

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

TASKS

TASK: Replicate the simulation from Figure 5 on your own computer. You can use the .tcl
file provided in: [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_AL-AL/test_Basic.tcl.

Solution provided in the main document of Lab 15.

TASK: Remove all nop instructions in the example from Figure 2. Draw a figure similar to

Figure 3 for two consecutive iterations of the loop, then analyse and confirm that the figure
is correct by comparing it to a Verilator simulation, and finally compute the IPC by using the
Performance Counters while executing the program on the board.

Each iteration takes 3.5 cycles to execute and there are no stalls.

The IPC is the ideal: IPC = 458 / 229 = 2.

TASK: In the example from Figure 2, remove all nop instructions and move the add

t6,t6,-1 instruction after the add t3,t3,t4 instruction, and then re-examine the

program both in simulation and on the board. In this reordered program, the two dependent

add instructions (add t4,t4,t5 and add t3,t3,t4) arrive at the Decode stage in the

same cycle, and this has an impact in performance. Explain the impact of these changes,
using both simulation and execution on the board.

Test similar situations where you replace the dependent add instruction for other

dependent instructions, such as:

- add t4,t4,t5

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

mul t3,t3,t4

- add t4,t4,t5
div t3,t3,t4

- add t4,t4,t5
lw t3, 0(t4)

- Two add instructions:

Now each iteration takes 4 cycles to execute as the dependent add instruction must stall for
1 cycle, since one of its input operands is not available until the first add executes in EX1
and forwards the result.

Now the IPC is not the ideal: IPC = 458 / 262 = 1.75

- add instruction followed by mul instruction:

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

Like before, the dependent mul instruction must stall for 1 cycle, since one of its input
operands is not available until the first add executes in EX1 and forwards the result.

- add instruction followed by lw instruction:

Like before, the dependent lw instruction must stall for 1 cycle, since one of its input
operands is not available until the first add executes in EX1 and forwards the result.

TASK: Compare the previous equations with the ones explained for the pipelined
processor from DDCARV.

Equations for the pipelined processor from DDCARV:

TASK: Analyse the Verilog code to explain how the computation of the previous equation
is performed. You must inspect the following lines of module dec_decode_ctl.

Solution not provided.

TASK: Write equations (similar to the one above) for other control bits of

i0_rs2bypass[9:0], i0_rs1bypass[9:0], i1_rs2bypass[9:0], and

i1_rs1bypass[9:0].

You can obtain the equations from the following lines in module dec_decode_ctl:

- 2372 – 2417
- 1721 – 1767
- 1497 – 1544

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

- 1130 – 1131 and 1255 – 1256

TASK: Replicate the simulation from Figure 8 on your own computer. You can use the .tcl
file provided in: [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_AL-AL/test_Advanced.tcl.

Solution provided in the main document of Lab 15.

TASK: For the program from Figure 2, perform the same analysis as in Figure 8 for
situations where the two dependent instructions are placed at different distances one from
each other. You can control the distance by changing the number of nops between the two

dependent add instructions.

Also, create other examples where the first input operand is the one that receives the
forwarding data.

You can also create other examples where the two add instructions are executing through
the I1 Pipe and confirm that the behaviour is the same.

Finally, substitute the dependent add instruction (add t3,t3,t4) for other dependent

instructions executing though other pipes and analyse the results of the simulation. For

example, instead of the second add instruction, you could include one of the following

instructions:

 - lw t3, (t4) (force the read value to come from the DCCM as explained in Lab 13)

 - mul t3, t3, t4

 - div t3, t3, t4

Example new simulated program: Bypass from the EX2 stage to the Decode stage:

 1a0: 01ee8eb3 add t4,t4,t5

 1a4: ffff8f93 addi t6,t6,-1

 1a8: 00000013 nop

 1ac: 00000013 nop

 1b0: 01de0e33 add t3,t3,t4

 1b4: 00000013 nop

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

Example new simulated program: Execution of mul instead of the second add:

 1a0: 01ee8eb3 add t4,t4,t5

 1a4: ffff8f93 addi t6,t6,-1

 1a8: 03de0e33 mul t3,t3,t4

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

TASK: Add logic to Figure 10 to produce the first input operand (a) of the Secondary ALU

in the I0 Pipe.

Solution not provided.

TASK: Replicate the simulation from Figure 12 on your own computer. You can use the .tcl
file provided at: [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_Close-LW-

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

AL/scriptLoad.tcl

Solution provided in the main document of Lab 15.

TASK: Draw a figure similar to Figure 3 for the example from Figure 11.

Solution not provided.

