
Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 14

Structural Hazards

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

In the next three labs, Labs 14-16, we discuss pipeline hazards. As explained by D.
Patterson and J. Hennesy in Chapter 4, Section 5 of their recent RISC-V book (Computer
Organization and Design RISC-V Edition, Patterson & Hennessy, © Morgan Kaufmann
2017) [PaHe]: Situations exist in pipelining when the next instruction cannot execute in the
following clock cycle. These events are called hazards. Three different types of hazards
occur: structural hazards, data hazards and control hazards.

As explained by Patterson and Hennessy in [PaHe], structural hazards occur when an
instruction cannot execute because the hardware does not support the combination of
instructions that are set to execute. In this lab, we analyse structural hazards in the SweRV
EH1 processor.

In Lab 15 we analyse the second type of hazard, data hazards, in the SweRV EH1
processor. As explained by Hennessy and Patterson in the 6th edition of their book
“Computer Architecture: A Quantitative Approach” [HePa]: Data hazards occur when the
pipeline changes the order of read/write accesses to operands so that the order differs from
the order seen by sequentially executing instructions on an unpipelined processor.

Finally, the third type of hazard is called a control hazards. As explained by S. Harris and
D. Harris in Section 7.5.3 of their book “Digital Design and Computer Architecture: RISC-V
Edition” (which we call DDCARV), a control hazard occurs when the decision of what
instruction to fetch next has not been made by the time the fetch takes place. In Lab 16 we
analyse control hazards in the SweRV EH1 processor.

2. STRUCTURAL HAZARDS IN SweRV EH1

In this section, we illustrate two cases of structural hazards that can occur in the SweRV
EH1 processor. Each is resolved in a different way, thus resulting in a different performance-
cost trade-off.

To illustrate the first situation we create an example in Section 2.A based on the integer

multiply instruction (mul). At the same time, we describe the execution of this instruction in

SweRV EH1, which we have not yet analysed in previous labs. Recall from Sections 3 and 4
of the GSG that this instruction belongs to the RISC-V M Extension (Standard Extension for
Integer Multiplication and Division), which is supported in SweRV EH1. For executing this
instruction, the SweRV EH1 processor implements a pipelined multi-cycle multiply unit (i.e. a
multiplier that is pipelined and needs more than one cycle for computing the result) in the
Multiply pipe (see Figure 4 of Lab 11), divided in three stages: M1, M2 and M3.

Specifically, in this example two mul instructions arrive at the Decode stage in the same

cycle. Because SweRV EH1 only has one multiply unit, a structural hazard occurs, as the
processor “does not support the combination of instructions that are set to execute” [PaHe].

In a processor using a non-pipelined multi-cycle multiplier, the second mul instruction would

have to wait until the first one finished its execution, which would have an important impact
in performance. However, as stated above, the multiplier used in SweRV EH1 is pipelined,

thus the second mul instruction is only delayed by one cycle and it starts executing as soon

as the first multiply instruction finishes the first stage of the multiplication (M1) and proceeds
to the second stage (M2). This solution has a moderate impact in hardware cost (a pipelined
structure is more expensive than a non-pipelined one), but it resolves the structural hazard
with low impact on performance (only one cycle).

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

In the second example (Section 2.B), three instructions arrive at the Writeback stage in the
same cycle, one of them being a non-blocking load executed several cycles earlier. In
principle, because SweRV EH1 is a 2-way superscalar core, it would not be possible to
complete three instructions in the same cycle; however, as we showed in Lab 11, SweRV
EH1’s register file has a third write port, which avoids the structural hazard in this situation.
This solution has a high impact in hardware cost due to the extra register file port, but it
resolves this structural hazard with no performance loss.

APPENDIX A – Two simultaneous div instructions in the Decode stage: In addition to

these two examples, in the appendix at the end of this lab we illustrate another example
based on divide instructions. Even though this example does not strictly illustrate a
structural hazard, it is still very interesting and we recommend you to analyse it too.

