
RVfpga v2.2 © 2022 <1>
Imagination Technologies

The Complete Course in Understanding Computer Architecture

RVfpga v2.2 © 2022 <2>
Imagination Technologies

RVfpga v2.2 © 2022 <3>
Imagination Technologies

Acknowledgements

Sponsors and Supporters

AUTHORS
Prof. Sarah Harris
Prof. Daniel Chaver
Zubair Kakakhel
M. Hamza Liaqat

ADVISER
Prof. David Patterson

CONTRIBUTORS
Robert Owen
Olof Kindgren
Prof. Luis Piñuel
Ivan Kravets
Valerii Koval
Ted Marena
Prof. Roy Kravitz
Prof. Peng Liu

ASSOCIATES
Prof. José Ignacio Gómez
Prof. Christian Tenllado
Prof. Daniel León
Prof. Katzalin Olcoz
Prof. Alberto del Barrio
Prof. Fernando Castro
Prof. Manuel Prieto

Prof. Francisco Tirado
Prof. Román Hermida
Prof. Julio Villalba
Prof Ataur Patwary
Cathal McCabe
Dan Hugo
Braden Harwood
Prof. David Burnett

Gage Elerding
Prof. Brian Cruickshank
Deepen Parmar
Thong Doan
Oliver Rew
Niko Nikolay
Guanyang He
Prof. Peng Liu

RVfpga v2.2 © 2022 <4>
Imagination Technologies

RVfpga Introduction
• RISC-V FPGA (RVfpga): course that shows how to:

– Target SweRV commercial RISC-V core & system-on-chip (SoC) to FPGA
– Program the RISC-V SoC
– Add more functionality to the RISC-V SoC
– Analyze and modify the RISC-V core and memory hierarchy

• The package is being developed by Imagination Technologies
and its academic and industry partners.

• After completing the RVfpga Course, users will walk away with
a commercial RISC-V processor, SoC, and ecosystem that
they understand and know how to use and modify.

This section of slides covers material in the Getting Started Guide (GSG) Section 1.

RVfpga v2.2 © 2022 <5>
Imagination Technologies

Two RVfpga Courses

• Imagination Technologies offers two courses based on the
RISC-V architecture:
– RVfpga: the course covered in these slides, about the RISC-V core,

memory system, and peripherals

– RVfpga-SoC: a second course that shows how to:
• Build a RISC-V SoC from building blocks

• Install the Zephyr RTOS (real-time operating system)

• Run programs on Zephyr

• Run simple Tensorflow programs

(RVfpga-SoC is not covered in these slides)

RVfpga v2.2 © 2022 <6>
Imagination Technologies

Download Material from Imagination Technologies

• Both courses (RVfpga and RVfpga-SoC) are available
as separate downloads (free upon registration) at:

https://university.imgtec.com/rvfpga/

• This EdX course covers the RVfpga Course.

RVfpga v2.2 © 2022 <7>
Imagination Technologies

RVfpga Audience & Track Record
• Target Audience

– Undergraduates and master’s students in electrical engineering,
computer science, or computer engineering

– Academics & industry professionals interested in learning the
RISC-V architecture

• Imagination University Programme (IUP) Track Record:
Developed MIPSfpga Program:
– Launched in April 2015

– Engaged 800 universities

– Winner: Elektra Best Educational Support Award, Europe 2015

RVfpga v2.2 © 2022 <8>
Imagination Technologies

RVfpga v2.2 © 2022 <9>
Imagination Technologies

RVfpga Course

• Typically 2-3 Semester Course
– Undergraduate (Labs 1-10)

– Master’s / upper division (Labs 11-20)

• Expected Prior Knowledge
– Digital design

– High-level programming (preferably C)

– Instruction set architecture / assembly programming

– Microarchitecture

– Memory systems

– This material is covered in Digital Design and Computer Architecture: RISC-V
Edition, Harris & Harris, © Elsevier 2021.

– These topics are expanded on with hands-on learning throughout RVfpga course.

This section of slides covers material in
the Getting Started Guide (GSG)
Section 1.

RVfpga v2.2 © 2022 <10>
Imagination Technologies

Textbook

Recommended text to
understand before starting
the RVfpga course:
Digital Design and
Computer Architecture:
RISC-V Edition, Harris &
Harris, © Elsevier, 2021

ISB
N
-10:

0128200642 ISB
N
-13:

978-0128200643

RVfpga v2.2 © 2022 <11>
Imagination Technologies

RVfpga System

SweRV EH1
Core

SweRV EH1
Core Complex

ICCM, DCCM, I$, PIC, Bus Interface,
Debug Unit

Boot ROM, UART, System Controller, Interconnect,
SPI Controller

+
GPIO, PTC, additional SPI and 7-Segment Displays

SweRVolfX SoC

RVfpgaNexys
DDR2, CDC, BSCAN, Clock Generator

Target: Nexys A7 Board

RVfpgaSim
DDR2, CDC, BSCAN, Clock Generator

Target: Simulation

Th
e

RV
fp

ga
 S

ys
te

m

• Open-source core from
Western Digital

• 2-way superscalar core

• 9-stage pipeline

• In-order

• RV32IMC

RVfpga v2.2 © 2022 <12>
Imagination Technologies

RVfpga Required Software and Hardware

SOFTWARE
Xilinx Vivado 2019.2 WebPACK

PlatformIO – an extension of
Microsoft’s Visual Studio Code –
with Chips Alliance platform,
which includes: RISC-V
Toolchain, OpenOCD, Verilator
HDL Simulator, WD Whisper
instruction set simulator (ISS)
Verilator and GTKWave

HARDWARE*
Digilent’s Nexys A7 / Nexys 4 DDR FPGA Board

RISC-V CORE & SOC
Core: Western Digital’s SweRV EH1**

SoC: Chips Alliance’s SweRVolf**

All are free except the optional Nexys A7 FPGA board, which costs $265 (academic price: $199)

*Optional: All labs can be completed in simulation only; so
this hardware is recommended but not required.

**Open-source – and provided as part of RVfpga package.

RVfpga v2.2 © 2022 <13>
Imagination Technologies

Nexys A7-100T FPGA Board: Optional

Figure of board from https://reference.digilentinc.com/

• Contains Artix-7 field
programmable gate array
(FPGA)

• Includes peripherals (i.e.,
LEDs, switches, pushbuttons,
7-segment displays,
accelerometer, temperature
sensor, microphone, etc.)

• Available for purchase at
digkey.com, digilentinc.com,
and other vendors

We will support the Basys3
FPGA board soon.

RVfpga v2.2 © 2022 <14>
Imagination Technologies

Supported Platforms
• Operating Systems

– Ubuntu 18.04 and 20.04

– Windows 10

– macOS

RVfpga v2.2 © 2022 <15>
Imagination Technologies

RVfpga v2.2 © 2022 <16>
Imagination Technologies

Introduction

• The RVfpga System is an extension of Chips Alliance’s SweRVolf
SoC, which is based on Western Digital’s RISC-V SweRV EH1
core.

• The source code for the SoC and core are provided with the
RVfpga download from Imagination Technologies.

• The RVfpga System is also simply referred to as “RVfpga”.

This section of slides covers material in the Getting Started Guide (GSG) Section 1.

RVfpga v2.2 © 2022 <17>
Imagination Technologies

RVfpga Hierarchy
• SweRV EH1 Core / Core

Complex
– Includes processor, memory, and

bus interface

• SweRVolfX SoC
– Extended version of SweRVolf

– Adds peripherals

• RVfpga System
– RVfpgaNexys: SweRVolfX

targeted to hardware (Nexys A7
FPGA board, with on-board
memory, clock, etc.)

– RVfpgaSim: SweRVolfX targeted
to simulation

SweRV EH1
Core

SweRV EH1
Core Complex

ICCM, DCCM, I$, PIC, Bus Interface,
Debug Unit

Boot ROM, UART, System Controller, Interconnect,
SPI Controller

+
GPIO, PTC, additional SPI and 7-Segment Displays

SweRVolfX SoC

RVfpgaNexys
DDR2, CDC, BSCAN, Clock Generator

Target: Nexys A7 Board

RVfpgaSim
DDR2, CDC, BSCAN, Clock Generator

Target: Simulation

Th
e

RV
fp

ga
 S

ys
te

m

RVfpga v2.2 © 2022 <18>
Imagination Technologies

RVfpga Hierarchy
Name Description
SweRV EH1 Core Open-source commercial RISC-V core developed be Western Digital

(https://github.com/chipsalliance/Cores-SweRV).

SweRV EH1 Core
Complex

SweRV EH1 core with added memory (ICCM, DCCM, and instruction cache),
programmable interrupt controller (PIC), bus interfaces, and debug unit
(https://github.com/chipsalliance/Cores-SweRV).

SweRVolfX
(Extended SweRVolf)

The System on Chip that we use in the RVfpga course. It is an extension of
SweRVolf.
SweRVolf (https://github.com/chipsalliance/Cores-SweRVolf): An open-source
SoC built around the SweRV EH1 Core Complex. It adds a boot ROM, UART
interface, system controller, interconnect (AXI Interconnect, Wishbone
Interconnect, and AXI-to-Wishbone bridge), and an SPI controller.
SweRVolfX: It adds 4 new peripherals to SweRVolf: a GPIO, a PTC, an additional
SPI and a controller for the 8 digit 7-Segment Displays.

RVfpga v2.2 © 2022 <19>
Imagination Technologies

RVfpga Hierarchy
Name Description
RVfpgaNexys The SweRVolfX SoC targeted to the Nexys A7 board and its peripherals.

It adds a DDR2 interface, CDC (clock domain crossing) unit, BSCAN
logic (for the JTAG interface), and clock generator.
RVfpgaNexys is the same as SweRVolf Nexys
(https://github.com/chipsalliance/Cores-SweRVolf), except that the
latter is based on SweRVolf.

RVfpgaSim The SweRVolfX SoC with a testbench wrapper and AXI memory
intended for simulation.
RVfpgaSim is the same as SweRVolf sim,
(https://github.com/chipsalliance/Cores-SweRVolf), except that the
latter is based on SweRVolf.

