

Imagination University Programme – RVfpga Lab 4: Image Processing: C & Assembly
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 4
Image Processing: C & Assembly

Imagination University Programme – RVfpga Lab 4: Image Processing: C & Assembly
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

In this lab, you will build RISC-V programming projects that perform image processing
routines. The projects will include multiple source files, some of which are written in C and
some in assembly. We will show how C functions can invoke assembly routines and vice
versa.

2. IMAGE PROCESSING TUTORIAL

Begin this lab by examining a provided program that processes an RGB image (left side of
Figure 1), and generates a greyscale version of that image (right side of Figure 1). The
program is written in C and RISC-V assembly languages and is configured to run on the
PlatformIO environment. It is available at:

[RVfpgaPath]/RVfpga/Labs/Lab04/ImageProcessing

The source code is in the src subdirectory.

Figure 1. Transformation of an RGB image to a Greyscale image.

A. Project structure and main function

The program consists of the following source files: main.c, VanGogh_128.c and
assemblySubroutines.S. The .c files contain functions (such as the functions for performing
the image transformations) and variable declarations (such as the input image, declared as
an unsigned char array). The assemblySubroutines.S file contains an assembly language
implementation of the function that transforms the image from rgb to grey scale called:
ColourToGrey_Pixel.

Figure 2 shows the main function of this project. It first invokes function initColourImage,

which creates an N x M matrix with the input image data. It then transforms the colour image
to a greyscale image (function ColourToGrey). Finally, the function prints a message and

enters an infinite loop (while (1);).

Imagination University Programme – RVfpga Lab 4: Image Processing: C & Assembly
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

Figure 2. main function in ImageProcessing project

B. RGB and greyscale images

An image consists of a matrix of pixels, where each element of the matrix represents the
value of a pixel in some given scale. In RGB, each pixel is composed of three values, which
correspond to the luminous intensity of the red (R), green (G) and blue (B) components.
Therefore, each pixel of a colour image will be a three-component vector. In this project, we
use the following definition for the RGB pixel type:

This code defines a structure named RGB. In C, a struct data type is a collection of

variables, possibly of different types, specified by a single name. This structure contains

three fields, all of the same type (unsigned char), named R, G and B. Thus, each colour

channel is represented by 8 bits, so that we can distinguish among 256 different intensity
levels in each colour channel, for a total of 24 bits per pixel (24bpp). This is a common
format in current digital image processing.

To represent a greyscale image, a single value (single channel) ranging from 0 to 255
indicates the brightness of each pixel. In this ImageProcessing project, we represent the
greyscale image using a 2-dimensional array of characters:

C. Transforming a colour image into a greyscale image

The transformation between the two colour spaces (RGB and Greyscale) is performed using
the following weighted sum:

grey = 0.299*R + 0.587*G + 0.114*B

This equation is based on the algorithms described at
https://www.mathworks.com/help/matlab/ref/rgb2gray.html.

https://www.mathworks.com/help/matlab/ref/rgb2gray.html

Imagination University Programme – RVfpga Lab 4: Image Processing: C & Assembly
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

For each pixel, we calculate the greyscale value by multiplying each colour channel by the
weight given in the equation. The sum of the weights (0.299+0.587+0.114) is one, so the
resulting greyscale value will be within the range 0-255, and thus it can be represented with
a single byte.

To use the weights given in the equation, we would need to operate with real numbers,
however the SweRV EH1 processor does not include floating-point support. One approach
would be to use floating-point emulation, as in the DotProduct program shown in Section 5.H
of the Getting Started Guide, however, in this lab, we use an approach based on integer
arithmetic. The weights are converted to integers and the sum is a power of two (in our case,
210). To convert the weights to integers, we multiply each floating-point weight by 210 and
round to the nearest integer:

- 0.299*210 = 306.176 ≈ 306 (weight for R)
- 0.587*210 = 601.088 ≈ 601 (weight for G)
- 0.114*210 = 116.736 ≈ 117 (weight for B)

Of course, to reduce the final greyscale value to the range 0-255 we must divide the sum by
210, which is easily completed by shifting the value right by 10 bits. Thus, the final
transformation is obtained using the following formula:

grey = (306*R + 601*G + 117*B) >> 10

Note that, given that the sum of the constants (306+601+117) is 1024, the resulting
greyscale value will still be within the range 0-255.

Figure 3 illustrates the code for the ColourToGrey function (left side) and the
ColourToGrey_Pixel subroutine (right side) that ColourToGrey invokes.

Figure 3. ColourToGrey function (implemented in file main.c) and ColourToGrey_Pixel
subroutine (implemented in file assemblySubroutines.S).

In assembly language, symbols (variables and functions/subroutines) are local by default,
i.e. they are invisible to other files. To turn those local symbols into global symbols, we must

export them using the .globl assembler directive. On the right side of Figure 3, the first

line (.globl ColourToGrey_Pixel) exports the ColourToGrey_Pixel function, so that it

can be used by the ColourToGrey function, which is in a different file (main.c). On the left

side of Figure 3, the first line (extern int ColourToGrey_Pixel(int R, int G,

int B)) declares the ColourToGrey_Pixel function as an external function to this file.

Imagination University Programme – RVfpga Lab 4: Image Processing: C & Assembly
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

D. Execution of the program and visualization of the results

After the grey code conversion is complete, but before the end of the program’s execution,

we can dump the contents of some memory regions into files. To do this, we use the dump

command of the GDB debugger. Follow the next steps for running the project code and
obtaining the image results:

1. Open VSCode and PlatformIO.

2. On the top menu bar, click on File → Open Folder and browse into directory

[RVfpgaPath]/RVfpga/Labs/Lab04. Select directory ImageProcessing (do not open it,
but just select it) and click OK at the top of the window. PlatformIO will now open the
project.