TASK: In the previous example, analyse how the first operand for the add t3, t3, t1

instruction (t3) is obtained. You can use the .tcl file provided at:

[RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_Close-LW-AL/scriptLoad_FirstOperand.tcl

The first operand does not depend on previous instructions, thus it is obtained directly from
the Register File.

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

TASK: Remove the nop instructions in the example from Figure 11 and obtain the IPC
using the HW Counters.

2 iterations in 9 cycles. Each iteration contains 9 instructions. Thus: IPC = 18 / 9 = 2

Thanks to the forwarding logic and the Secondary ALU, there are no stalls and the IPC is the
ideal: IPC = 5898 / 2951 = 1.998

TASK: Disable the Secondary ALU as explained in Lab 11 and analyse the example from
Figure 11 both with a Verilator simulation and with an execution on the board.

After the lw (0x0002a303), the dependent add instruction (0x006e0e33) is stalled for some

cycles. 1 iteration takes 6 cycles.

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

The IPC now is far from the ideal now, due to the stall created by the lw-add data hazard:

IPC = 5898 / 3934 = 1.499

TASK: In the example from Figure 11, move the add t6,t6,-1 instruction after the add

t3,t3,t1 instruction and re-examine the program both in simulation and on the board.

You can use the program provided at:
[RVfpgaPath]/RVfpga/Labs/RVfpgaLabsSolutions/Programs_Solutions/Lab15/DataHazards_
SameCycle-LW-AL

The add t3,t3,t1 instruction depends on the load and they both execute in parallel

through the two ways. The add reexecutes in the Secondary ALU in this case. Note that
Way-1 can receive the input operand from the other pipes so that no cycles are lost in this
situation.

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

If we remove the nop instructions and perform the simulation and execute on the board, we
obtain:

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

Thanks to the forwarding logic and the Secondary ALU, there are no stalls and the IPC is the
ideal: IPC = 5898 / 2951 = 1.998

1. EXERCISES

1) Modify the program used in Section 3 by adding an extra arithmetic-logic instruction

that depends on the result of the add instruction. For example, you can replace the

loop from Figure 11 with the following code, where a new AND instruction has been
included (and t3, t4, t3), and where we have slightly reordered the code by

moving forward instruction add t5, t5, 0x1:

 REPEAT:

beq t6, zero, OUT

 INSERT_NOPS_9

lw t1, (t0)

 add t6, t6, -1

 add t3, t3, t1

 add t5, t5, 0x1

 and t3, t4, t3

INSERT_NOPS_8

 li t1, 0x0

 li t3, 0x1

 add t4, t4, 0x1

 j REPEAT

 OUT:

 Analyse the Verilator simulation and explain how data hazards are handled for the new
A-L instruction. Then remove all nop instructions and analyse the results provided by the
HW counters.

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

Both the dependent add and and instructions use the secondary ALU for recalculating the

result. Note that the second input operand for the and instruction is bypassed at EX3.

IPC = 6553 / 3279 = 1.998
Instructions executed per iteration: 655398 / 65535 = 10

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 13

Number of cycles per iteration: 327910 / 65535 = 5

Thanks to the forwardings and the secondary ALU the ideal IPC is achieved in this program.

2) Analyse the same situation as the one described in Section 2.C for a mul instruction

followed by an add instruction that uses the result of the multiplication. In the program

from Figure 11 you can simply substitute the lw for a mul that writes to register t1.

Solution not provided.

3) Analyse a situation with a lw instruction followed by a mul instruction that depends on

the value read by the load. In the program from Figure 11 you can simply substitute the

dependent add instruction for a mul instruction.

You can use the program provided at:
[RVfpgaPath]/RVfpga/Labs/RVfpgaLabsSolutions/Programs_Solutions/Lab15/DataHazards_
Close-LW-MUL

The mul instruction cannot be executed by the Secondary ALU. A new bypass path is
implemented inside the multiplier (module exu_mul_ctl) that forwards the value read by a
load to the M1 Stage.

This way only 1 cycle is lost due to this RAW dependency.

The second operand is bypassed from the value read by the load. This way, only 1 cycle is
lost due to the dependency.

4) (The following exercise is based on exercises 4.18, 4.19, 4.20 and 4.26 of [HePa].)
Suppose you executed the code below on a version of the SweRV EH1 processor that
does not handle data hazards (i.e., the programmer is responsible for addressing data
hazards by inserting nop instructions where necessary). Add nop instructions to the code
so that it will run correctly.
 addi x11, x12, 5

 add x13, x11, x12

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

 addi x14, x11, 15

 add x15, x13, x12

 Then make up sequences of at least three assembly code snippets that exhibit different
types of RAW data hazards. The type of RAW data dependence is identified by the stage
that produces the result and the next instruction that consumes the result.