RVfpga v2.2 © 2022 <20>
Imagination Technologies

SweRV EH1 Core and SweRV EH1 Core Complex

Figure from https://github.com/chipsalliance/Cores-
SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf

• Open-source core from Western Digital

• 32-bit (RV32ICM) superscalar core, with
dual-issue 9-stage pipeline

• Separate instruction and data memories
(ICCM and DCCM) tightly coupled to the
core

• 4-way set-associative I$ with parity or ECC
protection

• Programmable Interrupt Controller

• Core Debug Unit compliant with the RISC-
V Debug specification

• System Bus: AXI4 or AHB-Lite

RVfpga v2.2 © 2022 <21>
Imagination Technologies

SweRVolfX SoC
• Open-source system-on-chip (SoC)

from Chips Alliance

• SweRVolf uses the SweRV EH1
Core. SweRVolf includes a Boot
ROM, UART, and a System
Controller and an SPI controller
(SPI1)

• SweRVolfX extends SweRVolf with
another SPI controller (SPI2), a
GPIO (General Purpose
Input/Output), 8-digit 7-Segment
Displays and a PTC (shown in red).

• SweRV EH1 Core uses an AXI bus
and peripherals use a Wishbone
bus, so the SoC also has an AXI to
Wishbone Bridge

System Address
Boot ROM 0x80000000 - 0x80000FFF
System Controller 0x80001000 - 0x8000103F
SPI1 0x80001040 - 0x8000107F
SPI2 0x80001100 - 0x8000113F
Timer 0x80001200 - 0x8000123F
GPIO 0x80001400 - 0x8000143F
UART 0x80002000 - 0x80002FFF

SweRVolfX Memory
Map

RVfpga v2.2 © 2022 <22>
Imagination Technologies

RVfpgaNexys
• RVfpgaNexys: SweRVolfX SoC

targeted to Nexys A7 FPGA
board with added peripherals:

– Core & System:

• SweRVolfX SoC

• Lite DRAM controller

• Clock Generator, Clock Domain

and BSCAN logic for the JTAG
port

– Peripherals used on Nexys A7
FPGA board:

• DDR2 memory

• UART via USB connection

• SPI Flash memory

• 16 LEDs and 16 switches

• SPI Accelerometer

• 8-digit 7-segment displays

RVfpga v2.2 © 2022 <23>
Imagination Technologies

RVfpgaSim

- RVfpgaSim is the SweRVolfX SoC wrapped in a
testbench to be used by HDL simulators.

RVfpga v2.2 © 2022 <24>
Imagination Technologies

RVfpga System Extensions

• The SweRVolfX SoC is further extended in Labs 6-10:
– Another GPIO controller to interface with the on-board Nexys A7

pushbuttons

– Modification of the 7-segment displays controller

– New timer modules for using the on-board tri-color LEDs

– New external interrupt sources

RVfpga v2.2 © 2022 <25>
Imagination Technologies

RVfpga v2.2 © 2022 <26>
Imagination Technologies

RVfpga Labs Overview

Part 1: Labs 1-10
• Programming

• Vivado Project & I/O Systems

Part 2: Labs 11-20
• RISC-V Core

• RISC-V Memory Systems

• RISC-V Benchmarking & Performance Monitoring

All labs include exercises for using and/or modifying the RVfpga
System to increase understanding through hands-on design. RVfpga
includes C and assembly example programs and solutions.

RVfpga v2.2 © 2022 <27>
Imagination Technologies

RVfpga Labs 1-4: Programming
• Lab 1: C Programming: Write a C program in PlatformIO, and run / debug it on

RVfpgaNexys/RVfpgaSim/Whisper. Also introduce Western Digital’s Board
Support and Platform Support Packages (BSP and PSP) for supporting
operations such as printing to the terminal.

• Lab 2: RISC-V Assembly Language: Write a RISC-V assembly program in
PlatformIO and run /debug it on RVfpgaNexys/RVfpgaSim/Whisper.

• Lab 3: Function Calls: Introduction to function calls, C libraries, and the RISC-
V calling convention.

• Lab 4: Image Processing: C & Assembly: Embed assembly code with C
code.

RVfpga v2.2 © 2022 <28>
Imagination Technologies

RVfpga Labs 5-10: I/O & Peripherals
• Lab 5: Creating a Vivado Project: Build a Vivado project to target

RVfpgaNexys to an FPGA board and simulate RVfpgaSim in Verilator.

• Lab 6: Introduction to I/O: Introduction to memory-mapped I/O and the
RVfpga System’s open-source GPIO module.

• Lab 7: 7-Segment Displays: Build a 7-segment display decoder and integrate
it into the RVfpga System.

• Lab 8: Timers: Understand and use Timers and a Timer controller.

• Lab 9: Interrupt-driven I/O: Introduction to the RVfpga System’s interrupt
support and use of interrupt-driven I/O.

• Lab 10: Serial Buses: Introduction to serial interfaces (SPI, I2C, and UART).
Show how to use the onboard accelerometer that uses an SPI interface.

RVfpga v2.2 © 2022 <29>
Imagination Technologies

RVfpga Labs 11-20: The RISC-V Core
• Lab 11: Understanding the SweRV EH1 configuration, core structure,

and performance monitoring.

• Labs 12, 13, 16: Examining instruction flow through the pipeline
(Arithmetic/Logic, Memory, Jumps, and Branches).

• Labs 14-16: Understanding hazards and how to deal with them

• Lab 16: Understanding and modifying the branch predictor

• Lab 17: Exploring superscalar execution.

• Lab 18: Adding new instructions and hardware counters.

• Lab 19: Understanding the memory hierarchy and I$.

• Lab 20: Enabling the ICCM and DCCM (instruction and data closely-
coupled memories) and using benchmarking to compare performance.

RVfpga v2.2 © 2022 <30>
Imagination Technologies

RVfpga v2.2 © 2022 <31>
Imagination Technologies

Directory hierarchy of RVfpga materials
• RVfpga/Documents folder: Documents (GSG, Slides, Labs, …).

– LabInstructions folder:
• Instructions for each Lab + Figures used in the instructions for each lab.

• RVfpga/verilatorSIM folder: Sources for Verilator simulator

• RVfpga/src folder: Verilog sources for the SoC

• RVfpga/examples folder: PlatformIO projects for the GSG examples

• RVfpga/Labs folder:
– Folders Lab1,…, Lab20: Resources to be used while completing the labs.

– RVfpgaLabsSolutions folder: Exercise solutions for each of the labs.
• ProgramsAndDocuments folder: Solutions for the proposed tasks and exercises.

• Modified_RVfpgaSystem folder: Modified RVfpga System as guided by the exercises in
Labs 6-10 and Lab 18. Solutions for the exercises + Instructions.

RVfpga v2.2 © 2022 <32>
Imagination Technologies

RVfpga v2.2 © 2022 <33>
Imagination Technologies

RVfpga Software Tools (Section 5 GSG)
• Xilinx’s Vivado IDE

– View RVfpga source files (Verilog / SystemVerilog) and hierarchy

– Create bitfile (FPGA configuration file) for RVfpga targeted to Nexys A7 board

• Visual Studio Code (VSCode) + PlatformIO
– PlatformIO: an extension of VSCode

– Download the RVfpga System onto the Nexys A7 board

– Compile, download, run, and debug C and assembly programs on the RVfpga
System

• Verilator – an HDL (hardware description language) simulator
– Simulate the RVfpga System at HDL (low) level to analyze its internal signals

• GTKWave – wave viewer

This section of slides covers material in the Getting Started Guide (GSG) Sections 2 & 5.

RVfpga v2.2 © 2022 <34>
Imagination Technologies

Installation of minimal tools (Section 2 GSG)
• VSCode

• Download VSCode for Linux, Windows or MacOS

• Install it in your system

• Install PlatformIO on top of VSCode
• In Linux: Install python3 utilities

• Extensions Icon: Look for PlatformIO and install it

• Install Nexys A7 drivers:
• Linux: Use provided folder

• Windows: Use Zadig application (Appendix)

• Mac OS: Not necessary

• Install GTKWave following the instructions for your OS

RVfpga v2.2 © 2022 <35>
Imagination Technologies

RVfpga v2.2 © 2022 <36>
Imagination Technologies

LEDs-Switches – Execution on the Board (Sections 6.A and 6.E of GSG)

• Connect the Nexys A7 board.

• Open VSCode and PlatformIO.

• Click on File → Open Folder and select:
[RVfpgaPath]\RVfpga\examples\LedsSwitches_C-Lang

• Analyse the source code of the program: src/LedsSwitches_C-Lang.c.

• The first time an RVfpga example opens in PlatformIO, the Chips Alliance
platform gets automatically installed. It includes the pre-built RISC-V
toolchain, OpenOCD, the Verilator simulator, etc.

• Download RVfpgaNexys to the Nexys A7 board. You first have to update the
path. You may need to refresh the Project Tasks window.

• Download and execute example LEDs-Switches.
This section of slides covers material in the Getting Started Guide (GSG) Sections 6-8.

RVfpga v2.2 © 2022 <37>
Imagination Technologies

AL_Operations Example – Execution on the Board (Section 6.B of GSG)

• If not opened yet, open VSCode and PlatformIO

• Click on File → Close Folder from the top file menu. Then click on
File → Open Folder and select:

[RVfpgaPath]\RVfpga\examples\AL_Operations

• Analyse the source code of the program

• If necessary, download RVfpgaNexys to the Nexys A7 board.

• Download, execute and debug example AL_Operations.

RVfpga v2.2 © 2022 <38>
Imagination Technologies

• Click on File → Open File and double-click on
[RVfpgaPath]/RVfpga/examples/AL_Operations/platformio.ini, and set
whisper as the debug tool by uncommenting line 17.

• Launch the debugger as usual

• You can now debug the program exactly as you did in Section 6.B,
but this time the program is running in simulation on Whisper instead
of on the Nexys A7 FPGA board.

AL_Operations Example – Simulation in Whisper (Section 8 of GSG)

RVfpga v2.2 © 2022 <39>
Imagination Technologies

• Open file platformio.ini. Establish the path to RVfpgaSim.

• Run the simulation by clicking on the PlatformIO icon

• Expand Project Tasks → env:swervolf_nexys → Platform and click on
Generate Trace

• A few seconds after the previous step, file trace.vcd should have
been generated and you can open it with GTKWave

• Add signals: click on File – Read Tcl Script File and select
[RVfpgaPath]/RVfpga/examples/AL_Operations/test.tcl

AL_Operations Example – Simulation in Verilator (Section 7 of GSG)

RVfpga v2.2 © 2022 <40>
Imagination Technologies

HelloWorld Example (Section 6.F of GSG)
1. Open VSCode and PlatformIO. Click on File → Close Folder. Click

on File → Open Folder from the top file menu and select:

[RVfpgaPath]\RVfpga\examples\HelloWorld_C-Lang

2. Configure the system:
– PlatformIO serial monitor: Use monitor_speed parameter in file platformio.ini

– In Linux, add yourself to the dialout, tty and uucp groups

3. Download and execute example HelloWorld. When the program
starts to run, open the serial monitor, by clicking on the plug button
available on the bottom of VS Code.

