from [7]) 

Western Digital also provides an extension to the SweRV 

EH1 Core called the SweRV EH1 Core Complex (see 

Figure 3), which adds the following elements to the EH1 

Core: 
 

• Two dedicated memories that are tightly coupled to the 

core: one for instructions (ICCM: instruction closely 

coupled memory), and the other for data (DCCM).. 

• An optional 4-way set-associative instruction cache 

with parity or ECC protection. 

• An optional Programmable Interrupt Controller (PIC), 

that supports up to 255 external interrupts. 

• Four system bus interfaces for instruction fetch, data 

accesses, debug accesses, and external direct memory 

accesses (DMA) to closely coupled memories. 

• Core Debug Unit. 

 

 
Fig. 3. SweRV EH1 Core Complex (figure from [5]) 



B. SweRVolf System on Chip and RVfpga Extensions 

The SoC used in RVfpga is an extension of the SweRVolf SoC 
version 0.7.3, available at [8]. In RVfpga, we call this 
extended SoC SweRVolfX (SweRVolf eXtended). The 
SweRVolfX SoC is shown in Figure 4 as part of a bigger 
structure that we will describe in the next section. 

The SweRVolfX SoC is built around the SweRV EH1 
Core Complex shown in Figure 3. In addition, the SweRVolfX 
SoC also includes a Boot ROM, a UART, a System 
Controller, two SPI controllers, a GPIO and a Timer. Given 
that the SweRV EH1 Core uses an AXI bus and the 
peripherals use a Wishbone bus, the SweRVolfX SoC also has 
an AXI-to-Wishbone Bridge.  Table I gives the memory-
mapped addresses of the peripherals that are connected to the 
SweRV EH1 core via the Wishbone interconnect.  

TABLE I.  MEMORY-MAPPED ADDRESSES OF SWERVOLFX 

System Address 
Boot ROM 0x80000000 - 0x80000FFF 

System Controller 0x80001000 - 0x8000103F 

SPI1 0x80001040 - 0x8000107F 

SPI2* 0x80001100 - 0x8000113F 

Timer* 0x80001200 - 0x8000123F 

GPIO* 0x80001400 - 0x8000143F 

UART 0x80002000 - 0x80002FFF 
              * Peripherals added in SweRVolfX  

C. RVfpgaNexys and RVfpgaSim 

The SweRVolfX SoC can run either on the Nexys A7 (or 
Nexys4 DDR) FPGA board or in simulation. Figure 5 shows 
the hierarchical organization of the RVfpga System that we 
will describe further in this section. 

RVfpgaNexys is the SweRVolfX SoC targeted to the 
Digilent Nexys A7 FPGA board (Figure 4). The main 
components of RVfpgaNexys are listed below and illustrated 
in Figure 4. 

• RVfpga Hardware: 

o SweRVolfX SoC 

o Lite DRAM controller 

o Clock Generator: the Nexys A7 board includes a single 

100 MHz crystal oscillator that is used by the Lite 

DRAM controller. The frequency of this clock is scaled 

down to 50 MHz to use in the SweRVolf SoC. 

o Clock Domain Crossing (CDC) module: connection of 

2 clock domains: SweRVolf SoC and Lite DRAM. 

o BSCAN logic for the JTAG port 

 

• Nexys A7 FPGA board memory and peripherals used by 
RVfpga: 

o DDR2 memory (accessed through the Lite DRAM 
controller) 

o USB connection 
o SPI Flash memory and SPI Accelerometer. 
o 16 LEDs and 16 Switches 
o 8-digit 7-Segment Displays 

 
The Nexys A7 board [9] (or similarly the Nexys 4 DDR 

board) is a recommended trainer board for electrical and 
computer engineering curricula. This board costs $265 (or a 
discounted price of $199 with academic pricing). In future 
RVfpga versions we plan to include support for other Digilent 
boards such as Basys 3, Arty A7 or Cmod A7. Because these 
boards include FPGAs that are smaller than the Artix 7 FPGA 

that is on the Nexys A7 board, we will likely use the smaller 
SweRV EL2 core for these smaller boards. 

