

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 6
Introduction to I/O

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

In Labs 6-10, you will learn how to use and expand RVfpga’s Input/Output (I/O) system to
enable the RISC-V processor to interact with peripheral devices. Below is an overview of the
topics covered in these labs:

- Lab 6: Learn how to use the general-purpose input/output (GPIO) pins connected to
the LEDs, switches, and pushbuttons on the Nexys A7 board

- Lab 7: Learn how to use the 7-segment displays available on the board
- Lab 8: Learn how to use timers
- Lab 9: Learn how to use interrupts to interface with external devices
- Lab 10: Learn how to interface the RVfpga System with the onboard SPI

accelerometer

In this lab, we first describe the main features of a general-purpose I/O system and the one
used in the RVfpga System (Section 2). We then describe a simplified theoretical version of
a generic GPIO controller (Section 3). Finally, we focus on the GPIO controller used in the
SweRVolfX SoC: we first analyse its high-level specification and introduce fundamental
exercises (Sections 4 and 5). We conclude the lab by analysing its low-level implementation,
simulating RVfpgaSim in Verilator, and introducing advanced exercises (Sections 6 and 7).

We use this same general structure in Labs 7-10. In the beginning sections, we describe the
I/O controller’s high-level specification (its main features, registers and their operation, and
the memory map) and then introduce fundamental exercises for practice using the
peripheral. In the advanced sections, we describe the controller’s low-level implementation
and provide exercises for modifying it and then writing programs that test the modification.

Note to instructors: you may choose the complexity of exercises according to your course
level. For example, in a first/second year course (such as Computer Fundamentals or
Computer Organization), the fundamental exercises – in this lab, Section 5 – would be
suitable. However, in a more advanced course (such as Computer Architecture or
Embedded System Design), both the fundamental and advanced exercises – in this lab,
sections 5 to 7 – could be used.

RISC-V INSTRUCTI
ISC-V INSTRUCTION SET

2. INPUT/OUTPUT ARCHITECTURE

Figure 1 illustrates the structure of the Von Neumann Architecture, which is composed of
three main blocks: the CPU, the Memory, and the I/O System. In Labs 6-10, we focus on the
CPU’s interaction with input/output (I/O) devices. I/O devices are also referred to as
peripherals or simply devices. We overview the role of each main unit here:

- CPU: the CPU is the initiator of all I/O operations. It is the controller (historically
called “master”, but that term is deprecated) of any I/O transaction. A direct-memory-
access (DMA) controller (DMAC) could also act as a controller, but it is not included
in this lab.

- Device Controller: The device controller waits for read/write requests from a
controller to perform any action. Device controllers behave as peripherals (formerly
called “slaves,” but that term is deprecated) in the I/O system. Conceptually, a device
controller consists of a series of registers that are accessible from the controller. The
values of these registers instruct the peripheral about what action to perform.

- The interconnect (bus, crossbar, etc.) establishes a path between the controller and
the peripherals. Interconnect is usually implemented with several layers connected

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

through a bridge that prevents certain devices from slowing down the entire system.

Figure 1 Generic Computing System

Figure 2 shows RVfpga’s I/O system. It includes the following seven peripherals:

 LEDs and Switches (considered a single peripheral), connected to the GPIO1
module

 7-segment displays, connected to the System Controller module

 Flash Memory, connected to the SPI1 module

 Accelerometer, connected to the SPI2 module

 Timer

 UART

 Boot ROM

A multiplexer selects one peripheral among the seven possibilities and connects it with the
CPU. Note that a Wishbone to AXI Bridge is necessary because the peripherals use a
Wishbone bus (grey colour) whereas the SweRV EH1 Core uses an AXI bridge (orange
colour).