RVfpga v2.2 © 2022 <41>
Imagination Technologies

HelloWorld – Simulation in Whisper (Section 8 of GSG)
• Click on File → Open File and double-click on

[RVfpgaPath]/RVfpga/examples/HelloWorld_C-Lang/platformio.ini,
and set whisper as the debug tool by uncommenting line 17.

• Launch the debugger as usual. You can now debug the program
exactly as you did in Section 6.B, but this time the program is running
in simulation on Whisper instead of on the Nexys A7 FPGA board.

• Given that this program uses the printfNexys function in Whisper, you
should not open the PlatformIO serial monitor, as messages are
shown in the DEBUG console instead.

RVfpga v2.2 © 2022 <42>
Imagination Technologies

RVfpga v2.2 © 2022 <43>
Imagination Technologies

RVfpga Lab 1: C Programming

• Create PlatformIO project from scratch

• Add example C programs to the project:
• LedsSwitches

• HelloWorld

• Run and debug the two programs:
• On the board

• On Whisper

• Complete the exercises at end of lab

RVfpga v2.2 © 2022 <44>
Imagination Technologies

RVfpga Lab 1: Memory-Mapped I/O Addresses

Device Memory-Mapped I/O Address
Switches (16 on Nexys A7 board) 0x80001400 (upper 16 bits)
LEDs (16 on Nexys A7 board) 0x80001404 (lower 16 bits)
Input/Output of GPIO (1 = output, 0 = input) 0x80001408

RVfpga v2.2 © 2022 <45>
Imagination Technologies

RVfpga Lab 1: Example C Program
// memory-mapped I/O addresses
#define GPIO_SWs 0x80001400
#define GPIO_LEDs 0x80001404
#define GPIO_INOUT 0x80001408

#define READ_GPIO(dir) (*(volatile unsigned *)dir)
#define WRITE_GPIO(dir, value) { (*(volatile unsigned *)dir) = (value); }

int main (void)
{
int En_Value=0xFFFF, switches_value; // Upper 16 bits are inputs, lower 16 are outputs

WRITE_GPIO(GPIO_INOUT, En_Value);

while (1) {
switches_value = READ_GPIO(GPIO_SWs); // read value on switches
switches_value = switches_value >> 16; // shift into lower 16 bits
WRITE_GPIO(GPIO_LEDs, switches_value); // display switch value on LEDs

}

return(0);
}

This program writes the value of
the switches to the LEDs.

Folder Location: [RVfpgaPath]\RVfpga\examples\LedsSwitches_C-Lang

RVfpga v2.2 © 2022 <46>
Imagination Technologies

RVfpga Lab 1: Western Digital’s BSP & PSP
• Western Digital provides:

– PSP: platform support package
– BSP: board support package

• These provide common functions for a given processor
(SweRV EH1 core) and board (Nexys A7 FPGA board).

– Example: printfNexys (like printf function in C)

RVfpga v2.2 © 2022 <47>
Imagination Technologies

RVfpga Lab 1: Using UART to Print to Terminal
#if defined(D_NEXYS_A7)

#include <bsp_printf.h>
#include <bsp_mem_map.h>
#include <bsp_version.h>

#else
PRE_COMPILED_MSG("no platform was defined")

#endif
#include <psp_api.h>
#define DELAY 10000000

int main(void) {
int i, j = 0;

// Initialize UART
uartInit();
while (1) {

printfNexys("Hello RVfpga users! Iteration: %d\n", j);
for (i=0; i < DELAY; i++) ; // delay between printf's
j++;

}
}

• Add this line to platformio.ini file:
monitor_speed = 115200

• After program starts running, open
PlatformIO terminal by pressing this
button in the bottom of the
window:

Folder Location: [RVfpgaPath]\RVfpga\examples\HelloWorld_C-Lang

RVfpga v2.2 © 2022 <48>
Imagination Technologies

RVfpga Lab 1: Exercises Sample – Input/Output

• Exercise 1. Write a C program that flashes the value of the switches onto the LEDs.
The value should pulse on and off slow enough that a person can view the flashing.

• Exercise 2. Write a C program that displays the inverse value of the switches on
the LEDs. For example, if the switches are (in binary): 0101010101010101, then the
LEDs should display: 1010101010101010; if the switches are: 1111000011110000,
then the LEDs should display: 0000111100001111...

• Exercise 4. Write a C program that displays the unsigned 4-bit addition of the 4
least significant bits of the switches and the 4 most significant bits of the switches.
Display the result on the 4 least significant (right-most) bits of the LEDs. The fifth bit
of the LEDs should light up when unsigned overflow occurs (that is when the carry
out is 1).

RVfpga v2.2 © 2022 <49>
Imagination Technologies

RVfpga Lab 1: Exercises Sample – Algorithms
• Exercise 5. Write a C program that finds the greatest common divisor of two

numbers, a and b, according to the Euclidean algorithm. The values a and b
should be statically defined variables in the program.

• Exercise 9. Implement the bubble sort algorithm in C. This algorithm sorts the
components of a vector in ascending order by means of the following procedure:
1. Traverse the vector repeatedly until done.

2. Interchanging any pair of adjacent components if V(i) > V(i+1).

3. The algorithm stops when every pair of consecutive components is in order.

• Exercise 10. Write a program in C that computes the factorial of a given non-
negative number, n, by means of iterative multiplications. While you should test
your program for multiple values of n, your final submission should be for n = 7.
The program should print out the value of factorial(n) at the end of the program.
n should be a variable that is statically defined within the program.

RVfpga v2.2 © 2022 <50>
Imagination Technologies

RVfpga v2.2 © 2022 <51>
Imagination Technologies

RVfpga Lab 2: RISC-V Assembly Programming

• Create PlatformIO project from scratch

• Add example RISC-V Assembly program to the project:
• LedsSwitches

• Run and debug the program:
• On the board

• On Whisper

• Complete the exercises at end of lab

• Create a project from scratch

RVfpga v2.2 © 2022 <52>
Imagination Technologies

RVfpga Lab 2: RISC-V Assembly Instructions
Common RISC-V Assembly Instructions & Pseudoinstructions

RISC-V Assembly Description Operation
add s0, s1, s2 Add s0 = s1 + s2
sub s0, s1, s2 Subtract s0 = s1 - s2
addi t3, t1, -10 Add immediate t3 = t1 – 10
mul t0, t2, t3 32-bit multiply t0 = t2 * t3
div s9, t5, t6 Division t9 = t5 / t6
rem s4, s1, s2 Remainder s4 = s1 % s2
and t0, t1, t2 Bit-wise AND t0 = t1 & t2
or t0, t1, t5 Bit-wise OR t0 = t1 | t5
xor s3, s4, s5 Bit-wise XOR s3 = s4 ^ s5
andi t1, t2, 0xFFB Bit-wise AND immediate t1 = t2 & 0xFFFFFFFB
ori t0, t1, 0x2C Bit-wise OR immediate t0 = t1 | 0x2C
xori s3, s4, 0xABC Bit-wise XOR immediate s3 = s4 ^ 0xFFFFFABC
sll t0, t1, t2 Shift left logical t0 = t1 << t2
srl t0, t1, t5 Shift right logical t0 = t1 >> t5
sra s3, s4, s5 Shift right arithmetic s3 = s4 >>> s5
slli t1, t2, 30 Shift left logical immediate t1 = t2 << 30
srli t0, t1, 5 Shift right logical immediate t0 = t1 >> 5
srai s3, s4, 31 Shift right arithmetic immediate s3 = s4 >>> 31

RVfpga v2.2 © 2022 <53>
Imagination Technologies

RVfpga Lab 2: RISC-V Assembly Instructions
Common RISC-V Assembly Instructions & Pseudoinstructions (continued)

RISC-V Assembly Description Operation
lw s7, 0x2C(t1) Load word s7 = memory[t1+0x2C]
lh s5, 0x5A(s3) Load half-word s5 = SignExt(memory[s3+0x5A]15:0)
lb s1, -3(t4) Load byte s1 = SignExt(memory[t4-3]7:0)
sw t2, 0x7C(t1) Store word memory[t1+0x7C] = t2
sh t3, 22(s3) Store half-word memory[s3+22]15:0 = t315:0
sb t4, 5(s4) Store byte memory[s4+5]7:0 = t47:0
beq s1, s2, L1 Branch if equal if (s1==s2), PC = L1
bne t3, t4, Loop Branch if not equal if (s1!=s2), PC = Loop
blt t4, t5, L3 Branch if less than if (t4 < t5), PC = L3
bge s8, s9, Done Branch if not equal if (s8>=s9), PC = Done
li s1, 0xABCDEF12 Load immediate s1 = 0xABCDEF12
la s1, A Load address s1 = Variable A’s memory address (location)
nop Nop no operation
mv s3, s7 Move s3 = s7
not t1, t2 Not (Invert) t1 = ~t2
neg s1, s3 Negate s1 = -s3
j Label Jump PC = Label
jal L7 Jump and link PC = L7; ra = PC + 4
jr s1 Jump register PC = s1

RVfpga v2.2 © 2022 <54>
Imagination Technologies

RVfpga Lab 2: RISC-V Registers
32 32-bit registers

Name Register Number Use
zero x0 Constant value 0
ra x1 Return address
sp x2 Stack pointer
gp x3 Global pointer
tp x4 Thread pointer
t0-2 x5-7 Temporary variables
s0/fp x8 Saved variable / Frame pointer
s1 x9 Saved variable
a0-1 x10-11 Function arguments / Return values
a2-7 x12-17 Function arguments
s2-11 x18-27 Saved variables
t3-6 x28-31 Temporary variables

RVfpga v2.2 © 2022 <55>
Imagination Technologies

RVfpga Lab 2: Example RISC-V Assembly Program
// memory-mapped I/O addresses
GPIO_SWs = 0x80001400
GPIO_LEDs = 0x80001404
GPIO_INOUT = 0x80001408

.globl main

main:
li t0, 0x80001400 # base address of GPIO memory-mapped registers
li t1, 0xFFFF # set direction of GPIOs

upper half = switches (inputs) (=0)
lower half = outputs (LEDs) (=1)

sw t1, 8(t0) # GPIO_INOUT = 0xFFFF

repeat:
lw t1, 0(t0) # read switches: t1 = GPIO_SWs
srli t1, t1, 16 # shift val to the right by 16 bits
sw t1, 4(t0) # write value to LEDs: GPIO_LEDs = t1
j repeat # repeat loop

This program writes the value of
the switches to the LEDs.