 

Fig. 4. RVfpgaNexys 

RVfpgaSim is the SweRVolfX SoC wrapped in a testbench 
to be used by HDL simulators. In the RVfpga course, we show 
how to use Verilator [10]. This open-source and free HDL 
simulator claims to be the fastest Verilog/SystemVerilog 
simulator; it is widely used in industry and academia; it 
provides out-of-the-box support from ARM and RISC-V 
vendor IPs; and it is guided by Chips Alliance and the Linux 
Foundation. 
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Fig. 5. The RVfpga System Hierarchy 

D. Hardware and Software Requirements 

The software required by the RVfpga course is all freely 
available and the hardware is optional, as listed in Table II. 
RVfpga requires two main software tools: PlatformIO, which 
is an extension of Visual Studio (VS) Code, and Verilator. The 
other software will either be installed as part of other 
installations or is optional. RVfpga can be used on Windows, 
Linux, or macOS platforms. 

The RVfpga System source code, which includes the 
SweRVolfX and the SweRV EH1 Core Complex, as well as 
the RVfpgaNexys and RVfpgaSim wrappers, is provided with 
the RVfpga course materials, but links to the GitHub 
distributions of SweRVolf and the EH1 core are provided for 



reference in Table II. Descriptions of how to install the needed 
software and use the RVfpga System are provided in the 
RVfpga Getting Started Guide, which is discussed next. 

TABLE II.  RVFPGA SOFTWARE AND HARDWARE 

Software 

Name Website Cost 

Vivado 2019.2 

WebPACK* 

https://www.xilinx.com/suppor

t/download/index.html/content/
xilinx/en/downloadNav/vivado

-design-tools/2019-2.html 

free 

VS Code https://code.visualstudio.com/
Download 

free 

PlatformIO https://platformio.org/ 

Installed within VSCode 

free 

Verilator (an HDL 
simulator) and 

GTKWave 

https://github.com/verilator/ver
ilator  

http://gtkwave.sourceforge.net/  

free 

Whisper (Western 
Digital’s RISC-V 

Instruction Set 

Simulator) 

https://github.com/chipsallianc
e/SweRV-ISS  

Installed within PlatformIO  

free 

RISC-V Toolchain 

and OpenOCD 

https://github.com/riscv/riscv-

gnu-toolchain  

https://github.com/riscv/riscv-
openocd 

Installed within PlatformIO  

free 

Hardware 

Name Website Cost 

Nexys A7 FPGA 

Board* 

https://store.digilentinc.com/ne

xys-a7-fpga-trainer-board-
recommended-for-ece-

curriculum/ 

$265 

(academic 
price: 

$199) 

RISC-V Core and System-on-Chip (SoC) 

Name Website Cost 

Western Digital’s  

SweRV EH1 Core 

https://github.com/chipsallianc

e/Cores-SweRV  

free 

SweRVolf https://github.com/chipsallianc

e/Cores-SweRVolf  

free 

* optional 

III. RVFPGA GETTING STARTED GUIDE 

The RVfpga Getting Started Guide (GSG) is the 
introductory document of the RVfpga materials. It is an 
extensive document that includes 8 sections plus appendices. 

The Quick Start Guide, which is Section 2 of the GSG, 
describes the minimal software installation needed for 
RVfpga and then shows how to download and execute a 
simple example program on the RVfpga System, both in 
simulation and hardware. 

Sections 3 and 4 give a brief introduction to the RISC-V 
computer architecture and the RVfpga System, including the 
organization of the Verilog and SystemVerilog files that make 
up the RVfpga System. 

The remaining sections of the GSG show how to use the 
RVfpga System in both hardware (RVfpgaNexys) and 
simulation (RVfpgaSim). Section 5 shows how to install the 
software tools needed to use the RVfpga System. Section 6 
shows how to use PlatformIO to both download 
RVfpgaNexys onto the Nexys A7 FPGA board and how to 
download and run several example programs on it. Sections 7 
and 8 show how to simulate RVfpgaSim using Verilator and 
how to simulate RISC-V code on the Whisper instruction set 
simulator (ISS), respectively.  

IV. RVFPGA LABS 

The twenty RVfpga laboratory assignments provided with 
the RVfpga course are listed in TABLE III. In this section we 
describe each lab and highlight each lab’s objectives. 