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

Figure 2. I/O System in the RVfpga System

TASK: Locate each of the elements of Figure 2 in the SoC. You will need to inspect the
following files and directories:
 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/swervolf_core.v (main file, where the elements from
Figure 2 are instantiated).
 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals
 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect
 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/SystemController/swervolf_syscon.v
 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon.v
 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon.vh

RI
As described in the RVfpga Getting Started Guide, the original SweRVolf
(https://github.com/chipsalliance/Cores-SweRVolf) includes only some of the peripherals
shown in Figure 2: specifically, the Boot ROM, System Controller (with no 7-Segment
Displays), SPI Flash Memory and UART (shown in white in Figure 2). Remember from the
GSG that SweRVolfX SoC extends the original SweRVolf SoC with new peripherals: an SPI
Accelerometer, a Timer, a GPIO module (shown in red in Figure 2), and a 7-segment display
controller (that extends SweRVolf’s existing System Controller).

Each peripheral receives values from the processor and/or sends values back to the
processor. Memory addresses are reserved for I/O values and are called registers, memory-
mapped I/O registers, or device controller registers. To send a value to a peripheral, the
CPU stores a value to a specified memory address (i.e., memory-mapped register). To read
a value from a peripheral, the CPU loads a value from a specified memory address. Thus, a
simple load/store operation from the CPU may configure a device, check its status, or
read/write data from/onto it.

The multiplexer in Figure 2 selects the requested device controller using Address[15:6]. The
device controllers use Address[5:2] to select among several registers used to control the
device.

https://github.com/chipsalliance/Cores-SweRVolf

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

3. GENERAL PURPOSE INPUT/OUTPUT (GPIO)

A general-purpose I/O (GPIO) controller exposes external digital pins to the programmer. At
any given time in the program, those pins can be configured as either inputs or outputs. That
designation is per pin and can change throughout the program, if desired. GPIO pins can be
connected to external devices such as LEDs, switches, and pushbuttons.

Figure 3 illustrates a simplified diagram for a generic GPIO module connecting one external
pin to the CPU. The pin can be connected to any input/output device, such as an LED, a
switch, etc. The pin is connected to a tri-state buffer, highlighted in green in the figure. This
buffer allows the programmer to configure the pin as either an input or output. If the tri-state
buffer is enabled, the pin acts as an output (for example, for driving an LED). If the tri-state
buffer is disabled, the pin acts as an input (for example, for reading from switch values).

Figure 3. GPIO simplified circuit

A tri-state buffer can either act as a regular buffer (when it is enabled) or have a floating
output (when it is disabled). The tri-state buffer has two inputs, E (enable) and I (input), and
one output, O, and its truth table is shown in Table 1. When E is 1, the tri-state acts as a
regular buffer with the output (O) and input (I) being the same. When E is 0, no connection
exists between the input and output and the output (O) is not driven; O is floating. In Figure
3, to configure a pin as an output, E is 1, which allows the CPU to drive the pin. When a pin
is configured as an input, E is 0, which keeps the CPU from driving the pin and allows the
peripheral to drive it.

Table 1. Tri-state truth table

E I O

0 0 Hi-Z

0 1 Hi-Z

1 0 0

1 1 1

The RVfpga System uses memory-mapped I/O to read/write the values stored in these
registers. For example, assume that the pin from Figure 3 is connected to a switch and that
the three registers in the GPIO are mapped as follows:

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

- Read Register = Address 0x80001400
- Write Register = Address 0x80001404
- Enable Register = Address 0x80001408

To read the state of the switch, we do the following:

1. Configure the pin as an input by writing a 0 to the Enable Register (i.e., by executing
a store of 0 to address 0x80001408).

2. Read the Read Register by executing a load instruction to address 0x80001400.

4. GPIO HIGH-LEVEL SPECIFICATION

In this section, we first analyse the high-level specification of SweRVolfX’s GPIO and then
we propose one exercise that uses this peripheral.

A. GPIO high-level specification

The GPIO module used in SweRVolfX is from OpenCores
(https://opencores.org/projects/gpio). The gpio_spec.pdf document provided with the
OpenCore’s GPIO module download describes the module’s high-level specification. It is
available here:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/gpio/docs/gpio_spec.pdf. We
summarize the main operation and features of the GPIO module in this lab. However, you
can obtain the complete specifications in gpio_spec.pdf.