A. Two simultaneous mul instructions in the Decode stage

The RISC-V M Extension includes, among others, the mul instruction. This instruction

performs the multiplication of rs1 by rs2 and places the lower bits in the destination

register (rd). The machine language instruction for mul is the following (see Appendix B of

[DDCARV]):

0000001 | rs2 | rs1 | 000 | rd | 0110011

TASK: You can perform a similar study for the mul instruction as the one performed in Lab

12 for arithmetic-logic instructions: view the flow of the instruction through the pipeline
stages, analyse the control bits (remember from Section 4 of SweRVref that there is a

specific structure type for the mul instruction called mul_pkt_t, and there is a signal

defined in module dec_decode_ctl called mul_p), etc.

The multiply unit is implemented in module exu_mul_ctl
([RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/exu/exu_mul_ctl.sv). As
mentioned before, this unit is pipelined and it requires 3 cycles for computing the result.
Using a pipelined – as opposed to non-pipelined – multiplier reduces the performance loss
due to structural hazards.

TASK: Inspect the Verilog code from exu_mul_ctl and see how the multiplication is

computed. Remember that RISC-V includes 4 multiply instructions (mul, mulh, mulhsu

and mulhu), and all of them must be supported by the hardware.

As an optional exercise, you can replace the multiply unit with your own unit or one from
the Internet.

The example from Figure 1 executes two mul instructions contained within a loop that

repeats for 0xFFFF iterations (i.e. 65,535 in decimal). The mul instructions are highlighted

in red in the figure. In this case, the mul instructions are surrounded by several nop

instructions for isolating each iteration from each other. As usual, the program does nothing

useful and is only intended to illustrate structural hazards due to mul instructions.

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

.globl Test_Assembly

Test_Assembly:

li t2, 0xFFFF

li t3, 0x3

li t4, 0x2

li t5, 0x2

li t6, 0x2

REPEAT:

 beq t2, zero, OUT # Stay in the loop?

 INSERT_NOPS_9

 mul t0, t3, t4 # t0 = t3 * t4

 mul t1, t5, t6 # t1 = t5 * t6

 INSERT_NOPS_9

 add t2, t2, -1

 add t0, zero, zero

 add t1, zero, zero

 j REPEAT

OUT:

.end

Figure 1. Example with two consecutive mul instructions

Folder [RVfpgaPath]/RVfpga/Labs/Lab14/MUL_Instruction provides the PlatformIO project
so that you can analyse, simulate, and modify the program as desired. The structure of the
project is based on the one provided in Lab 11 for using the performance counters: it
contains a .c file that initializes, stops, and prints the value of the desired counters and a .S
file that contains the assembly program that we want to test (in this case, the loop with the

two mul instructions) and which is invoked from the .c file.

Open the project in PlatformIO, build it, and open the disassembly file (available at
[RVfpgaPath]/RVfpga/Labs/Lab14/MUL_Instruction/.pio/build/swervolf_nexys/firmware.dis).

Notice that the mul instructions are placed at addresses 0x000001e8 and 0x000001ec.

0x000001e8: 03de02b3 mul t0,t3,t4

0x000001ec: 03ff0333 mul t1,t5,t6

TASK: Verify that this pair of 32 bits (0x03de02b3 and 0x03ff0333) correspond to

instructions mul t0,t3,t4 and mul t1,t5,t6 in the RISC-V architecture.

Figure 2 shows the simulation of the program from Figure 1 at the second iteration of the
loop.

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

Figure 2. Verilator simulation of the example from Figure 1

TASK: Replicate the simulation from Figure 2 on your own computer and analyse it more
closely. You can use the .tcl file [RVfpgaPath]/RVfpga/Labs/Lab14/MUL_Instruction/test.tcl

Analyse the waveform from Figure 2. The values highlighted in red correspond to different

signals related with the mul instructions as they traverse the pipeline.

- Cycle i: The two mul instructions arrive in the same cycle to the Decode stage. A

Structural Hazard prevents the second mul instruction (dec_i1_instr_d =

0x03ff0333) to advance to the next stage, given that the first mul instruction

(dec_i0_instr_d = 0x03de02b3) is scheduled to that unit.