Folder Location: [RVfpgaPath]\RVfpga\Labs\Lab02

RVfpga v2.2 © 2022 <56>
Imagination Technologies

RVfpga Lab 2: Same Exercises as in Lab 1 - Sample

• Exercise 4. Write a C program that displays the unsigned 4-bit addition of the 4
least significant bits of the switches and the 4 most significant bits of the
switches. Display the result on the 4 least significant (right-most) bits of the
LEDs. The fifth bit of the LEDs should light up when unsigned overflow occurs
(that is when the carry out is 1).

RVfpga v2.2 © 2022 <57>
Imagination Technologies

RVfpga v2.2 © 2022 <58>
Imagination Technologies

RVfpga Lab 3: Function Calls

• Write C programs with function (procedure) calls

• Write C programs with calls to library functions:
– Use of standard libraries

– Use of WD libraries, specific for RVfpga

• RISC-V (Procedure) Calling Convention

RVfpga v2.2 © 2022 <59>
Imagination Technologies

RVfpga Lab 3: Example Program with Functions
// memory-mapped I/O addresses
#define GPIO_SWs 0x80001400
#define GPIO_LEDs 0x80001404
#define GPIO_INOUT 0x80001408
#define READ_GPIO(dir) (*(volatile unsigned *)dir)
#define WRITE_GPIO(dir, value) { (*(volatile unsigned *)dir) = (value); }

void IOsetup();
unsigned int getSwitchVal();
void writeValtoLEDs(unsigned int val);

int main (void) {
unsigned int switches_val;

IOsetup();
while (1) {

switches_val = getSwitchVal();
writeValtoLEDs(switches_val);

}

return(0);
}

RVfpga v2.2 © 2022 <60>
Imagination Technologies

RVfpga Lab 3: Example Program with Functions
void IOsetup()
{
int En_Value=0xFFFF;
WRITE_GPIO(GPIO_INOUT, En_Value);

}

unsigned int getSwitchVal()
{
unsigned int val;

val = READ_GPIO(GPIO_SWs); // read value on switches
val = val >> 16; // shift into lower 16 bits

return val;
}

void writeValtoLEDs(unsigned int val)
{
WRITE_GPIO(GPIO_LEDs, val); // display val on LEDs

}

RVfpga v2.2 © 2022 <61>
Imagination Technologies

RVfpga Lab 3: C Libraries

• Libraries
– Collection of commonly used functions
– Provided so that common functions are readily available (save
programming time)

• Example C libraries:
– math.h (math library): includes functions such as sqrt (square root), cos

(cosine), etc.
– stdio.h (standard I/O library): includes functions for printing values to the

screen (printf), reading values from users (scanf), etc.
– stdlib.h (standard library): includes functions for generating random

numbers (rand).
– Many others… (google C libraries)

RVfpga v2.2 © 2022 <62>
Imagination Technologies

RVfpga Lab 3: Example Program using C Library
#include <stdlib.h>

...

int main(void) {
unsigned int val;
volatile unsigned int i;

IOsetup();
while (1) {
val = rand() % 65536;
writeValtoLEDs(val);
for (i = 0; i < DELAY; i++)
;

}
return(0);

}

This program writes a random
number between 0 and 65535 to
the LEDs.

RVfpga v2.2 © 2022 <63>
Imagination Technologies

RVfpga Lab 3: WD Libraries

• We’ve used printfNexys in many programs

• Lab 9: Use of WD functions for handling interrupts

RVfpga v2.2 © 2022 <64>
Imagination Technologies

RVfpga Lab 3: RISC-V Calling Convention

• Call a function
jal function_label

• Return from a function
jr ra

• Arguments
– placed in registers a0-a7

• Return value
– placed in register a0

RVfpga v2.2 © 2022 <65>
Imagination Technologies

RVfpga Lab 3: RISC-V Calling Convention Example

C Code
int main() {

...
int y = y + func1(1, 2, 3)
y++;
...

}

int func1(int a, int b, int c) {
int sum;
sum = a + b + c;
return sum;

}

RISC-V Assembly
y is in s0
main:
...
addi a0, zero, 1 # put values in argument registers
addi a1, zero, 2
addi a2, zero, 3
jal func1 # call function func1
add s0, s0, a0 # y = y + return value
addi s0, s0, 1 # y = y++
...

sum is in s0
func1:

add s0, a0, a1 # sum = a + b
add s0, s0, a2 # sum = a + b + c
addi a0, s0, 0 # return value = sum
jr ra # return

RVfpga v2.2 © 2022 <66>
Imagination Technologies

RVfpga Lab 3: The Stack

• Scratch space in memory used to save register values
• The stack pointer (sp) holds the address of the top of the stack

• The stack grows downward in memory. So, for example, to make
space for 4 words (16 bytes) on the stack the following code is used:

addi sp, sp, -16

• Two categories of registers:
– Preserved registers: register contents must be preserved across function calls (i.e.,

contain the same value before and after a function call)

– Non-preserved registers: register contents must not be preserved across function
calls (i.e., the register does not need to be the same before and after a function call)

– Saved registers (s0-s11), the return address register (ra), and the stack pointer (sp)
are preserved registers. All other registers are not preserved.

RVfpga v2.2 © 2022 <67>
Imagination Technologies

RVfpga Lab 3: Preserved / Nonpreserved Registers
Name Register Number Use Preserved
zero x0 Constant value 0 -
ra x1 Return address Yes
sp x2 Stack pointer Yes
gp x3 Global pointer -
tp x4 Thread pointer -
t0-2 x5-7 Temporary variables No
s0/fp x8 Saved variable / Frame pointer Yes
s1 x9 Saved variable Yes
a0-1 x10-11 Function arguments / Return values No
a2-7 x12-17 Function arguments No
s2-11 x18-27 Saved variables Yes
t3-6 x28-31 Temporary variables No

RVfpga v2.2 © 2022 <68>
Imagination Technologies

RVfpga Lab 3: The Stack – Revised Assembly Code
C Code
int main() {

...
int y = y + func1(1, 2, 3)
y++;
...

}

int func1(int a, int b, int c) {
int sum;

sum = a + b + c;
return sum;

}

RISC-V Assembly
y is in s0
main: ...

addi a0, zero, 1 # put values in argument registers
addi a1, zero, 2
addi a2, zero, 3
jal func1 # call function func1
add s0, s0, a0 # y = y + return value
addi s0, s0, 1 # y = y++
...

sum is in s0
func1:addi sp, sp, -4 # make room on stack

sw s0, 0(sp) # save s0 on stack
add s0, a0, a1 # sum = a + b
add s0, s0, a2 # sum = a + b + c
addi a0, s0, 0 # return value = sum
lw s0, 0(sp) # restore s0 from stack
addi sp, sp, 4 # restore stack pointer
jr ra # return

RVfpga v2.2 © 2022 <69>
Imagination Technologies

RVfpga Lab 3: Exercises Sample – C programs

• Exercise 3. Write a C program that measures reaction time. Your program
should time how long it takes for a person to switch on the right-most switch
(SW[0]) after all of the LEDs light up. You will use the rand() function from the
stdlib.h library to generate a random amount of time to delay between each time
the user attempts to test their reaction time.

RVfpga v2.2 © 2022 <70>
Imagination Technologies

RVfpga Lab 3: Exercises Sample – Assembly programs

• Exercise 8. Write a RISC-V assembly program called Filter.S (the program must be compliant
with the standard for function management studied before). You can use the following pseudo-
code:

#define N 6

int i, j=0, A[N]={48,64,56,80,96,48}, B[N];

for (i=0; i<(N-1); i++){

if((myFilter(A[i],A[i+1])) == 1){

B[j]=A[i]+ A[i+1] + 2;

j++;

}

}

- Write the equivalent RISC-V assembly code, including any directives required to reserve
memory space, and declaring the corresponding sections (.data, .bss and .text). Function
myFilter returns the value 1 if the first argument is a multiple of 16 and the second is greater
than the first; otherwise, it returns a 0.

- Write the assembly code of the function myFilter.

RVfpga v2.2 © 2022 <71>
Imagination Technologies

RVfpga v2.2 © 2022 <72>
Imagination Technologies

RVfpga Lab 4: Combining C and Assembly
• Example: Image processing program

• Some functions written in C and some in assembly

• Convert colour image to greyscale

RVfpga v2.2 © 2022 <73>
Imagination Technologies

RVfpga Lab 4: Image Processing Program

• Each pixel stored as three 8-bit colours: R = red, G = green, B = blue

• Any colour can be created by varying R, G, and B values
• To convert image to an 8-bit greyscale (grey), each pixel is transformed

as follows:

grey = (306*R + 601*G + 117*B) >> 10

• RGB weights add up to 1024 (306 + 601 + 117 = 1024), so to get back to an
8-bit range (0-255), the result is divided by 1024 (i.e., shifted right by 10
bits: >> 10)

• For more details about the algorithm, see:

https://www.mathworks.com/help/matlab/ref/rgb2gray.html

RVfpga v2.2 © 2022 <74>
Imagination Technologies

RVfpga Lab 4: Assembly Function
.globl ColourToGrey_Pixel
.text
ColourToGrey_Pixel:

li x28, 306 # a0 = R * 306
mul a0, a0, x28
li x28, 601 # a1 = G * 601
mul a1, a1, x28
li x28, 117 # a2 = B * 117
mul a2, a2, x28
add a0, a0, a1 # grey = a0 + a1 + a2
add a0, a0, a2
srl a0, a0, 10 # grey = grey / 1024
ret # return

.end grey = (306*R + 601*G + 117*B) >> 10

.globl makes CoulourToGrey_Pixel function visible
to all files in project

RVfpga v2.2 © 2022 <75>
Imagination Technologies

RVfpga Lab 4: Structs and Arrays
typedef struct {

unsigned char R;
unsigned char G;
unsigned char B;

} RGB;

extern unsigned char VanGogh_128x128[]; // 1D array of individual RGB values
RGB ColourImage[N][M]; // 2D array of RGB struct (colour image)
unsigned char GreyImage[N][M]; // 2D array of greyscale image

// VanGogh_128.c
unsigned char VanGogh_128x128[] = { 157, // R (pixel [0][0])

182, // G (pixel [0][0])
161, // B (pixel [0][0])
171, // R (pixel [0][1])
195, // G (pixel [0][1])
173, // B (pixel [0][1])
173, // R (pixel [0][2])
... }

RVfpga v2.2 © 2022 <76>
Imagination Technologies

RVfpga Lab 4: Main Function
int main(void) {

// Create an N x M matrix using the input image
initColourImage(ColourImage);

// Transform Colour Image to Grey Image
ColourToGrey(ColourImage,GreyImage);
...