The GPIO module has the following main features:

- It uses a Wishbone Interconnection.
- It operates as a peripheral device only.
- The user may use 1-32 GPIO pins.
- Multiple GPIO modules (also called GPIO cores) can be used in parallel to access

more than 32 GPIO pins.
- All GPIO pins can be:

 bi-directional (external bi-directional I/O cells are required in this case).
 tri-state or open-drain enabled (external tri-state or open-drain I/O cells

are required in this case).
- GPIO pins that are programmed as inputs:

 can be registered.
 can cause an interrupt request to the CPU.

Section 4 of the GPIO core specification describes the control and status registers available
inside the GPIO module. Each of these registers is assigned to a different address as shown
in Table 2. The base address for the GPIO registers is 0x80001400.

Table 2. GPIO Registers

Name Address Width Access Description

RGPIO_IN 0x80001400 1-32 R GPIO input data

RGPIO_OUT 0x80001404 1-32 R/W GPIO output data

RGPIO_OE 0x80001408 1-32 R/W GPIO output driver enable

RGPIO_INTE 0x8000140C 1-32 R/W Interrupt enable

RGPIO_PTRIG 0x80001410 1-32 R/W Type of event that triggers an
interrupt

RGPIO_AUX 0x80001414 1-32 R/W Multiplex auxiliary inputs to GPIO
outputs

RGPIO_CTRL 0x80001418 2 R/W Control register

https://opencores.org/projects/gpio

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

RGPIO_INTS 0x8000141C 1-32 R/W Interrupt status

RGPIO_ECLK 0x80001420 1-32 R/W Enable gpio_eclk to latch
RGPIO_IN

RGPIO_NEC 0x80001424 1-32 R/W Select active edge of gpio_eclk

Although the OpenCore’s GPIO module is more complex than the simplified version
illustrated in Figure 3, we can still identify the three registers from Figure 3: Read (input),
Write (output), and Enable. In the OpenCore’s GPIO module, these registers are called,
respectively: RGPIO_IN, RGPIO_OUT and RGPIO_OE and are mapped to addresses
0x80001400, 0x80001404, and 0x80001408 respectively.

TASK: Locate the declaration of registers RGPIO_IN, RGPIO_OUT and RGPIO_OE in the
GPIO module, as well as the definition of their addresses. The GPIO module is here:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/gpio/gpio_top.v.

R
The RGPIO_IN register latches general-purpose inputs. The RGPIO_OUT register drives
general-purpose outputs. RGPIO_OE configures each I/O pin as an input or output. When
the enable bit (within RGPIO_OE) is set, the corresponding general-purpose output driver is
enabled, and thus the pin can be connected to an output peripheral, such as an LED. When
the enable bit is cleared, the output driver is operating in open-drain, also called tri-state or
high impedance, mode, and thus the pin can be connected to an input peripheral, such as a
switch or pushbutton.

In RVfpgaNexys, the first 16 GPIO pins, pins 15:0, of the GPIO module are connected to the
16 LEDs on the Nexys A7 board. The last 16 GPIO pins, pins 31:16, of the GPIO controller
are connected to the 16 on-board switches.

5. FUNDAMENTAL EXERCISES

Exercise 1. Write a RISC-V assembly program and a C program that shows a block of four
lit LEDs that repeatedly moves from one side of the 16 LEDs available on the board to the
other. Also include two switches that control the speed and direction. Switch[0] changes the
speed and Switch[1] changes the direction as follows:

 If Switch[0] is ON (high), the lit LEDs should move quickly. Otherwise, the lit LEDs
should move slowly. You may define what “quickly” and “slowly” mean, but either speed
must be visible, and you must be able to detect a difference in speed just by looking at it.

 If Switch[1] is ON (high), the lit LEDs should repeatedly move from right-to-left (they start
back at the right when they reach the left-most LED). Otherwise, the lit LEDs should
repeatedly move from left-to-right.

Figure 4 below shows the Nexys A7 board with the LEDs and switches highlighted.