- Cycle i+1: The first mul instruction executes in the first stage of the pipelined

multiplier (M1), while the second mul instruction waits in the Decode stage.

- Cycle i+2: The first mul instruction executes in the second stage of the pipelined

multiplier (M2) and the second mul executes in the first stage (M1).

- Cycle i+3: The first mul instruction reaches EX3, when the result of the

multiplication is produced (out = 0x6 for the first mul instruction).

- Cycle i+4: The second mul instruction reaches EX3, when the result of the

multiplication is produced (out = 0x4 for the second mul instruction).

- Cycle i+6: The register file is updated with the result of the first mul instruction (t0 =

0x6).

- Cycle i+7: The register file is updated with the result of the second mul instruction

(t1 = 0x4).

Figure 3 illustrates the flow of the instructions of the example from Figure 1 through the
SweRV EH1 pipeline. D stands for the Decode stage, A for the Align stage, C for the

Commit stage and WB for the Writeback stage. When the first mul instruction is decoded

(cycle i), most subsequent instructions stall at their current stage (marked in the figure with
the st suffix) and bubbles are inserted. In the next cycle (i+1) the instructions are resumed

i i+1 i+3 i+6

mul t0,t3,t4 mul t1,t5,t6

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

(note that the second mul instruction has been moved from Way 1 to Way 0, and Way 1

contains the next instruction, which is a nop). In cycle i+2 the first mul instruction is in the

second stage of execution (M2) and the second mul instruction is in the first stage of

execution (M1). In cycles i+5 and i+6, the two mul instructions write their result back to the

register file, which can be seen updated in Figure 2 in cycles i+6 and i+7.

Cycle i Cycle i+1

mul t0, t3, t4 (03de02b3)

mul t1, t5, t6 (03ff0333)

nop (00000013)

nop (00000013)

D Way0

Dst Way1

A Way0

Ast Way1

Cycle i+2 Cycle i+3

M1

D Way0

D Way1

A Way0

M2

M1

EX1 I1

D Way0

M3

M2

EX2 I1

EX1 I0

Cycle i+4 Cycle i+5 Cycle i+6

C Way0

M3

EX3 I1

EX2 I0

WB Way0

C Way0

C Way1

EX3 I0

WB Way0

WB Way1

C Way0

Figure 3. Execution of Figure 1 example code

TASK: Compare the illustration from Figure 3 with the simulation from Figure 2 focusing on

the two mul instructions. Specifically, analyse how the two instructions are assigned to the

two ways in the Align and Decode stages and how they progress through the pipeline.
 - In module ifu_aln_ctl (Align stage) the two instructions are assigned to the following
signals whenever possible:

 - Way 0: ifu_i0_instr

 - Way 1: ifu_i1_instr

 - In module dec_ib_ctl the two instructions are buffered from Align to Decode. Note that
in some cases instructions can be stalled in these buffers and reassigned to a different
way:

 - Way 0: ifu_i0_instr  dec_i0_instr_d

 - Way 1: ifu_i1_instr  dec_i1_instr_d

 - In module dec_decode_ctl (Decode stage) the two instructions are scheduled to the
corresponding pipes whenever possible. Once they are sent, they continue through the
three execution stages, the Commit stage and the Writeback stage:

 - Way 0: i0_inst_e1  i0_inst_e2  i0_inst_e3  i0_inst_e4  i0_inst_wb

 - Way 1: i1_inst_e1  i1_inst_e2  i1_inst_e3  i1_inst_e4  i1_inst_wb

We provide a .tcl file called
[RVfpgaPath]/RVfpga/Labs/Lab14/MUL_Instruction/test_AssignmentWays.tcl that includes
all these signals.