 For each sequence, how many nops would need to be inserted and where, to allow your
code to run correctly on a SweRV EH1 processor with no forwarding or hazard detection?
What is the CPI if we use the forwarding available in SweRV EH1 and don’t insert nops?

Solution not provided.

5) In the program Section 2.C of Lab 14 (available at

[RVfpgaPath]/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory), replace instruction add

x1, x1, 1 with add x28, x1, 1. This introduces a WAW hazard between the

modified add instruction and the non-blocking load at the beginning of the loop (lw

x28, (x29)). Analyse in simulation how this hazard is handled in SweRV EH1, for

which you can look at the value of signal wen2 in the Register File. Try to understand

how this signal is computed in the Control Unit (module dec).

The simulation for the original program is the following. As we analysed in Lab 14, there is a
cycle (highlighted in the figure) when 3 simultaneous writes are performed to the Register

File (2 add instructions and a non-blocking load).

In the new program, shown below, where we replace instruction add x1, x1, 1 for

instruction add x28, x1, 1, it is detected that a later instruction in program order modifies

the same register, thus the write of the load is disabled (the wen2 signal does never go

high), resolving the WAW data hazard.

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 15

6) In the program Section 2.C of Lab 14 (available at

[RVfpgaPath]/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory), replace instruction add

x1, x1, 1 with add x1, x28, 1. This introduces a RAW hazard between the

modified add instruction and the non-blocking load at the beginning of the loop (lw

x28, (x29)). Analyse in simulation how this hazard is handled in SweRV EH1.

The RAW hazard is detected, the pipeline is stalled and the forwarding takes place as
explained in the lab.

7) Finally, in the program Section 2.C of Lab 14 (available at

[RVfpgaPath]/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory), replace instruction add

x1, x1, 1 with add x1, x28, 1, and instruction add x7, x7, 1 with add x28,

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 16

x7, 1. This causes both a RAW and a WAW hazard. Analyse in simulation how these

two hazards are handled in SweRV EH1.

Solution not provided.

8) Store to Load Forwarding

This is a very interesting situation that we have not analysed in this lab and that you will
analyse in this exercise. When a store followed by a load access the same address, data
can be forwarded from the store to the load within the core and DDR External Memory
reading can be avoided, saving both time and power.

The logic that implements this forwarding is included in the LSU, and specifically in
modules lsu_bus_intf and lsu_bus_buffer, which you must inspect in this exercise.

The PlatformIO project from [RVfpgaPath]/RVfpga/Labs/Lab15/Sw-Lw-Forwarding
illustrates a store-load forwarding. A .tcl script is provided in that folder, which you can use
for analysing a random iteration of the loop and understand how the forwarding is carried
out.

Verilator simulation:

Analyse the simulation:

- Cycle 1: The sw instruction is decoded.

- Cycle 5: The lw instruction is decoded.

- Cycles 2 to 11: Signal full_addr_dc1 = 0x00002AD8 during the whole iteration.

This happens because the address of the store and the address of the load are the
same.

- Cycle 9: The store writes to the DDR External Memory through the write signals of

the AXI bus.

sw t5, (t4) lw t3, (t4)

1 2 3 4 5 6 7 8 9 10 11 12 13

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 17

o lsu_axi_awvalid = 1

o lsu_axi_awaddr = 0x00002AD8

o lsu_axi_wvalid = 1

o lsu_axi_wdata = 0x000000000000001D

- Cycle 9, 10 and 11: The load receives its data immediately through the bypass logic

and writes it to the Register File. The read is never sent to the DDR memory (see the

read enable signals of the AXI bus: lsu_axi_arvalid = lsu_axi_rvalid = 1):

o waddr0 = 0x1C (which is register x28 = t3)

o wen0 = 1

o wd0 = 0x0000001D

o t3 = 0x0000001D

How is the forwarding performed inside the core?

For the analysis of the store-load forwarding you must inspect two modules: lsu_bus_intf
and lsu_bus_buffer.