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

Sw
it
ch
[1
]

Sw
it
ch
[0
]

LED[0]

LED[15]

LEDS

Figure 4. Nexys A7 FPGA Board: LEDs and Switches

Hint: Recall that the switches are connected to pins 31:16 of the memory-mapped I/O
registers. So, to read Switch[0], you would need to write 0 to RGPIO_OE[16] and then read
the value of RGPIO_IN[16]. You will need to configure RGPIO_OE appropriately to access
the other LEDs and switches.

6. GPIO LOW-LEVEL IMPLEMENTATION, SIMULATION

In this section, we describe the low-level details of the GPIO used in SweRVolfX. We then
modify RVfpgaSim and perform an example simulation in Verilator for a simple assembly
example. Finally, we propose some exercises where you will first simulate RVfpgaSim, then
modify it to add a new GPIO peripheral and finally write a program that uses this new
peripheral.

A. GPIO low-level implementation

Now that you have had some experience with accessing the GPIO pins using memory-
mapped I/O, let’s dive into the low-level details of the GPIO. The GPIO can be divided into
three main parts, as shown in Figure 5: (1) RVfpgaNexys’ external connection to the on-
board LEDs/Switches (left shaded region in Figure 5); (2) Integration of the GPIO module
into the SweRVolfX SoC (middle shaded region in Figure 5); (3) Connection between the
GPIO and the SweRV EH1 Core (right shaded region in Figure 5).

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

Figure 5. GPIO analysis in 3 phases

i. Connection of the LEDs/Switches with the SoC
The constraints file of the project ([RVfpgaPath]/RVfpga/src/rvfpganexys.xdc) defines the
connection between the input/output SoC signals and the board devices. Each board device
is associated with a given FPGA pin. For example, Switch[0], the right-most switch on the
board, is connected through a printed circuit board (PCB) trace to FPGA pin J15.

The Nexys A7 board includes 16 LEDs and 16 Switches. The signal that connects the 16
LEDs with the top-module of the SoC (called rvfpganexys, available inside file
[RVfpgaPath]/RVfpga/src/rvfpganexys.sv) is called o_led[15:0], and the signal that connects
the 16 Switches with top-module is called i_sw[15:0]. Figure 6 shows the section of the Xilinx
design constraint (xdc) file, rvfpganexys.xdc (available in [RVfpgaPath]/RVfpga/src) where
these 32 connections between the signal and FPGA pin are defined.

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

Figure 6. Connection of i_sw[15:0] with the on-board switches and o_led[15:0] with
the on-board LEDs (file rvfpganexys.xdc).

Lines 48-49 of the top-module (rvfpganexys) show these two signals connected to the SoC
(left part of Figure 7), and the end of that module shows their connection with the
swervolf_core module (right part of Figure 7). Note that the i_sw and o_led signals are
merged in signal io_data (line 257), a 32-bit input/output signal connected with the GPIO in
the swervolf_core module (as will be shown later, in Figure 8). Moreover, note that the
o_led signal is latched through an intermediate signal, gpio_out (line 266).

Figure 7. Connection of the LEDs and the Switches with the top-module
(rvfpganexys.sv)

TASKS: Follow these two signals (i_sw and o_led) from the constraints file to the
SweRVolf SoC module (where they are merged in io_data). You will need to inspect the
following files:
 [RVfpgaPath]/RVfpga/src/rvfpganexys.xdc
 [RVfpgaPath]/RVfpga/src/rvfpganexys.sv

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/swervolf_core.v

In the previous section we said that in RVfpgaNexys the 16 first GPIO pins (15 to 0) of the
GPIO module are connected to the 16 on-board LEDs, whereas the 16 last GPIO pins (31
to 16) of the GPIO controller are connected with the 16 on-board switches. Does this
correspond with the implementation described in this section and in Figure 8?

ii. Integration of the GPIO module in the SoC
In lines 299-354 of the swervolf_core module
([RVfpgaPath]/RVfpga/src/SweRVolfSoC/swervolf_core.v), the GPIO module is instantiated
and integrated into the SoC (see Figure 8).

Figure 8. Integration of the GPIO module (file swervolf_core.v).

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

The interface of the module can be divided into two blocks: Wishbone signals (Table 3),
which allow the SweRV EH1 Core to communicate with the GPIO using a
controller/peripheral model, and external I/O signals (Table 4).