TASK: Remove the nop instructions included within the loop from Figure 1 and measure

different events (cycles, instructions/multiplies committed, etc.) using the Performance
Counters available in SweRV EH1, as explained in Lab 11. Is the number of cycles as
expected after analysing the simulation from Figure 2? Justify your answer.
Now reorder the code within the loop trying to reach the ideal throughput. Justify the results
obtained in the original code and in the reordered one.

TASK: Folder [RVfpgaPath]/RVfpga/Labs/Lab14/MUL_Instr_Accumul_C-Lang provides the

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

PlatformIO project of a C program that accumulates the subtraction of two multiplications
within a loop.

- Analyse the C program.

- Perform a simulation and inspect a random iteration of the loop. Note that the C
program is compiled without optimizations.

- Measure different events (cycles, instructions/multiplications committed, etc.) using
the Performance Counters available in SweRV EH1, as explained in Lab 11.
Is the number of cycles as expected after analysing the simulation from Figure 2? Justify
your answer.

- Create an analogous program in RISC-V assembly and compare it with the C
version. Reorder the instructions trying to obtain the best possible IPC.

- Disable the M RISC-V extension in the C program and compare the results with the
original program. To do so, modify the following line in file platformio.ini from:
 build_flags = -Wa,-march=rv32ima -march=rv32ima

To:
 build_flags = -Wa,-march=rv32ia -march=rv32ia

This avoids the use of the instructions from the M RISC-V extension and emulates them
using other instructions instead.

TASK: Modify the program from Figure 1, replacing the two mul instructions for two lw

instructions to the DCCM. You should observe a structural hazard analogous to the one
analysed in this section and resolved in a similar way.

B. Three simultaneous instructions executing in the Writeback
stage

SweRV EH1 is a 2-Way superscalar processor (we have briefly discussed this feature in the
GSG and in previous labs, and we will analyse it in more detail in Lab 17). This means that
two instructions can execute in this processor per cycle. In a situation where three
instructions arrived at the same stage in the same cycle, a structural hazard would
potentially occur. It might look like such a situation is not possible given the structure of
SweRV EH1, however, there is a specific case when this can happen:

- The External DDR2 Memory has a moderate latency that forces load instructions to
stall. When the load eventually receives its data from memory it proceeds to the
Writeback stage, where it writes the read value to the register file (let’s assume that
this Writeback happens in cycle i).

- If loads are non-blocking (i.e. while the load is waiting for the data to arrive from
memory, the processor continues executing instructions that do not depend on that
data), it may happen that two other instructions arrive at the Writeback stage in cycle

i and also need to write to the register file (for example, two add instructions).

- In this situation, three instructions would be trying to write to the register file in the

same cycle (cycle i).

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

If the register file only had two write ports, a structural hazard would occur and one of the
three instructions trying to write would have to wait for the register file to be free. However, in
SweRV EH1, as we showed in Lab 11, a third write port is implemented, which allows this
structural hazard to be resolved with no stalls and, thus, no performance loss.

The example from Figure 4 illustrates this situation. It executes a non-blocking lw

instruction followed by 36 add instructions contained within a loop that repeats for 0xFFFF

iterations (i.e. 65,535). The lw instruction is highlighted in red in the figure. The two add

instructions, which arrive at the Writeback stage in the same cycle as the lw instruction

(cycle i), are also highlighted. In this case, nop instructions are not included. As usual, the

program does nothing useful and is only intended to illustrate the example of this section.

REPEAT:

 lw x28, (x29)

 add x30, x30, -1

 add x1, x1, 1

 add x31, x31, 1

 add x3, x3, 1

 add x4, x4, 1

 add x5, x5, 1

 add x6, x6, 1

 add x7, x7, 1

 add x8, x8, 1

 add x9, x9, 1

 add x10, x10, 1

 add x11, x11, 1

 add x12, x12, 1

 add x13, x13, 1

 add x14, x14, 1

 add x15, x15, 1

 add x16, x16, 1

 add x17, x17, 1

 add x18, x18, 1

 add x19, x19, 1

 add x20, x20, 1

 add x21, x21, 1

 add x22, x22, 1

 add x23, x23, 1

 add x24, x24, 1

 add x25, x25, 1

 add x26, x26, 1

 add x27, x27, 1

 add x31, x31, 1

 add x3, x3, 1

 add x4, x4, 1

 add x5, x5, 1

 add x6, x6, 1

 add x25, x25, 1

 add x26, x26, 1

 add x27, x27, 1

 bne x30, zero, REPEAT # Repeat the loop

Figure 4. Example for a non-blocking lw instruction followed by 36 A-L instructions