}

void ColourToGrey(RGB Colour[N][M], unsigned char Grey[N][M]) {
int i,j;

for (i=0; i<N; i++)
for (j=0; j<M; j++)

Grey[i][j] = ColourToGrey_Pixel(Colour[i][j].R, Colour[i][j].G,
Colour[i][j].B);

}

RVfpga v2.2 © 2022 <77>
Imagination Technologies

RVfpga Lab 4: Provided project and Exercises

• Exercise 1. Execute the program on a different input image.

• Exercise 2. Create a C function that counts the number of close to white (>235)
and close to black (<20) elements in the VanGogh greyscale image. Print the two
numbers on the serial console.

• Exercise 3. Transform the ColourToGrey_Pixel assembly subroutine into a C
function, and the C function ColourToGrey into an assembly subroutine that
invokes the ColourToGrey_Pixel C function.

• Exercise 4. Apply a Blur Filter to the VanGogh colour image.

RVfpga v2.2 © 2022 <78>
Imagination Technologies

RVfpga v2.2 © 2022 <79>
Imagination Technologies

RVfpga Lab 5: RVfpga Vivado Project
• Vivado is a Xilinx tool for viewing, modifying, and synthesizing the source

(Verilog) code for the RVfpga System.

• RVfpga System’s source code is in:
[RVfpgaPath]/RVfpga/src

• In this lab, users create a Vivado project that contains RVfpga System’s
source code, synthesize RVfpgaNexys targeted to Nexys A7 board and
create a bitfile that contains information to configure the FPGA as
RVfpgaNexys.

• Vivado (and Verilator) are used extensively in RVfpga Labs 6-20 for
modifying and simulating the RVfpga System.

RVfpga v2.2 © 2022 <80>
Imagination Technologies

RVfpga v2.2 © 2022 <81>
Imagination Technologies

RVfpga Lab 6: Introduction to I/O

• Main features of a general-purpose I/O system and the one
used in the RVfpga System

• Simplified theoretical version of a generic GPIO controller

• GPIO controller used in the SweRVolfX SoC:
– We first analyse its high-level specification and introduce

fundamental exercises

– We then analyse its low-level implementation, simulating
RVfpgaSim in Verilator, and introducing advanced exercises

RVfpga v2.2 © 2022 <82>
Imagination Technologies

RVfpga Lab 6: Generic Processor with I/O

RVfpga v2.2 © 2022 <83>
Imagination Technologies

RVfpga Lab 6: General-Purpose I/O (GPIO)

Peripherals

• General-purpose I/O:
– Allows processor to read/write pins connected to peripherals (like switches and LEDs)

– Each pin can be configured as an input or output using tri-state

• Three memory-mapped registers:
– Read Register: value read from pin

– Write Register: value to write to pin

– Enable Register: 1 = output, 0 = input

RVfpga v2.2 © 2022 <84>
Imagination Technologies

RVfpga Lab 6: SweRVolfX GPIO Module

• GPIO Module from OpenCores
https://opencores.org/projects/gpio

• Allows up to 32 GPIO pins
– All pins can be individually configured as inputs (enable = 0) or outputs

(enable = 1)

– Configuration can change throughout program

Register Memory-Mapped Address
Read Register 0x80001400
Write Register 0x80001404
Enable Register 0x80001408

RVfpga v2.2 © 2022 <85>
Imagination Technologies

RVfpga Lab 6: Memory-Mapped Registers
Mapping LEDs & Switches to GPIO pins:

– LEDS: pins [15:0] (outputs of processor)
– Switches: pins [31:16] (inputs to processor)

Configure GPIO:
– Enable Register = 0x0000FFFF (1 = output, 0 = input)

li t0, 0x80001400
li t1, 0xFFFF
sw t1, 8(t0) # Enable Register = 0xFFFF

Write LEDs:
– Write value in [15:0] to address 0x80001404

sw t3, 4(t0) # LEDs = [t3]15:0
Read Switches:

– Read switches in bits [31:16] from address 0x80001400
– Shift right by 16 bits to put value in lower 16 bits

lw t5, 0(t0) # [t5]31:16 = switch values
srli t5, t5, 16 # [t5]15:0 = switch values

figure of board from https://reference.digilentinc.com/

RVfpga v2.2 © 2022 <86>
Imagination Technologies

RVfpga Lab 6: Fundamental Exercises - Sample
• Exercise 1. Write a RISC-V assembly program and a C program that

shows a block of four lit LEDs that repeatedly moves from one side of
the 16 LEDs available on the board to the other. Also include two
switches that control the speed and direction. Switch[0] changes the
speed and Switch[1] changes the direction as follows:
– If Switch[0] is ON (high), the lit LEDs should move quickly. Otherwise, the lit

LEDs should move slowly. You may define what “quickly” and “slowly” mean,
but either speed must be visible, and you must be able to detect a difference
in speed just by looking at it.

– If Switch[1] is ON (high), the lit LEDs should repeatedly move from right-to-left
(they start back at the right when they reach the left-most LED). Otherwise,
the lit LEDs should repeatedly move from left-to-right.

RVfpga v2.2 © 2022 <87>
Imagination Technologies

RVfpga Lab 6: GPIO Low-Level Implementation
• Divided in 3 main parts

– RVfpgaNexys’s external connection to the on-board LEDs/Switches (left shaded region)

– Integration of the GPIO module into SweRVolfX (middle shaded region)

– Connection between the GPIO and the SweRV EH1 (right shaded region)

RVfpga v2.2 © 2022 <88>
Imagination Technologies

RVfpga Lab 6: External connection
File rvfpganexys.xdc: Defines the connection of i_sw[15:0] with the on-board
switches and o_led[15:0] with the on-board LEDs

RVfpga v2.2 © 2022 <89>
Imagination Technologies

RVfpga Lab 6: Integration into RVfpga
File swervolf_core.v: Tri-state buffers and GPIO module instantiation

RVfpga v2.2 © 2022 <90>
Imagination Technologies

RVfpga Lab 6: Connection with SweRV EH1
File wb_intercon.v: 7-1 Multiplexer implementation

RVfpga v2.2 © 2022 <91>
Imagination Technologies

RVfpga Lab 6: Advanced Exercises - Sample

• Exercise 3. Expand RVfpgaNexys to support the five on-board
pushbuttons. The pushbuttons are shown in Figure 22. The five
buttons are named according to their location: up, down, left, right,
and center – BTNU, BTND, BTNL, BTNR, BTNC.

• Exercise 5. Write a RISC-V assembly program and a C program that
displays an increasingly incrementing binary count on the LEDs,
starting at 1. Use BTNC to change the speed of the count, and BTNU
to restart the count whenever it is pressed.

RVfpga v2.2 © 2022 <92>
Imagination Technologies

7-Segment Displays

RVfpga v2.2 © 2022 <93>
Imagination Technologies

RVfpga Lab 7: 7-Segment Displays

• Describes how the RVfpga System was extended to work with 7-
segment displays and shows how to modify the 7-segment display
controller.

• We first describe how the 7-segment display controller works

• Then we analyse the high-level specification of the 8-digit 7-segment
display controller included in the RVfpga System and provide some
fundamental exercises.

• Finally, we analyse the low-level implementation of this controller,
perform a Verilator simulation and provide additional exercises where
you will modify and experiment with the controller implementation.

RVfpga v2.2 © 2022 <94>
Imagination Technologies

RVfpga Lab 7: Overview of 7-Segment Displays

A

B

C

F

E

G

D

• 7 LED segments: A-G

• Light up segments to
create digit
– 1: segments B and C

– 2: segments A, B, D, E, G

– 3: segments A, B, C, D, G

– etc.

RVfpga v2.2 © 2022 <95>
Imagination Technologies

RVfpga Lab 7: 7-Segment Displays on Nexys A7

figure of board from https://reference.digilentinc.com/

• 8-digit 7-segment displays
• Memory-mapped access:

– Enables_Reg: 0x80001038
– Digits_Reg: 0x8000103C

• Enables are low-asserted
• Example: Display 71 on two right-most

digits:
– Enables_Reg = 0xFC (0b11111100: enable

two right-most digits)
– Digits_Reg = 0x71
– Assembly: li t0, 0x80001038

li t1, 0xFC
li t2, 0x71
sw t1, 0(t0)
sw t2, 4(t0)

RVfpga v2.2 © 2022 <96>
Imagination Technologies

RVfpga Lab 7: 7-Segment Display Hardware
8-Digit 7-Segment Displays• Each digit is common anode (anodes of

that digit’s LEDs are tied together)
– Anode signals act as enables (AN0 - AN7)

– Drive low to enable digit (AN0 - AN7 go
through an inverter (not shown) before being
fed to LED)

• Each segment for all digits is tied
together
– Segments are driven low to turn them on

– Time-multiplexing of AN0 - AN7 signals
allows unique values to be displayed on each
digit

– A digit’s AN signal (AN0 - AN7) must go low
every 1-16 ms to be bright

RVfpga v2.2 © 2022 <97>
Imagination Technologies

RVfpga Lab 7: Fundamental Exercises - Sample
• Exercise 1. Write a RISC-V assembly program and a C program that

shows the value of the switches on the four right-most digits of the 7-
segment displays.

• Exercise 2. Write a RISC-V assembly program and a C program that
shows the string “0-1-2-3-4-5-6-7-8” moving from the right to the left
of the 8-digit 7-segment displays.

RVfpga v2.2 © 2022 <98>
Imagination Technologies

RVfpga Lab 7: 7-Seg. Disp. Low-Level Implementation
• Three parts:

– Connection to 7-segment displays

– 7-segment displays decoder in System Control (Sys-Con) module

– SweRV EH1 bus interface

RVfpga v2.2 © 2022 <99>
Imagination Technologies

RVfpga Lab 7: External connection
File rvfpganexys.xdc: Defines the connection of CA-CG (called Digits_Bits[i]
in the SoC) and AN[i] with the on-board 7-segment displays

RVfpga v2.2 © 2022 <100>
Imagination Technologies

RVfpga Lab 7: Integration into SweRVolfX
• File swervolf_syscon.v: 7-segment displays controller instance:

– Inputs: i_clk (clock), reset (i_rst)

– Memory-mapped inputs: Enables_Reg (which digits on board are enabled),
Digits_Reg (number to display)

– Outputs: AN (which digit on board to drive), Digits_Bits (which segments to
assert).