Table 3. Wishbone Signals

Port Width Direction Description
wb_cyc_i 1 Inputs Indicates valid bus cycle (core select)

wb_adr_i 15 Inputs Address inputs

wb_dat_i 32 Inputs Data inputs

wb_dat_o 32 Outputs Data outputs

wb_sel_i 4 Inputs Indicates valid bytes on data bus (during
valid cycle it must be 0xf)

wb_ack_o 1 Output Acknowledgment output (indicates
normal transaction termination)

wb_err_o 1 Output Error acknowledgment output (indicates
an abnormal transaction termination)

wb_rty_o 1 Output Not used

wb_we_i 1 Input Write transaction when asserted high

wb_stb_i 1 Input Indicates valid data transfer cycle

wb_inta_o 1 Output Interrupt output

Table 4. External I/O Signals

Port Width Direction Description
in_pad_i 1-32 Inputs GPIO inputs

out_pad_o 1-32 Outputs GPIO outputs

oen_padoen_o 1-32 Outputs GPIO output drivers enables (for three-
state or open-drain drivers)

As shown in line 342 of Figure 8, bits 5:2 of the address provided by the core in the
Wishbone bus signal wb_m2s_gpio_adr[5:2] are used for selecting one among the 10
available memory-mapped registers. These four bits are provided to the GPIO Core through
the wb_adr_i signal (also shown in Figure 8).

Input ext_pad_i connects directly with the GPIO Read Register (RGPIO_IN). Similarly,
output ext_pad_o connects directly with the GPIO Write Register (RGPIO_OUT). These two
signals are connected to the LEDs and Switches (i_gpio, o_gpio, io_data) through 32 tri-
state buffer modules (Figure 8, lines 305-336). That way, all 32 pins can be configured as
inputs or outputs. In our case, the lower 16 pins, pins 15:0, are connected to the LEDs
(Figure 7) and thus they must be configured as outputs; the upper 16 pins, 31:16, are
connected to the switches (Figure 7) and thus they must be configured as inputs. We
implement these 32 tristate buffers by including the following module at the end of the
swervolf_core module (lines 634-640):

module bidirec (input wire oe, input wire inp, output wire outp, inout wire bidir);

assign bidir = oe ? inp : 1'bZ ;

assign outp = bidir;

endmodule

TASKS: The GPIO pins (io_data) are connected to the GPIO module through tri-state
buffers (see Figure 8). Analyse the tri-state buffer for the two possible states of the enable
signal (oe=0 and oe=1).

Taking into account the connection between the GPIO module and the on-board
LEDs/Switches, what values should the programmer assign to en_gpio?

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 13

iii. Connection between the GPIO and the SweRV EH1 Core
As shown in Figure 2, the device controllers are connected to the SweRV EH1 Core through
a multiplexer and a bridge. The multiplexer selects one among the N possible peripherals (in
our case, N=7), depending on the address generated by the CPU. The bridge translates the
Wishbone signals used by the device controllers to the AXI4 signals used by the SweRV
Core and vice versa (implemented in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/AxiToWb/axi2wb.v).

The 7:1 multiplexer (Figure 9) is instantiated in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon.v.
Then, the wb_intercon module is instantiated in lines 104-205 of file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon.vh
. This latter file is included in line 145 of the swervolf_core module located here:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/swervolf_core.v.

Figure 9. 7-1 multiplexer selects the peripheral to connect to the CPU (wb_intercon.v).

The multiplexer selects which peripheral to read or write, connecting the CPU (wb_io_*
signals – lines 115-126 of Figure 9) with the Wishbone Bus of one peripheral (lines 127-138
of Figure 9), depending on the address (lines 110-111). For example, if the address
generated by the CPU is in the range 0x80001400-0x8000143F, the GPIO peripheral is
selected, and thus signals wb_io_* will be connected with signals wb_gpio_*.

Figure 10 shows the Verilog implementation of the multiplexer (available in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon_1.
2.2-r1/wb_mux.v).