Folder [RVfpgaPath]/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory provides the
PlatformIO project so that you can analyse, simulate, and modify the program as desired.
The structure of the project is based on the one provided in Lab 11 for using the
performance counters: it contains a .c file that initializes, stops, and prints the value of the
desired counters and a .S file that contains the assembly program that we want to test (in

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

this case, the loop with the non-blocking lw instruction) and which is invoked from the .c

file.

As shown in Figure 5, the 32-bit data obtained in the lsu_bus_intf module (Bus Interface) is

provided to the register file through signal lsu_nonblock_load_data[31:0]. Also, the

control signals that tell the register file where to write that data and when to write it, which
were generated in the Decode stage and propagated through the Pipeline Registers, are

provided to the register file through signals dec_nonblock_load_waddr[4:0] and

dec_nonblock_load_wen respectively. These three signals go into the register file

through the third write port available in this structure (waddr2, wen2 and wd2), as illustrated

in the figure. Remember that in Figure 6 of Lab 11 we illustrated the register file in detail.

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Pipeline continues execution
of instructions that do not

depend on the load

Lite DRAM

Controller
waddr2

wen2

wd2

Register File

(dec_gpr_ctl)

lsu_nonblock_load_data [31:0]

dec_nonblock_load_waddr [4:0]

dec_nonblock_load_wen

DC1 STAGE

Pipeline

Registers

for

Control

Signals

lsu_addr_dc1 [31:0] =

full_addr_dc1 [31:0]

Pipeline

Registers

for

Control

Signals

DECODE STAGE

end_addr_dc1 [31:0] =

full_end_addr_dc1 [31:0]

External Memory

accessed through AXI Bus

(lsu_bus_intf)

waddr1

wen1

wd1

waddr0

wen0

wd0

Pipeline

Registers

for

Control

Signals

Figure 5. Non-Blocking load instruction accessing External Memory

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Figure 6. Verilator simulation for the example from Figure 4

Delay due to accessing External Memory.

Independent instructions keep executing.

Decode

DC1

AXI

Bus

3 register
file

Write Ports

i-17 i

i-5

lw x28, (x29)
add x23, x23, 1

add x24, x24, 1

Three simultaneous writes to the
Register File:

- lw writes register x28 (0x1C)

- add writes register x23 (0x17)

- add writes register x24 (0x18)

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

Cycle i-17 Cycle i-16

lw x28, (x29) (000eae03)

add x30, x30, -1 (ffff0f13)

add x1, x1, 1 (00108093)

add x2, x2, 1 (00110113)

add x21,x21,1 (001a8a93)

add x22,x22,1 (001b0b13)

add x23,x23,1 (001b8b93)

add x24,x24,1 (001c0c13)

DECO

DECO

ALGN

ALGN

Cycle i-15 Cycle i-14 Cycle i-1 Cycle i

DC1

EX1

DECO

DECO

Ext Mem

EX2

EX1

EX1

Ext Mem

EX3

EX2

EX2

Ext Mem

WB

WB

COMMIT

COMMIT

WB

WB

WB

Figure 7. Execution of the example code from Figure 4

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Figure 6 and Figure 7 show the Verilator simulation for the program from Figure 4 and a
diagram that illustrates the execution of this program for a random iteration of the loop.

TASK: Replicate the simulation from Figure 6 on your own computer. Use file
test_NonBlocking.tcl (provided at

[RVfpgaPath]/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory). Zoom In () several
times and move to 60120ps.

Analyse the waveform from Figure 6 and the diagram from Figure 7.