RVfpga v2.2 © 2022 <101>
Imagination Technologies

RVfpga Lab 7: Advanced Exercises - Sample

• Exercise 3. Modify the controller described in this lab so that the 8-
digit 7-segment displays can show any combination of ON/OFF
LEDs.

• Exercise 4. Use the new controller for printing the following on the 8-
digit 7-segment displays: “I SAY HI”. As usual, implement both RISC-
V assembly and C versions of the program.

RVfpga v2.2 © 2022 <102>
Imagination Technologies

RVfpga v2.2 © 2022 <103>
Imagination Technologies

RVfpga Lab 8: Timers

• Generate precise timing: Timers increment or decrement a counter at
a fixed frequency, which is often configurable, and then interrupt the
processor when the counter reaches zero or a predefined value.

• More sophisticated timers can also perform other functions, such as
generating pulse-width modulated (PWM) waveforms to control the
speed of a motor or the brightness of a light.

• In this lab, we first describe the high-level specification of the timer
included in the RVfpga System and then explain its low-level
implementation. Both fundamental and advanced exercises are
proposed that show how to both use and modify a timer.

RVfpga v2.2 © 2022 <104>
Imagination Technologies

RVfpga Lab 8: Timer (PTC) Module
• The Timer module used is from OpenCores: https://opencores.org/projects/ptc

• Timer module (also called the PTC module) is used for:
– Timer/Counter: counts clock edges (or edges of another signal, also called events)

– Pulse-width modulation (PWM):

• Vary high duration (called duty cycle) of an output

• Used to approximate an analog voltage digitally

• PWM example: 33% duty cycle (signal is high 1/3rd of the time). If high level is 3 V, analog
voltage (average voltage of signal) is 3 V * 0.33 = 1 V

Period

Duty Cycle =
33%

0 V

3 V

Average = 1 V

RVfpga v2.2 © 2022 <105>
Imagination Technologies

RVfpga Lab 8: Timer (PTC) Registers
Name Address Width Access Description

RPTC_CNTR 0x80001200 1-32 R/W Main PTC counter
RPTC_HRC 0x80001204 1-32 R/W PTC HI Reference/Capture register
RPTC_LRC 0x80001208 1-32 R/W PTC LO Reference/Capture register

RPTC_CTRL 0x8000120C 9 R/W Control register

• RPTC_CNTR: Counter (value of the counter)

• RPTC_HRC: High reference capture – indicates the number of cycles (after reset)
when the output should go high in PWM mode

• RPTC_LRC: Low reference capture – indicates the number of cycles (after reset)
when the count is complete in counter/timer mode; indicates the number of clock
cycles (after reset) when the output should go low in PWM mode.

• RPTC_CTRL: Control register

RVfpga v2.2 © 2022 <106>
Imagination Technologies

RVfpga Lab 8: Timer Example

• Set RPTC_LRC to number of cycles to count

• Set control bits (RPTC_CTRL) to configure timer:
– Reset counter and clear interrupts: RPTC_CTRL = 0xC0 (0b011000000): CNTRRST (bit

7) = 1: counter is reset (RPTC_CNTR = 0); INT (bit 6) = 1: interrupt request cleared.

– Enable counter and interrupts: RPTC_CTRL = 0x21 (0b000100001): EN (bit 0) = 1:
counter is enabled, so RPTC_CNTR increments; INTE (bit 5) = 1: PTC asserts an interrupt
when RPTC_CNTR == RPTC_LRC.

• Program reads interrupt bit in control register (INT is bit 6 of
RPTC_CTRL) until it is 1 (indicating that RPTC_CNTR == RPTC_LRC).

• This algorithm does not use interrupts, but it does read the interrupt bit
(INT, bit 6 of RPTC_CTRL) to determine when the correct number of clock
cycles have been reached. We show how to use interrupts in Lab 9.

RVfpga v2.2 © 2022 <107>
Imagination Technologies

• Exercise 1. Write a program that displays an ascending count on the
8-digit 7-segment displays. The value should change about once per
second and, for creating this delay, you must use the timer module.
– First, write the program in RISC-V assembly language and run it on the Nexys

A7 board.

– Then, perform a simulation in Verilator with the same program.

– Now write the program in C and run it on the Nexys A7 board.

– Simulate your C program in Verilator, as in part (b) for the RISC-V assembly
program.

RVfpga Lab 8: Fundamental Exercises - Sample

RVfpga v2.2 © 2022 <108>
Imagination Technologies

RVfpga Lab 8: Timer Low-Level Implementation
• Divided in 2 main parts

– (No external connection)

– Integration of the Timer module into SweRVolfX (left shaded region)

– Connection between the Timer and the SweRV EH1 (right shaded region)

RVfpga v2.2 © 2022 <109>
Imagination Technologies

RVfpga Lab 8: Integration into SweRVolfX
File swervolf_core.v: PTC module instantiation

RVfpga v2.2 © 2022 <110>
Imagination Technologies

• Exercise 2. Modify RVfpgaNexys for connecting the PWM output
signal of the timer (pwm_pad_o) to one of the two tri-colour LEDs
available on the Nexys A7 board.

• Exercise 3. Implement a program that uses the new peripheral for
controlling the tri-colour LED, using the value provided by the 16
switches.

RVfpga Lab 8: Advanced Exercises - Sample

RVfpga v2.2 © 2022 <111>
Imagination Technologies

Interrupt-Driven I/O

RVfpga v2.2 © 2022 <112>
Imagination Technologies

RVfpga Lab 9: Interrupt-Driven I/O

• Interrupt-driven I/O vs. Programmed I/O

• RVfpga System’s Interrupt Controller

• How to configure interrupts using Western Digital’s Platform
Support and Board Support Packages (PSP and BSP)

• Interrupt Example and Exercises

RVfpga v2.2 © 2022 <113>
Imagination Technologies

RVfpga Lab 9: Interrupt-Driven I/O Introduction

• Programmed I/O:
– Program continuously polls a value (i.e., switches)

– Processor busy doing this – instead of other work

• Interrupt-driven I/O:
– An event (i.e., a switch asserting) makes processor jump to an

interrupt service routine (ISR, also called an interrupt handler),
which handles the event and then returns to the program.

– The processor does other work between events.

RVfpga v2.2 © 2022 <114>
Imagination Technologies

RVfpga Lab 9: Handling Interrupts

• Interrupts may be caused by hardware or software

• In this lab, we focus on hardware interrupts

• The SweRV EH1 core handles interrupts after RISC-V’s PLIC
(Platform-level interrupt controller) specification. It is referred
to as the Programmable Interrupt Controller (PIC). It has:
– 255 interrupt sources

– 15 priority levels

RVfpga v2.2 © 2022 <115>
Imagination Technologies

RVfpga Lab 9: Interrupt Hardware

RVfpga v2.2 © 2022 <116>
Imagination Technologies

RVfpga Lab 9: WD’s PSP/BSP functions for handling interrupts

RVfpga v2.2 © 2022 <117>
Imagination Technologies

Use interrupts to read value of Switch[0] – only on rising edge (01 transition)

• Steps for configuring the system using PSP/BSP functions:
1. Initialize the interrupt system

2. Initialize external interrupt line IRQ4 and connect with GPIO

3. Initialize the GPIO registers for using interrupts:
• RGPIO_INTE = 0x10000 (enable interrupt for Switch[0])

• RGPIO_PTRIG = 0x10000 (interrupt triggered on rising-edge of Switch[0])

• RGPIO_INTS = 0x0 (clears all interrupts)

• RGPIO_CTRL = 0x1 (enables GPIO interrupts)

4. Enable global interrupts

• GPIO_ISR (see next slide): Invoked when an interrupt is triggered at the GPIO
1. The current state of the LEDs is read

2. The LEDs are inverted and masked

3. The LEDs are written with the new value

4. The GPIO interrupt is cleared

5. The IRQ4 external interrupt is cleared

• For full code, see: [RVfpgaPath]/RVfpga/Labs/Lab9/LED-Switch_7SegDispl_Interrupts_C-Lang.c

RVfpga Lab 9: Interrupt Example using WD’s PSP/BSP

RVfpga v2.2 © 2022 <118>
Imagination Technologies

RVfpga Lab 9: Example ISR to invert right-most LED when switch 01

void GPIO_ISR(void) {
unsigned int i;

/* Invert LED value */
i = M_PSP_READ_REGISTER_32(GPIO_LEDs); // RGPIO_OUT
i = !i; // Invert the LEDs
i = i & 0x1; // Only change right-most LED

M_PSP_WRITE_REGISTER_32(GPIO_LEDs, i) // RGPIO_OUT

/* Clear GPIO interrupt */
M_PSP_WRITE_REGISTER_32(RGPIO_INTS, 0x0); // RGPIO_INTS

/* Clear this interrupt (IRQ4) */
bspClearExtInterrupt(4);

}

RVfpga v2.2 © 2022 <119>
Imagination Technologies

RVfpga Lab 9: Exercises - Sample

• Exercise 1. Modify the LED-Switch_7SegDispl_Interrupts_C-Lang program to
include a second interrupt source, in this case generated by the timer.

• Exercise 2. Modify RVfpgaNexys to include a third interrupt source coming from
the second GPIO that you designed in Lab 6 for controlling the on-board
pushbuttons (GPIO2).

• Exercise 3. Use the extended RVfpgaNexys version that you designed in the
previous exercise to implement a C program that displays an increasingly
incrementing binary count on the LEDs, starting at 1.
– Create a delay with the timer, using interrupts, for waiting between displaying each

incremented value so that the values are viewable by the human eye.

– Read BTNC and use it to change the speed of the count.

– Read Switch[0] and use it to restart the count whenever it is pressed.

RVfpga v2.2 © 2022 <120>
Imagination Technologies

RVfpga v2.2 © 2022 <121>
Imagination Technologies

RVfpga Lab 10: Serial Buses
• We first describe how serial buses work.

– Serial buses send one bit at a time.