TASK: Analyse in detail the implementation of the multiplexer. You can focus on the GPIO-
related signals (wb_gpio_*). You will need to inspect the following files:
 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/SystemController/swervolf_syscon.v
 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon.v
 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon.vh
 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon_1.2.2-r1/wb_mux.v

Understanding this part of the SoC is important not only for this lab but also for future labs.
The simulation performed in the next section can help you in understanding it if you extend

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

the simulation by adding new signals related with the multiplexer.

RISC-V INSTRUCTION

Figure 10. Wishbone multiplexer (file wb_mux.v).

B. Verilator Simulation

In this section, we first modify RVfpgaSim simulator by adding a new input signal. We then
recompile RVfpgaSim using Verilator and analyse this new signal when the simulator
executes a simple program.

i. Modify and Recompile RVfpgaSim

In simulation, we do not have real LEDs or switches. Thus, in the testbench
([RVfpgaPath]/RVfpga/src/rvfpgasim.v), we simulate driving the switches by assigning that

signal (i_sw) a constant value of 0xFE34 (left part of Figure 11). The switches are then

provided as an input to the SweRVolfX SoC (right part of Figure 11).

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 15

Figure 11. Signal i_sw assigned and passed to the SweRVolfX SoC in rvfpgasim.v.

Remember from the Getting Started Guide that the testbench (rvfpgasim.v) receives the
input signals (clk, rst, etc.) for RVfpgaSim (left part of Figure 12) and instantiates the
swervolf_core module (right part of Figure 12).

Figure 12. Input signals for RVfpgaSim and SweRVolfX instantiation (file rvfpgasim.v).

In some situations, you may want to add a new input/output signal to the simulator. As an

example, we next explain how you can include an input signal to RVfpgaSim, called i_sw0,

which provides a value for the right-most switch.

Follow the next steps:

1. Modify file [RVfpgaPath]/RVfpga/src/rvfpgasim.v:

a. Include a new 1-bit input signal called i_sw0. See Figure 13.

Figure 13. New i_sw0 input signal.

b. Provide this signal as the right-most switch. Assign the remaining switch

values to be 0xFE34 – except for bit 0 – as before). See Figure 14.

Figure 14. Provide i_sw0 as the right-most switch.

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 16

2. Modify file [RVfpgaPath]/RVfpga/verilatorSIM/tb.cpp: this is the C++ main file for

Verilator. At the end of this file, you can find a while loop (shown in Figure 15) in which

each iteration constitutes a clock pulse. Note that the clock signal for the SoC is
generated within this loop (line 175), by inverting its binary value in each iteration (10

or 01). In addition, the simulation time is computed in variable main_time (line 176)

and it is measured in nanoseconds (the clock cycle is 20 ns and thus the clock pulse 10
ns). Finally, note that the simulation finishes when the simulation time reaches value

timeout (lines 171-174).

Figure 15. While loop for the simulation.

Assign a binary value of 0 to the new i_sw0 signal before entering the loop (left part of

Figure 16), and change it to 1 at time 30 us inside the loop (see the right part of Figure
16).

Figure 16. Assign value to signal i_sw0.

3. Once you have performed all these changes, recompile RVfpgaSim by executing the
following commands (this was explained in the GSG):

cd [RVfpgaPath]/RVfpga/verilatorSIM

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 17

make clean

make

A new file Vrvfpgasim (the RVfpgaSim simulation binary), should be generated inside
directory [RVfpgaPath]/RVfpga/verilatorSIM.

WINDOWS: You have to do this last step (step 4) inside the Cygwin terminal (refer to
Section 6 and Appendix C in the Getting Started Guide for the detailed instructions). Note
that the C: Windows folder can be found inside Cygwin at: /cygdrive/c.

MacOS: Refer to Appendix D of the Getting Started Guide for the detailed instructions.

ii. Analyse the simulation of program LedsSwitches.S

In this section, we simulate the LedsSwitches.S example program (Figure 17) from the
RVfpga Getting Started Guide. This program reads the values on the switches and writes
that value to the LEDs on the Nexys A7 board. Note that we need to configure the enable
register, so that the 32 input/output pins are configured as inputs or outputs, according to
their connections. Specifically, the lower 16 pins of the GPIO are connected to the LEDs, so
they are output pins with respect to the CPU (Enable=1). The upper 16 pins of the GPIO are
connected to the switches, which are input pins with respect to the CPU (Enable=0).
Because the switches occupy the upper 16 bits of the read register, they must be shifted to
the right before writing their value to the LEDs.