- Cycle i-17: The lw instruction is at the Decode stage.

- Cycle i-16: The effective memory address is computed and sent to the External

Memory through the AXI Bus. The latency of the External Memory forces the load
instruction to wait several cycles for the data to arrive to the core.

- Cycle i-5: The two conflicting add instructions are decoded.

- Cycle i: The lw instruction and the two conflicting add instructions proceed to the

Writeback stage, where they all must write the register file. This is possible thanks to
the three write ports available in SweRV EH1’s register file. Note that the register

numbers are shown in hexadecimal in the simulation. x23, x24 and x28 (registers

0x17, 0x18, and 0x1c) are being written.

TASK: Compare the simulation shown in Figure 6 (non-blocking load) with the simulation
shown in Figure 14 of Lab 13 (blocking load). Add all of the signals needed for the
comparison.

TASK: Compare the illustration from Figure 7 with the simulation from Figure 6 that you
have replicated on your own computer. Add signals to extend the simulation and deepen
understanding, as desired.

TASK: Measure different events (cycles, instructions/loads committed, etc.) using the
Performance Counters available in SweRV EH1, as explained in Lab 11. Is the number of
cycles as expected after analysing the simulation from Figure 6? Justify your answer.
Compare these results with those obtained when loads are configured as blocking loads.

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

3. EXERCISES

1. Analyse, both in simulation and on the board, the structural hazard that happens
between two consecutive memory instructions (you can analyse any combination of
two consecutive memory instructions such as loads and stores) that arrive at the L/S
Pipe in the same cycle. You can use the PlatformIO project provided at:
[RVfpgaPath]/RVfpga/Labs/Lab14/TwoConsecutiveLW_Instructions.

2. (The following exercise is based on exercise 4.22 from the book “Computer

Organization and Design – RISC-V Edition”, by Patterson & Hennessy ([PaHe]).)
 Consider the fragment of RISC-V assembly below:
 sw x29, 12(x16)

 lw x29, 8(x16)

 sub x17, x15, x14

 beqz x17, label

 add x15, x11, x14

 sub x15, x30, x14

 Suppose we modify the SweRV EH1 processor so that it has only one memory
(that handles both instructions and data). In this case, there will be a structural
hazard every time a program needs to fetch an instruction during the same cycle in
which another instruction accesses data.

a. Draw a pipeline diagram to show where the code above will stall in this
imaginary version of the SweRV EH1 processor.

b. In general, is it possible to reduce the number of stalls/nops by reordering
code?

c. Must this structural hazard be handled in hardware? We have seen that data
hazards can be eliminated by adding nops to the code. Can you do the same
with this structural hazard? If so, explain how. If not, explain why not.

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 15

APPENDIX A – TWO SIMULTANEOUS DIV INSTRUCTIONS IN THE DECODE

STAGE

This extra example is based on the integer division instruction (div). Like the mul

instruction, the div instruction belongs to the RISC-V M Extension (Standard Extension for

Integer Multiplication and Division), which is supported in SweRV EH1.

The div instruction performs the signed integer division of rs1 by rs2 and stores the result

in rd. The machine language instruction for div is (see Appendix B of [DDCARV]):

0000001 | rs2 | rs1 | 100 | rd | 0110011

TASK: You can perform a similar study for the div instruction as the one performed in Lab

12 for arithmetic-logic instructions: view the flow of the instruction through the pipeline
stages, analyse the control bits (remember from Section 4 of SweRVref that there is a

specific structure type for the div instruction called div_pkt_t, and there is a signal

defined in module dec_decode_ctl called div_p), etc.

For executing this instruction, the SweRV EH1 processor implements a non-pipelined
blocking multi-cycle divide unit in module exu_div_ctl
([RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/exu/exu_div_ctl.sv). This
unit needs up to 34 cycles to compute the result, however, depending on the inputs, it can

be much smaller. The divide unit outputs several signals to the processor (div_stall,

finish_early, finish) to indicate the status of a divide instruction.