– Parallel buses send multiple bits at once

• Common serial buses
– UART (universal asynchronous receiver/transmitter)

– SPI (serial peripheral interface)

– I2C (inter-integrated circuit protocol)

• We then focus on the SPI accelerometer available on the Nexys A7 board:
– Analysis of the high-level specification + fundamental exercises

– Analysis of the low-level implementation + advanced exercises

• More advanced exercises with UART and I2C

RVfpga v2.2 © 2022 <122>
Imagination Technologies

RVfpga Lab 10: Serial Buses – SPI

• Controller: sends clock, sends & receives data
• Peripheral: receives clock, sends & receives data
• Signals:

– SDO: Serial Data Out
– SDI: Serial Data In
– SCK: SPI clock
– CSbar: low-asserted chip select

SDO

SDI

SDI

SDO

SPI Controller SPI Peripheral

SCK SCK

CS CS

RVfpga v2.2 © 2022 <123>
Imagination Technologies

RVfpga Lab 10: Serial Buses – SPI

SDO

SDI

SDI

SDO

SPI Controller SPI Peripheral

SCK SCK

CS CS

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7SDI/SDO

SCK

• SCK idles
• When controller sends an edge on SCK, both the controller and peripheral sample

and send data. Data is changed (sent) on falling edge and sampled on rising edge
(although this is configurable)

RVfpga v2.2 © 2022 <124>
Imagination Technologies

RVfpga Lab 10: RVfpga System’s SPI Module

• RVfpga System’s SPI module is from OpenCores

https://opencores.org/projects/simple_spi

• 4-entry read and write buffers

• SPI Registers:
Name Address Width Access Description
SPCR 0x80001100 8 R/W Control register
SPSR 0x80001108 8 R/W Status register
SPDR 0x80001110 8 R/W Data register
SPER 0x80001118 8 R/W Extensions register
SPCS 0x80001120 8 R/W CS register

RVfpga v2.2 © 2022 <125>
Imagination Technologies

RVfpga Lab 10: SPI ADXL362 Accelerometer
• The Nexys A7 board includes an SPI Analog Devices ADXL362

accelerometer. You can find the complete information at:
https://www.analog.com/media/en/technical-documentation/data-
sheets/ADXL362.pdf

F14

E15

SDI

SDO

Artix-7 FPGA ADXL 362

F15 SCK

D15 CS

RVfpga v2.2 © 2022 <126>
Imagination Technologies

• Exercise 1. Create a RISC-V assembly program that reads the eight
most significant bits of the X-axis, Y-axis, and Z-axis acceleration
data and then displays those values on the 8-digit 7-Segment
Displays.

RVfpga Lab 10: Fundamental Exercises - Sample

RVfpga v2.2 © 2022 <127>
Imagination Technologies

RVfpga Lab 10: Accel. Low-Level Implementation
• Divided in 3 main parts

– RVfpgaNexys external connection to the on-board accelerometer (left shaded
region)

– Integration of the new SPI module into SweRVolfX (middle shaded region)

– Connection between the accelerometer and the SweRV EH1 (right shaded
region)

RVfpga v2.2 © 2022 <128>
Imagination Technologies

RVfpga Lab 10: External Connection
File rvfpganexys.xdc: Defines the connection of the SPI signals used in the
SoC with the corresponding on-board accelerometer pins

RVfpga v2.2 © 2022 <129>
Imagination Technologies

RVfpga Lab 10: Integration into SweRVolfX
File swervolf_core.v: Tri-state buffers and GPIO module instantiation

RVfpga v2.2 © 2022 <130>
Imagination Technologies

• Exercise 2. The Universal Asynchronous Receiver-Transmitter (UART) is an
asynchronous serial communication protocol. First, analyse the low-level
implementation of this module in Rvfpga. Then, create a RISC-V assembly
program that prints a message to the PlatformIO shell through the serial port.

• Exercise 3. Implement the three following functions in the C language:
– char uart_getchar(void): This function waits for the keyboard to send a character through the

UART to the Nexys A7 board and then returns this character as an output parameter.

– int uart_putchar(char c): This function receives a character as an input argument and displays
it on the serial console through the UART.

– int SevSegDispl(char c): This function receives a character as an input argument and displays
it on the right-most digit of the 7-segment displays, shifting the remaining digits one position to
the left (the left-most digit is lost).

RVfpga Lab 10: Advanced Exercises - Sample

RVfpga v2.2 © 2022 <131>
Imagination Technologies

Labs 11-20
Understanding the Core and

Memory Systems

RVfpga v2.2 © 2022 <132>
Imagination Technologies

RVfpga Labs 11-20 Overview

• Labs 11–20 dive down to the microarchitectural level and
analyse how the SweRV EH1 processor and cache/memory
hierarchy work.

• Each lab is divided into two parts:
– Theoretical explanation of the concepts

– Illustration of the concepts using figures and a Verilator simulation of an
example program to illustrate the concept.

We also provide exercises to deepen understanding of and gain
experience with the described concepts.

RVfpga v2.2 © 2022 <133>
Imagination Technologies

RVfpga SweRVref

• In addition to these 10 labs, which we describe next, the
RVfpga_SweRVref document provides extra instructions on the
following topics:
– Section 1: Sigasi Studio

– Section 2: Configuration of the SweRV EH1 processor

– Section 3: RVfpga System hierarchy of modules and their most relevant
signals

– Section 4: Main structures/types for grouping control bits

– Section 5: RISC-V compressed instructions

– Section 6: Real Benchmarks

RVfpga v2.2 © 2022 <134>
Imagination Technologies

Lab 11:
SweRV EH1 Configuration,

Organization, and
Performance Monitoring

RVfpga v2.2 © 2022 <135>
Imagination Technologies

RVfpga Lab 11: The SweRV EH1 processor

• In this lab we begin to analyse the SweRV EH1 processor.
Specifically:
– We first describe the Verilog RTL organization and details of each

pipeline stage.

– We then show how to use the SweRV EH1 performance counters to
analyse processor performance.

RVfpga v2.2 © 2022 <136>
Imagination Technologies

RVfpga Lab 11: SweRV EH1 Verilog Modules

lsu_dccm_mem

ifu_ic_mem

ifu_iccm_mem

ifu_ifc_ctl

swerv_wrapper_dmi

mem

ifu

ifu_mem_ctl

ifu_bp_ctl

ifu_aln_ctl

ifu_compress_ctl

swerv

dec_gpr_ctl

dec_ib_ctl

dec_decode_ctl

dec_dec_ctl

dec

exu_alu_ctl

exu_mul_ctl

exu

exu_div_ctl

lsu_lsc_ctl

lsu

lsu_stbuf

lsu_dccm_ctl

lsu_bus_intf

lsu_bus_buffer

dbg lib pic_ctrl dma_ctrl

• swerv module: CPU

• mem module (memory hierarchy): instruction/data closely-coupled memories
(ICCM, DCCM) and instruction cache (I$)

RVfpga v2.2 © 2022 <137>
Imagination Technologies

RVfpga Lab 11: The SweRV EH1 Pipeline

SweRV EH1 is a 32-bit 2-
way superscalar 9-stage
pipelined in-order processor.

RVfpga v2.2 © 2022 <138>
Imagination Technologies

• First three stages: two Fetch stages (FC1 and FC2) and an Align stage

RVfpga Lab 11: Fetch (FC1 and FC2) and Align Stages

RVfpga v2.2 © 2022 <139>
Imagination Technologies

• In RVfpga, the Instruction Memory consists of:
– 16 KiB Instruction Cache

– 128 MiB DDR External Memory

• Fetch stages: read instructions from the Instruction Memory
– FC1: Computes the instruction address (ifc_fetch_addr_f1)

– FC2: Reads instruction from the I$ or the DDR External Memory. (The I$ only caches memory
within the Main Memory address range.)

• The Align stage performs two main tasks:
– Provide two 32-bit instructions per cycle to the Decode stage: Extracts two instructions per

cycle from the 128-bit bundles provided by the Instruction Memory and assigns them to each of
the two ways available in SweRV EH1.

– Uncompress instructions: The Align stage uncompresses 16-bit instructions into 32-bit
instructions.

RVfpga Lab 11: Fetch (FC1 and FC2) and Align Stages

RVfpga v2.2 © 2022 <140>
Imagination Technologies

RVfpga Lab 11: Decode, EX1/2/3, Commit and WB Stages

• The figure on the next slide shows the last six stages of the pipeline:
the Decode stage, three Execution stages, the Commit stage, and
the Writeback (WB) stage.

RVfpga v2.2 © 2022 <141>
Imagination Technologies

RVfpga v2.2 © 2022 <142>
Imagination Technologies

• The Decode stage performs two main tasks:
– Decode the instructions and generate the control signals (performed by the

Control Unit)

– Distribute the instructions and operands to the appropriate pipes:
• Pipes:

– Two Integer pipes: I0 and I1

– Multiply pipe

– Load/Store pipe (L/S)

– Out-of-pipe 34-cycle Divider

• Several multiplexers select among possible operands, which may come from:

– Bypass logic

– Immediate

– Register File

RVfpga Lab 11: Decode Stage

RVfpga v2.2 © 2022 <143>
Imagination Technologies

RVfpga Lab 11: Execution stages – 3 Pipes and a Divider
The SweRV EH1 processor has the following pipes:

• I0/I1 Pipes:
– Two integer pipes which have three stages (EX1, EX2, and EX3).

– EX1 performs the ALU operation.

• Multiply Pipe: The multiply pipe contains a 3-cycle integer multiplier using three
stages (M1, M2, and M3).

• Load/Store (L/S) Pipe: The L/S pipe executes both load and store instructions.
– DC1: an adder calculates the address by adding the register base address and the offset

• Divider: The divider is a non-pipelined 34-cycle integer divider.

At the end of the third execution stage (EX3/DC3/M3), the result of the instructions is
selected from the proper pipe (I0/I1, MUL, or L/S) using two 3:1 multiplexers, one for
each way. The Divider has its own path to the Register File.

RVfpga v2.2 © 2022 <144>
Imagination Technologies

• Commit Stage: Selects the result to write back to the register file.

• Writeback Stage:

– Writes the results to the Register File using write ports 0 and 1.

– The Control Pipeline Registers supply the register identifiers and
the enable signals (which were generated in the Decode stage).

RVfpga Lab 11: Commit and Writeback Stages

RVfpga v2.2 © 2022 <145>
Imagination Technologies

RVfpga Lab 11: Example Program – Verilator Simulation
li x28, 0x1

li x29, 0x2

li x30, 0x4

li x31, 0x1

REPEAT:

mul x28, x29, x29 # x28 = 2*2 = 4 (later iterations: 3*3=9, ...)

add x30, x30, x31 # x30 = 4+1 = 5 (later iterations: 5+1=6, ...)