TABLE III.  RVFPGA LABS 

 # Title 

P
a
rt

 1
 

0 RVfpga Labs Overview 

1 Creating a Vivado Project 

2 C Programming 

3 RISC-V Assembly Language 

4 Function Calls 

5 Image Processing: Projects with C & Assembly 

6 Introduction to I/O 

7 7-Segment Displays 

8 Timers 

9 Interrupt-Driven I/O 

10 Serial Buses 

P
a
rt

 2
 

11 SweRV EH1 Configuration and Organization. 
Performance Monitoring 

12 Arithmetic/Logical Instructions: the add instruction 

13 Memory Instructions: the lw and sw instructions 

14 Structural Hazards 

15 Data Hazards 

16 Control Hazards. Branch Instructions: the beq Instruction. 
The Branch. 

17 Superscalar Execution 

18 Adding New Features (Instructions, Hardware Counters) 
to the Core 

19 Memory Hierarchy. The Instruction Cache. 

20 ICCM and DCCM 
 

Lab 0 overviews all of the labs. Each lab includes 
instructions that introduce and describe the topics and 
exercises for guiding the users in then experimenting with the 
concepts on their own. The RVfpga package also includes 
solutions for all exercises.  

Lab 1 shows how to use Xilinx’s Vivado to target the 
RVfpga System to the Artix 7 FPGA on the Nexys A7 FPGA 
board. When the user modifies the RVfpga System in labs 6-
20, they will rely on what they learned from Lab 1 to 
resynthesize and debug their modified RVfpga systems.  

Labs 2 through 5 show how to write C and RISC-V 
assembly programs and run them – either in simulation 
(Whisper) or in hardware using PlatformIO and the Nexys A7 
board. Lab 2 shows how to write, compile, debug, simulate, 
and run C programs on the RVfpga System. PlatformIO offers 
a seamless environment for doing this. Lab 2 also shows how 
to access the peripherals (such as the LEDs and switches) in 
C programs and how to use PlatformIO’s serial monitor to 
view a program’s print output.  

Lab 3 shows how to write and run RISC-V assembly 
programs.  Lab 4 shows how to use function calls, including 
C library functions. Lab 5 shows how to create a project that 
uses both C and assembly source files and how to perform 
image processing algorithms. 

Labs 6 through 10 show how to use the peripherals 
available in the RVfpga System (i.e., the switches, LEDs, 
seven-segment displays, timer, and SPI accelerometer) and 
also how to modify it to add new peripherals (pushbuttons and 
tri-color LEDs). Users are guided to modify the RVfpga 

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2019-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2019-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2019-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2019-2.html
https://code.visualstudio.com/Download
https://code.visualstudio.com/Download
https://platformio.org/
https://github.com/verilator/verilator
https://github.com/verilator/verilator
http://gtkwave.sourceforge.net/
https://github.com/chipsalliance/SweRV-ISS
https://github.com/chipsalliance/SweRV-ISS
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-openocd
https://github.com/riscv/riscv-openocd
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf


System source code (Verilog/SystemVerilog code) and also to 
write programs to exercise their added hardware. Lab 9 
introduces the concept of interrupts and shows how to use 
them in the RVfpga System. 

Labs 11 through 20, which will be released in fall 2021, 
show how to investigate, analyze, and modify the RISC-V 
core and memory system. Lab 11 provides a detailed 
introduction to the SweRV EH1 microarchitecture, explaining 
each of its 9 pipeline stages and each of the execution pipes. 
This lab also shows how to use the performance counters and 
real benchmarks to test the RVfpga System. Labs 12 and 13 
investigate arithmetic/logic and memory (load and store) 
instructions. Labs 14-16 investigate structural/data/control 
hazards, branch instructions, and the (Gshare) branch 
predictor. Lab 17 analyzes 2-way superscalar execution. Lab 
18 shows how to add new instructions to the core, including 
bit manipulations and floating-point instructions, as well as 
new hardware counters. Labs 19 and 20 show how to use the 
instruction cache and the closely-coupled instruction and data 
memories (ICCM and DCCM). 

V. RVFPGA-SOC COURSE 

While the RVfpga course focuses on using and expanding 
the RISC-V core and its peripherals, the RVfpga-SoC course, 
available in summer 2021, shows how to create a RISC-V 
SoC, based on SweRVolfX, from building blocks.  

The five RVfpgaSoC laboratory assignments are listed in 
TABLE IV.  Lab 1 gives an overview and shows how to create 
the RVfpga SoC from scratch by connecting modules 
including the SweRV EH1 core, interconnect, and peripherals. 
We use Xilinx’s Vivado Block design tool to both add 
modules and then connect them pin-by-pin to create a subset 
of the RVfpga System. We then show how to target this 
RVfpga System to the Nexys A7 FPGA board. Lab 2 shows 
how to run programs on the RVfpga System built in Lab 1.  