1) In Section 4 of Lab 13 we analysed a read access to the DDR External Memory. We
illustrated the SweRV EH1 structures involved in this access in Figure 16 of Lab 13:

Lite DRAM

Controller

DC1 STAGE

lsu_addr_dc1 [31:0] =

full_addr_dc1 [31:0]

Pipeline

Registers

for

Control

Signals

addr_external_dc1

Delay due to
accessing External

Memory Pipeline

Registers

for

Control

Signals

External Memory

accessed through AXI

Bus

(lsu_bus_intf)

end_addr_dc1 [31:0] =

full_end_addr_dc1 [31:0]

DC3 STAGE

Pipeline

Registers

for

Control

Signals

addr_external_dc3

b
u

s
_

re
a

d
_

d
a

ta
_

d
c
3
 [

3
1

:0
]

lsu_result_corr_dc3 [31:0]

lsu_resul

t_corr_dc

4ff

3-1

MUX
i0_result_e4_final [31:0]

ls
u
_

re
s
u

lt
_

c
o
rr

_
d
c
4
 [

3
1

:0
]

COMMIT STAGE

2-1

MUX LOGIC

e
x
u

_
i0

_
re

s
u

lt
_

e
4
 [

3
1

:0
]

i0
_

re
s
u

lt
_

e
4
 [

3
1

:0
]

e4d.i0secondary

e4d.i0v

e4d.i0load

ls
u
_

ld
_

d
a

ta
_

c
o
rr

_
d
c
3
 [

3
1

:0
]

Data is provided in signal: bus_read_data_dc3.

2) The value assigned to bus_read_data_dc3 can come from the DDR memory or from

the forwarding logic. For that purpose, module lsu_bus_intf includes a 2:1 multiplexer

that selects between the value read from the DDR memory (ld_bus_data_dc3) and

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 18

the bypassed value (ld_fwddata_dc3).

We next include this 2:1 multiplexer in the previous figure:

Lite DRAM

Controller

DC1 STAGE

lsu_addr_dc1 [31:0] =

full_addr_dc1 [31:0]

Pipeline

Registers

for

Control

Signals

addr_external_dc1

Delay due to
accessing External

Memory Pipeline

Registers

for

Control

Signals

end_addr_dc1 [31:0] =

full_end_addr_dc1 [31:0]

DC3 STAGE

Pipeline

Registers

for

Control

Signals

addr_external_dc3

b
u

s
_

re
a

d
_

d
a

ta
_

d
c
3
 [

3
1

:0
]

lsu_result_corr_dc3 [31:0]

lsu_resul

t_corr_dc

4ff

3-1

MUX
i0_result_e4_final [31:0]

ls
u
_

re
s
u

lt
_

c
o
rr

_
d
c
4
 [

3
1

:0
]

COMMIT STAGE

2-1

MUX LOGIC

e
x
u

_
i0

_
re

s
u

lt
_

e
4
 [

3
1

:0
]

i0
_

re
s
u

lt
_

e
4
 [

3
1

:0
]

e4d.i0secondary

e4d.i0v

e4d.i0load

ls
u
_
ld

_
d
a

ta
_

c
o
rr

_
d
c
3
 [

3
1

:0
]

2-1

MUX

External

Memory

accessed

through AXI

Bus

(lsu_bus_intf)

ld_full_hit_dc3

ld_fwddata_dc3[31:0]

ld_bus_data_dc3[31:0]

3) If you add the inputs / output / control-signal of this multiplexer in the previous
simulation, you will obtain:

You can see that the data provided to the load is bypassed from the store.

Imagination University Programme – RVfpga Lab 15
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 19

4) You can further analyse how the control signal (ld_full_hit_dc3) and the bypassed

value (ld_fwddata_dc3) are computed in modules lsu_bus_intf and

lsu_bus_buffer.

APPENDIX A

TASK: Replicate the simulation from Figure 15 on your own computer.

Solution provided in the main document of Lab 15.

TASK: Compare how the scenario above is handled in SweRV EH1 and in the pipelined
processor from DDCARV.

Solution not provided.

TASK: If you compare carefully Figure 16 and Figure 6 of Lab 13, you will see that the

value that the lw instruction reads into the Register File in Figure 6 of Lab 13 (signal

lsu_ld_data_corr_dc3[31:0]) is different than the value forwarded by the lw in

Figure 16 (signal lsu_ld_data_dc3[31:0]). The difference between both values is that

the former has been checked by the ECC logic in module lsu_ecc, whereas the latter has

not. Explain why it is not problematic that the value forwarded by the lw is not checked for

errors.

If an error is detected in the data read by the load, the pipeline is stopped and flushed. Thus,
both the load instruction and all subsequent instructions, some of which are the instructions
that receive the incorrect forwarded value, are flushed and never commit.

TASK: In the example from Figure 14, remove all the nop instructions before the lw and

after the add. Do not remove the 5 nops between the two dependent instructions. Analyse

the simulation and then compute the IPC with the Performance Counters by executing the
program on the board (it may seem awkward to keep nop instructions when measuring the
IPC as they are useless instructions; however, the program itself is useless and our only
aim here is to analyse data hazards and understand them).

Solution not provided.