TASK: Inspect the Verilog code from exu_div_ctl to understand how the division is

computed. Also analyse the effect of signals div_stall, finish_early, and finish.

As an optional exercise, replace the divide unit with your own unit or one from the Internet.

The example from Figure 8 executes two div instructions contained within a loop that

repeats for 0xFFFF iterations (i.e. 65,535 in decimal). The div instructions are highlighted

in red in the figure. In this case, as opposed to many other examples, nop instructions are

not necessary, as the div instructions are already isolated from any other instruction due to

the high latency of the divide unit. As in previous toy programs we’ve used, the program
does nothing useful.

.globl Test_Assembly

Test_Assembly:

li t2, 0xFFFF

li t3, 0x8000000

li t4, 0x2

li t5, 0x2000000

li t6, 0x2

REPEAT:

 div t0, t3, t4 # t0 = t3 / t4

 div t1, t5, t6 # t1 = t5 / t6

 add t2, t2, -1

 add t0, zero, zero

 add t1, zero, zero

 bne t2, zero, REPEAT # repeat the loop

.end

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 16

Figure 8. Example for two consecutive div instructions

Folder [RVfpgaPath]/RVfpga/Labs/Lab14/DIV_Instruction provides the PlatformIO project so
that you can analyse, simulate and change the program as desired. The structure of the

project is like the one used for the mul instruction and is based on the one included in Lab

11 for using the Performance Counters.

If you open the project in PlatformIO, build it, and open the disassembly file (available at
[RVfpgaPath]/RVfpga/Labs/Lab14/DIV_Instruction/.pio/build/swervolf_nexys/firmware.dis)

you will see that the div instructions are placed at addresses 0x000001c0 and

0x000001c4.

0x000001c0: 03de42b3 div t0,t3,t4

0x000001c4: 03ff4333 div t1,t5,t6

TASK: Verify that this pair of 32 bits (0x03de42b3 and 0x03ff4333) corresponds to

instructions div t0,t3,t4 and div t1,t5,t6 in the RISC-V architecture.

Figure 9 shows the simulation of the program from Figure 8 at a random iteration of the loop.

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 17

Figure 9. Verilator simulation for the example from Figure 8

TASK: Replicate the simulation from Figure 9 on your own computer and analyse it in
detail.

Analyse the waveform from Figure 9. The values highlighted in red are signals related to the

two div instructions as they traverse the pipeline.

- The two div instructions arrive at the Decode stage in the same cycle

(dec_i0_pc_d_ext = 0x000001c0, which is the instruction address of the first div).

The first div instruction (0x03de42b3) is scheduled to execute in the divide unit, so it

sends the dividend and divisor (dividend = 0x08000000 and divisor =

0x00000002) to this unit. Note that we select high values for the dividends for making
the division computation time close to the maximum (34 cycles).

Given that the division is blocking in SweRV EH1, any other instruction after the div

is stalled. Note however that, even if the division was non-blocking, a structural

hazard due to having only one divisor would make the second div instruction to stall.

As explained in Section 2, there would be other approaches for improving
performance, such as pipelining the divider or including another one. However, given
that division is not a frequent operation, hardware cost reduction prevails in this case.

- The pipeline is stalled during the execution of the first div instruction (see signal

div_stall = 1 during the first division computation). You can also see that both

Way-0 and Way-1 are blocked with signals i0_block_d and i1_block_d being 1.

Moreover, now dec_i0_pc_d_ext = 0x000001c4, which is the address of the

second divide instruction, which is stalled in the Decode stage.

- Signal out of the divide unit provides the result after 34 cycles, which is written to

the destination register (t0 = 0x04000000). You can see how the output value
changes every cycle as the divide operation successively becomes the final result.

- When the result is obtained, the divisor is released, the pipeline is allowed to

continue (div_stall = 0) and the second div instruction is scheduled to the

divide unit. Then, 34 cycles later, the result of the second div instruction is written to

div t0,t3,t4 div t1,t5,t6

Execution of div t0,t3,t4 Execution of div t1,t5,t6

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 18

the register file (t1 = 0x01000000).