#define GPIO_SWs 0x80001400

#define GPIO_LEDs 0x80001404

#define GPIO_INOUT 0x80001408

.globl main

main:

li x28, 0xFFFF

li x29, GPIO_INOUT

sw x28, 0(x29) # Write the Enable Register

next:

 li a1, GPIO_SWs # Read the Switches

 lw t0, 0(a1)

 li a0, GPIO_LEDs

 srl t0, t0, 16

 sw t0, 0(a0) # Write the LEDs

 beq zero, zero, next

.end

Figure 17. LedsSwitches.s for running in the SweRVolfX SoC

Follow the next steps for running the simulation.

1. Open VSCode/PlatformIO on your computer.

2. On the top bar, click on File→Open Folder... (Figure 18), and browse into directory

[RVfpgaPath]/RVfpga/examples/

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 18

Figure 18. Open the LedsSwitches.S example

3. Select directory LedsSwitches (do not open it, but just select it) and click OK. The
example will open in PlatformIO.

4. Open file platformio.ini and check if the path to the RVfpgaSim simulation binary (Figure
19) generated above (step 3 in the previous section) is correct. Remember from the
GSG that it should look like:

board_debug.verilator.binary =

[RVfpgaPath]/RVfpga/verilatorSIM/Vrvfpgasim

Figure 19. Platformio initialization file: platformio.ini

Windows: The RVfpgaSim simulation executable is called Vrvfpgasim.exe. Thus:

 board_debug.verilator.binary = [RVfpgaPath]\RVfpga\verilatorSIM\Vrvfpgasim.exe

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 19

5. Run the simulation by clicking on the PlatformIO icon in the left menu ribbon , then
expand Project Tasks → env:swervolf_nexys → Platform and click on Generate Trace.

File trace.vcd should have been generated inside
[RVfpgaPath]/RVfpga/examples/LedsSwitches/.pio/build/swervolf_nexys, and you can
open it with GTKWave by typing the following command into the PlatformIO terminal.

 gtkwave [RVfpgaPath]/RVfpga/examples/LedsSwitches/.pio/build/swervolf_nexys/trace.vcd

WINDOWS: folder gtkwave64 that you downloaded, includes an application called
gtkwave.exe inside the bin folder. Launch GTKWave by double clicking on that application.
On the top part of the application, click on File – Open New Tab, and open the trace.vcd file
generated in folder [RVfpgaPath]/RVfpga/examples/LedsSwitches/.pio/build/swervolf_nexys.

6. Include in the trace the following signals (go into module rvfpgasim–swervolf for finding

each of these signals):
- Add the clock signal: clk
- Add the GPIO input signal: i_gpio
- Add the GPIO output signal: o_gpio

In the graph (Figure 20), you will see that the value of the 16 switches (16 most
significant bits of signal i_gpio) is copied to the 16 LEDs (16 least significant bits of
signal o_gpio) with some delay. Moreover, the right-most switch changes (01) at time
30us, and this makes the right-most LED also change some time later.

Figure 20. Simulation of the LedsSwitches program

7. ADVANCED EXERCISES

Exercise 2. Analyse the simulation from the previous section in more detail. Figure 21
shows the disassembly version of the .elf LedsSwitches program (Figure 17), with the three
instructions that access the GPIO registers (Enable, Read and Write) highlighted.
Remember from the Getting Started Guide that you can easily view in PlatformIO the
disassembly version of the .elf program by opening file firmware.dis, which is generated at
compilation time inside folder:
[RVfpgaPath]/RVfpga/examples/LedsSwitches/.pio/build/swervolf-nexys/
(see Figure 21).

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 20

Figure 21. Disassembly version of program LedsSwitches.S

Simulate this program in RVfpgaSim and analyse the GPIO signals during the execution

of each of the three memory instructions highlighted in red in Figure 21 (sw, lw, and sw).