3. Open platformio.ini and uncomment the board_build.bitstream_file and enter the

directory location of the bitfile. Use the bitfile provided with the Getting Started Guide.

board_build.bitstream_file = [RVfpgaPath]/RVfpga/src/rvfpganexys.bit

4. Open all the source files located in the src directory (main.c, assemblySubroutines.S)
and analyse them so that you clearly understand how the program works.

5. Download RVfpgaNexys onto the Nexys A7 board by clicking on the PlatformIO icon

on the left menu ribbon, then expanding Project Tasks → env:swervolf_nexys →

Platform and click on Upload Bitstream. Remember that you can also run these
programs on simulation, using Verilator and Whisper.

6. Execute the program in PlatformIO. You can do it either on the board (in which case
you must first upload RVfpgaNexys to the Nexys A7, as done in the previous step) or
using the Whisper simulator (as described in the RVfpga Getting Started Guide). In

any case, click on the “Run” button , which is available in the left side bar of
PlatformIO, and then start the debugger by clicking on the play button

.

The execution will stop at the beginning of the main function, so resume it by clicking

on the “Continue” button .

After a short time (about 1 second), the program will have completed the greyscale
image transformations explained above and it will have reached the infinite

(while(1);) loop at the end (see Figure 2). Pause the execution by clicking on the

Pause button .

7. Export the grey image (GreyImage), by running the following commands in the

Debug Console (see Figure 4, which shows the execution of these two commands):

cd AdditionalFiles

dump value GreyImage.dat GreyImage

Imagination University Programme – RVfpga Lab 4: Image Processing: C & Assembly
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

Figure 4. Export the greyscale image to a file

8. Transform the .dat file into .ppm file that you can view in your system.

In LINUX: do this by opening a terminal and typing the following commands (see Figure 5):

 cd [RVfpgaPath]/RVfpga/Labs/Lab04/ImageProcessing/AdditionalFiles

 gcc -o dump2ppm dump2ppm.c

 ./dump2ppm GreyImage.dat GreyImage.ppm 128 128 1

Figure 5. Transform the image to .ppm format

Imagination University Programme – RVfpga Lab 4: Image Processing: C & Assembly
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

In WINDOWS: do this by either:

 1. Using the dump2ppm.exe executable provided in

[RVfpgaPath]\RVfpga\Labs\Lab04\ImageProcessing\AdditionalFiles. Open

a command shell, go into that folder, and run the executable with the same arguments as
above:

 dump2ppm.exe GreyImage.dat GreyImage.ppm 128 128 1

Or

 2. Using Cygwin (if you installed it as described in the RVfpga Getting Started Guide) to
compile the dump2ppm.c program. Then run the program (dump2ppm.exe) in the Cygwin
terminal or in a command shell as in option 1 above.

9. Open the .ppm file using GIMP, the GNU Image Manipulation Program. If that

program is not already installed, go to the following website to download the installer:

https://www.gimp.org/downloads/

The greyscale image should look like the one shown on the right side of Figure 1
(you can also access the input colour image at
[RVfpgaPath]/RVfpga/Labs/Lab04/ImageProcessing/AdditionalFiles/VanGogh_128.p
pm, which should look like the one shown on the left side of Figure 1).

Imagination University Programme – RVfpga Lab 4: Image Processing: C & Assembly
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

3. Exercises

Exercise 1. Execute the program on a different input image. You can use the image
provided at: [RVfpgaPath]/RVfpga/Labs/Lab04/ImageProcessing/src/TheScream_256.c (You

can view the corresponding .ppm image at:

[RVfpgaPath]/RVfpga/Labs/Lab04/ImageProcessing/AdditionalFiles/TheScream_256.ppm.
You will also create this image by running the program dat2ppm, as described earlier.)

Exercise 2. Create a C function that counts the number of close to white (>235) and close to
black (<20) elements in the VanGogh greyscale image. Print the two numbers on the serial
console using Western Digital’s PSP and BSP libraries, as explained in Section 3 of Lab 1.

Exercise 3. Transform the ColourToGrey_Pixel assembly subroutine into a C function, and
the C function ColourToGrey into an assembly subroutine that invokes the
ColourToGrey_Pixel C function.

 In C, all functions and global variables are exported global symbols by default, so
you can use the ColourToGrey_Pixel function in subroutine ColourToGrey.

 For accessing a matrix in assembly language you must calculate the address of an
element (i,j), given the starting address of the array. According to the ANSI C
standard, two-dimensional arrays are stored in memory by rows. Thus, the address
of the pixel in row i and column j is obtained by adding the starting address of the
array and the offset (i*M + j)*B, where M is the number of columns and B is the
number of bytes occupied by each pixel: three bytes in RGB and only one in
greyscale.

Exercise 4. Apply a Blur Filter to the VanGogh colour image (you can find lots of
information online; for example, you can use the information available at:
https://lodev.org/cgtutor/filtering.html#Find_Edges).

Note that for transforming the .dat image into a .ppm image you must modify a bit the

dump2ppm command invocation for considering 3 channels instead of only 1:

 ./dump2ppm FilterColourImage.dat FilterColourImage.ppm 128 128 3

Moreover, you can compare the filtered image with the original one, which is available at
[RVfpgaLabsPath]/RVfpgaLabs/Programs/Lab04/ImageProcessing/AdditionalFiles/Van
Gogh_128.ppm

https://lodev.org/cgtutor/filtering.html#Find_Edges_