As in the first div instruction, all the instructions after the second div must stall due

to the blocking divisor. In this case, however, those instructions which do not depend
on t1 could continue, had it been a non-blocking divide.

Figure 10 illustrates the flow of the instructions in the example from Figure 8 through the

SweRV EH1 pipeline. When the first div instruction is decoded (cycle i), the second div

and subsequent instructions stall at their current stage both due to the blocking division of
SweRV EH1 and to the structural hazard at the divide unit. (A stalled instruction is marked in

the figure with the -st suffix.) Then, 34 cycles later (cycle i+34), the first div instruction

finishes execution and writes the result back to the register file through the 2:1 multiplexer
that was shown in Figure 4 of Lab 11. In the following cycle (i+35), subsequent instructions

resume. Then, in cycle 36 the second div instruction starts execution and subsequent

instructions are stalled again due to the blocking division of SweRV EH1.

Cycle i Cycle i+1

div t0, t3, t4 (03de42b3)

div t1, t5, t6 (03ff4333)

add t2, t2, -1 (fff38393)

add t0, zero, zero (000002b3)

add t1, zero, zero (00000333)

bne t2, zero, REPEAT (fe0396e3)

DECO

DECO-st

ALGN

ALGN-st

FC

FC-st

DIV-1

DECO-st

DECO-st

ALGN-st

ALGN-st

FC-st

Cycle i+2 Cycle i+3 Cycle i+34

WB

DECO-st

DECO-st

ALGN-st

ALGN-st

FC-st

DIV-2

DECO-st

DECO-st

ALGN-st

ALGN-st

FC-st

DIV-3

DECO-st

DECO-st

ALGN-st

ALGN-st

FC-st

Cycle i+35

DECO

DECO-st

ALGN

ALGN-st

FC

Cycle i+36 Cycle i+37

DIV-1

DECO-st

DECO-st

ALGN-st

ALGN-st

DIV-2

DECO-st

DECO-st

ALGN-st

ALGN-st

Figure 10. Execution of Figure 8 example code (–st suffix indicates a stalled instruction)

TASK: Compare the illustration from Figure 10 and the simulation from Figure 9 that you
have replicated on your own computer. Add signals to extend the simulation and deepen
understanding, as desired.

TASK: Measure different events (cycles, instructions/divisions committed, etc.) using the
Performance Counters available in SweRV EH1, as explained in Lab 11.
Is the number of cycles as expected after analysing the simulation from Figure 9? Justify
your answer.

TASK: Try different dividends and divisors and see how the number of cycles for
computing the result depends on their value. View the experiment both in simulation and
with the HW Counters.

TASK: Folder [RVfpgaPath]/RVfpga/Labs/Lab14/DIV_Instr_Accumul_C-Lang provides the
PlatformIO project of a C program that accumulates the subtraction of two divisions within
a loop.

Imagination University Programme – RVfpga Lab 14: Structural Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 19

- Analyse the C program.

- Perform a simulation and inspect a random iteration of the loop. Note that the C
program is compiled without optimizations.

- Measure different events (cycles, instructions/divisions committed, etc.) using the
Performance Counters available in SweRV EH1, as explained in Lab 11.
Is the number of cycles as expected after analysing the simulation from Figure 9? Justify
your answer.

- Create an analogous program in RISC-V assembly and compare it with the C
version.

- Disable the M RISC-V extension in the C program and compare the results with the
original program. To do so, modify the following line in file platformio.ini from:
 build_flags = -Wa,-march=rv32ima -march=rv32ima

To:
 build_flags = -Wa,-march=rv32ia -march=rv32ia

This avoids the use of the instructions from the RISC-V M extension and emulates them
using other instructions instead.

TASK: In SweRV EH1, div instructions are blocking. Modify the processor to allow non-

blocking div instructions.

Then add a second divider to the SweRV EH1 processor, so that two div instructions of

the example from Figure 8 are allowed to execute in parallel.