This will help you understand the GPIO low-level implementation explained in Section A.

You can start from the simulation from Section B and add and analyse the values for the
following signals (go into the referred modules for locating each signal):

- rvfpgasim → swervolf → swerv_eh1 → swerv → ifu
 Clock: clk.
 Fetched instructions: ifu_i0_instr and ifu_i1_instr.

- rvfpgasim – swervolf
 32-bit input/output pins: i_gpio and o_gpio.
 Address provided by the CPU: wb_m2s_io_adr.

- rvfpgasim – swervolf – gpio_module
 GPIO External Interface: ext_pad_i, ext_pad_o and ext_padoe_o.

- rvfpgasim – swervolf – wb_intercon0
 Output address and data signals for the multiplexer of Figure 2:

wb_io_adr_i, wb_io_dat_i, wb_io_dat_o.
 Input GPIO data signals for the multiplexer of Figure 2: wb_gpio_adr_i,

wb_gpio_dat_i, wb_gpio_dat_o.
 Selection signals for the multiplexer of Figure 2: wb_*_cyc_o.

- rvfpgasim – swervolf – wb_intercon0 – wb_mux_io
 Match signal for the multiplexer of Figure 2: match.

- rvfpgasim – swervolf – swerv_eh1 – swerv – dec – arf – gpr_banks(0) – gpr(5) –
gprff

 Register value for t0: dout.

Exercise 3. Expand RVfpgaNexys to support the five on-board pushbuttons. The
pushbuttons are shown in Figure 22. The five buttons are named according to their location:
up, down, left, right, and center – BTNU, BTND, BTNL, BTNR, BTNC.

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 21

Pushbuttons

Figure 22. Pushbuttons on Nexys A7 FPGA Board

a. Given that the maximum size of the GPIO module that we are using (gpio_top) is

32, which is the number of I/O pins that we have (16 LEDs + 16 Switches), you need
to include another instantiation of the GPIO module in SweRVolfX, as well as 5 new
tri-state buffers and all the necessary signals.

b. Use the addresses starting at 0x80001800 (which are available) for mapping the
registers exposed by the new GPIO controller. Note that you must modify the
multiplexer (Figure 9) for including the new peripheral.

c. You must also modify the constraints file taking into account that the five pushbuttons
are connected to the following FPGA pins:

i. BTNC is connected to PIN N17
ii. BTNU is connected to PIN M18
iii. BTNL is connected to PIN P17
iv. BTNR is connected to PIN M17
v. BTND is connected to PIN P18

Exercise 4. Design another controller in RVfpgaNexys for the five on-board pushbuttons.

a. In contrast to Exercise 3, in this case you must implement your own GPIO
controller in Verilog or SystemVerilog based on the scheme illustrated in
Figure 3. In fact, you can even simplify that circuit and only include a Read
Register (i.e. you do not need to include the tri-state buffers nor the Write
Register).

b. You do not need to remove the controller from the previous exercise because
the pushbuttons can be mapped to addresses not used by that GPIO
controller.

c. Include the new controller inside the System Controller peripheral. You can
use the address range 0x8000101C-0x8000101F, which is unused. Note that
the registers included in the System Controller are read into the CPU by
directly connecting them to the data signal of the Wishbone Bus (o_wb_rdt)
based on the address (i_wb_adr) generated by the CPU. Inspect lines 234-
266 of module swervolf_syscon
([RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/SystemController/swerv
olf_syscon.v) to help you understand how to proceed.

Imagination University Programme – RVfpga Lab 6: Introduction to I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 22

Exercise 5. Write a RISC-V assembly program and a C program that displays an
increasingly incrementing binary count on the LEDs, starting at 1. Include an empty loop for
waiting between displaying each incremented value so that the values are viewable by the
human eye. Read BTNC through the OpenCores peripheral implemented in Exercise 3 and
use it to change the speed of the count, and read BTNU through the ad-hoc peripheral
implemented in Exercise 4 and use it to restart the count whenever it is pressed.