TABLE IV.  RVFPGA-SOC LABS 

# Title 

1 Introduction to RVfpga-SoC 

2 Running Software on the RVfpga SoC 

3 Introduction to SweRVolf and FuseSoC 

4 Building and Running Zephyr on the SweRVolf 

5 Running Tensorflow Lite on SweRVolf 
 

Users may run the programs either in simulation or in 
hardware. Lab 3 introduces FuseSoC, an open-source tool for 
building systems, and SweRVolf, the open-source SoC based 
on the SweRV EH1 core. Lab 3 also compares the FuseSoC 
approach with the block design approach from Lab 1. Lab 4 
shows how to build, run, and use Zephyr, an open-source real-
time operating system (RTOS), on the RVfpga System. 
Finally, Lab 5 shows how to build a Tensorflow Lite project 
for Zephyr (a real-time operating system) and then run that 
Zephyr program on SweRVolf. 

VI. RELATED WORK 

RVfpga fulfills the ACM’s (Association from Computing 
Machinery’s) Computing two main computer engineering 
competencies established in its Curricula 2020 for computer 
architecture and organization: “Manage the design of 
computer hardware components and integrate such 
components” and “Simulate and evaluate the performance of 
... hardware solutions” [11]. 

Traditionally, undergraduate and graduate architecture 
courses relied extensively on simulators [12], such as gem5 
[13] or Mars [14], which allow the students to evaluate the 
performance of different architectural choices.  Architectural 
simulators are not too hard to set up and, to a certain extent, 
are highly configurable, which enables rapid exploration of an 
architecture. However, they are far from real systems. 

Recently, HDL-based environments have arisen, offering 
a more detailed view of the core internals but with the trade-
off of more complexity and decreased flexibility. However, 
these HDL systems offer a powerful alternative for computer 
architecture labs. Two such systems and accompanying 
programs are based on MIPS [15] and ARM [16] processors. 
MIPSfpga, introduced in 2015, is an architecture course built 
around a soft-core commercial MIPS processor [15] that 
includes labs on computer architecture covering topics similar 
to those in RVfpga. In 2020, the Arm University Program 
launched its “Arm-based Computer Architecture Education 
kit” [16] using a simplified non-commercial Arm core. 

In addition to these existing programs, the emergence of 
the RISC-V architecture has led to a plethora of open-source 
educational materials [17] and design alternatives, ranging 
from very simple in-order designs to more aggressive out-of-
order  proposals. Two such designs are the BRISC-V Toolbox 
[18] and LeaRnV [19]. BRISC-V represents a huge effort to 
build a complete web-based ecosystem including a compiler, 
simulator, and a generator of fully-synthesizable hardware 
systems. However, this toolbox provides only the cores but 
not accompanying labs or exercises. The LeaRnV course aims 
to train students in hardware-software co-design.  

VII. CONCLUSIONS AND FUTURE WORK  

We have developed two courses, RVfpga and RVfpga-
SoC, that show how to target a commercial RISC-V core and 
system to an FPGA and to a simulator, use and modify the 
system, and use RISC-V tools such as compilers and 
debuggers. RVfpga, the first course, shows how to use, 
modify, and extend the system, including adding new 
peripherals and instructions, and analyzing the core 
microarchitecture and the cache and memory system by means 
of different mechanisms (Verilator simulations, performance 
counters and other tools). The second course, RVfpga-SoC, 
shows how to build a subset of the RVfpga System from 
scratch and how to run the Zephyr RTOS on it. 

In the future, we plan on developing online and in-person 
workshops as well as a self-guided MOOC (massive open 
online course) based on this RVfpga course, both in English 
and Chinese. These will include videos and demonstrations to 
guide users through the materials. RVfpga written materials 
are currently available in English and Chinese (simplified and 
traditional) and will soon be translated into Spanish, Turkish, 
Japanese, and Korean. As mentioned, we also aim to target 
RVfpga to smaller FPGAs found on less expensive boards, 
such as the Basys 3, Arty A7, or Cmod A7 boards, by using 
one of Western Digital’s smaller RISC-V open cores such as 
the SweRV EL2.  
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