INSERT_NOPS_10

add x29, x29, 1 # x29 = x29 + 1

INSERT_NOPS_10

beq zero, zero, REPEAT # Repeat the loop

RVfpga v2.2 © 2022 <146>
Imagination Technologies

RVfpga Lab 11: Simulation – FC1, FC2, Align Stages

RVfpga v2.2 © 2022 <147>
Imagination Technologies

RVfpga Lab 11: Analysis of Simulation

• FC1: Computes the address of the mul instruction:
– ifc_fetch_addr_f1_ext = 0x000000F0

• FC2: Extracts two instructions (shown in red) from the Instruction
Memory’s 128-bit bundle:
– ifu_fetch_data = 0x000000130000001301FF0F3303DE8E33

• Align: The two instructions are extracted and distributed to the two
ways of SweRV EH1.
– Way 0: ifu_i0_instr = 0x03DE8E33 (mul instruction)

– Way 1: ifu_i1_instr = 0x01FF0F33 (add instruction)

RVfpga v2.2 © 2022 <148>
Imagination Technologies

Simulation:
- Decode
- EX1/2/3
- Commit
- Writeback

RVfpga v2.2 © 2022 <149>
Imagination Technologies

RVfpga Lab 11: Analysis of Simulation

• Decode: read operands from Register File and send to Mult and I1
pipes

• EX1/2/3 and Commit: Compute result (addition and multiplication)
– i0_result_e4 = exu_mul_result_e3 = 0x6A * 0x6A = 0x2BE4

– i1_result_e4 = i1_result_e3 = 0x6C + 0x01 = 0x6D

• Writeback: Write results back to Register File
– waddr0 = 0x1C wd0 = 0x2BE4

– waddr1 = 0x1E wd1 = 0x6D

RVfpga v2.2 © 2022 <150>
Imagination Technologies

RVfpga Lab 11: Hardware Counters

• Hardware counters are a set of special-purpose registers included in
most current processors to record the metrics shown in the table.

RVfpga v2.2 © 2022 <151>
Imagination Technologies

RVfpga Lab 11: Use of the Performance Counters by means of Western Digital’s PSP

#if defined(D_NEXYS_A7)

#include <bsp_printf.h>

#include <bsp_mem_map.h>

#include <bsp_version.h>

#else

PRE_COMPILED_MSG("no platform was defined")

#endif

#include <psp_api.h>

extern void Test_Assembly(void);

int main(void)

{

int cyc_beg, cyc_end;

int instr_beg, instr_end;

int BrCom_beg, BrCom_end;

int BrMis_beg, BrMis_end;

/* Initialize Uart */

uartInit();

pspEnableAllPerformanceMonitor(1);

pspPerformanceCounterSet(D_PSP_COUNTER0, E_CYCLES_CLOCKS_ACTIVE);

pspPerformanceCounterSet(D_PSP_COUNTER1, E_INSTR_COMMITTED_ALL);

pspPerformanceCounterSet(D_PSP_COUNTER2, E_BRANCHES_COMMITTED);

pspPerformanceCounterSet(D_PSP_COUNTER3, E_BRANCHES_MISPREDICTED);

cyc_beg = pspPerformanceCounterGet(D_PSP_COUNTER0);

instr_beg = pspPerformanceCounterGet(D_PSP_COUNTER1);

BrCom_beg = pspPerformanceCounterGet(D_PSP_COUNTER2);

BrMis_beg = pspPerformanceCounterGet(D_PSP_COUNTER3);

Test_Assembly();

cyc_end = pspPerformanceCounterGet(D_PSP_COUNTER0);

instr_end = pspPerformanceCounterGet(D_PSP_COUNTER1);

BrCom_end = pspPerformanceCounterGet(D_PSP_COUNTER2);

BrMis_end = pspPerformanceCounterGet(D_PSP_COUNTER3);

printfNexys("Cycles = %d", cyc_end-cyc_beg);

printfNexys("Instructions = %d", instr_end-instr_beg);

printfNexys("BrCom = %d", BrCom_end-BrCom_beg);

printfNexys("BrMis = %d", BrMis_end-BrMis_beg);

while(1);

}

RVfpga v2.2 © 2022 <152>
Imagination Technologies

RVfpga Lab 11: Tasks - Sample

• TASK. The Register File is implemented in module dec_gpr_ctl
and it is instantiated in module dec. Analyse both the Verilog code
and the simulation of the main signals of module dec_gpr_ctl in
order to understand how it works.

• TASK. Execute the program from Figure 13 on the Nexys A7 board
as explained in the GSG. Measure other events in the Hardware
Counters for this program.

RVfpga v2.2 © 2022 <153>
Imagination Technologies

Lab 12:
Arithmetic/Logic

Instructions:
The add Instruction

RVfpga v2.2 © 2022 <154>
Imagination Technologies

RVfpga Lab 12: Introduction

• This lab analyses the flow of arithmetic and logical instructions
through the SweRV EH1 pipeline, focusing on the add
instruction.

• Two sections:
– Basic analysis of an add instruction

– Advanced analysis of an add instruction

• The two analyses use the same example program, shown on
the next slide.

RVfpga v2.2 © 2022 <155>
Imagination Technologies

RVfpga Lab 12: Example program
.globl main

main:

li t3, 0x4 # t3 = 4

li t4, 0x1 # t4 = 1

REPEAT:

INSERT_NOPS_10

add t3, t3, t4 # t3 = t3 + t4

INSERT_NOPS_10

beq zero, zero, REPEAT # Repeat the loop

.end

RVfpga v2.2 © 2022 <156>
Imagination Technologies

RVfpga Lab 12: Basic Analysis – Simulation

RVfpga v2.2 © 2022 <157>
Imagination Technologies

RVfpga Lab 12: Basic Analysis – SweRV EH1 pipeline
Decode

add t3, t3, t4
Instruction Register

(signal
dec_i0_instr_d)

raddr0

raddr1

CONTROL
UNIT

(dec_decode_ctl)

Pipeline
Registers

a

b

ALU
(exu_alu_ctl)

a_ff

b_ff

out

EX1 EX2 EX3 Commit Writeback

waddr0

wd0

28 (t3)

29 (t4)

7

1

8

8

+

REGISTER
FILE

(dec_gpr_ctl)

rd0

rd1

Pipeline
Registers

28 (t3)

1 wen0

RVfpga v2.2 © 2022 <158>
Imagination Technologies

• Cycle i: Decode: Signal dec_i0_instr_d contains the 32-bit
machine instruction 0x01DE0E33. In RISC-V, the fields for the add
instruction are:00 | rs1 | 000 | rd | 0110011

During this stage, control signals are generated and the Register
File is read. Moreover, the operands are propagated to the I0 Pipe.

• Cycle i+1: EX1: The add instruction is executed. The result of the
addition is provided as an output of the ALU in signal out = 8.

• Cycle i+5: Writeback: The result of the addition is written back to
the Register File: wd0 = 0x8, wen0 = 1 and waddr0 = 0x28

RVfpga Lab 12: Basic Analysis – Simulation

RVfpga v2.2 © 2022 <159>
Imagination Technologies

• Figure on next page shows a detailed diagram of add instruction
traversing the I0 pipe.

RVfpga Lab 12: Advanced Analysis

RVfpga v2.2 © 2022 <160>
Imagination Technologies

dec_i0_instr_d [31:0]

Decode

Control Unit
(dec_decode_

ctl)

i0_ap [19:0]

i0r [14:0]

dd [66:0]

raddr0 [4:0]

rden0

dec_i0_rs1_d [4:0]

dec_i0_rs1_en_d

raddr1 [4:0]

rden1

dec_i0_rs2_d [4:0]

dec_i0_rs2_en_d

EX1

rd0 [31:0]

rd1 [31:0]

Pipeline
Registers

for
Control
Signals

out [31:0]

aff

bff

ALU
(exu_alu_ctl)gpr_i0_rs1_d

gpr_i0_rs2_d

a
=

 i0
_r

s1
_f

in
a

l_
d

b
=

 i0
_r

s2
_d

aff

bff

i0_ap_e1 [19:0]

i0_result_e1 [31:0] =
exu_i0_result_e1 [31:0]

i0e2res
ultff

i0
_r

es
u

lt_
e2

 [
31

:0
]

i0e3res
ultff

EX2

i0
_

re
su

lt_
e

3
[3

1
:0

]

i0e4res
ultff

EX3

i0
_r

e
su

lt_
e3

_
fin

al
 [3

1:
0

]

3-1
MUX

i0
_r

es
u

lt_
e4

 [
31

:0
]

i0wbre
sultff

Commit

i0
_r

es
ul

t_
e

4_
fin

al
 [3

1
:0

]

i0_result_wb_raw [31:0]
dec_i0_wdata_wb[31:0] = i0_result_wb

dec_i0_waddr_wb[4:0] = wbd.i0rd[4:0]

dec_i0_wen_wb

waddr0

wen0

wd0

Register File
(dec_gpr_ctl)

Writeback

Pipeline
Registers

for
Control
Signals

Pipeline
Registers

for
Control
Signals

Pipeline
Registers

for
Control
Signals

Pipeline
Registers

for
Control
Signals

3-1
MUX

3-1
MUX

3-1
MUX

2-1
MUX

e3d

ap

Detailed diagram of add
traversing the I0 pipe

RVfpga v2.2 © 2022 <161>
Imagination Technologies

RVfpga Lab 12: Tasks and Exercises - Sample
• TASK. In the example from Figure 2, replace the add instruction with a non A-L instruction (such

as a mul instruction). Verify that the i0_ap signal has all its fields equal to 0 and that this makes
the I0 ALU not work.

• TASK. Perform a simulation of a sub instruction similar to the one from Figure 7.

• TASK. Analyse the Verilog implementation of the adder/subtractor implemented in module
exu_alu_ctl.

• TASK. In the Verilog code, analyse how signals wen0 and waddr0 are generated in the Decode
stage and propagated to the Writeback stage.

• Exercises 1, 3, 4, 5. Perform a similar analysis to the one presented in this lab for other
instructions such as: and, or, xor , srl, sra, sll, slt, sltu, addi, andi, ori, xori,
srli, srai, slli, slti, and sltui.

• Exercises 2, 6, 7. Exercises based on different exercises the two main reference books:
– “Computer Organization and Design – RISC-V Edition”, by Patterson & Hennessy.

– “Digital Design and Computer Architecture: RISC-V Edition” by S. Harris and D. Harris.

RVfpga v2.2 © 2022 <162>
Imagination Technologies

Lab 13:
Memory Instructions:
lw and sw Instructions

RVfpga v2.2 © 2022 <163>
Imagination Technologies

RVfpga Lab 13: Introduction
• Lab 13 analyses memory reads and writes.

• Three parts:
– Low-latency Loads: Examine Load/Store pipe when reading low-

latency DCCM (does not stall the processor).

– Low-latency Stores: Examine stores to the DCCM.

– High-latency loads and stores: Repeat previous analyses when
reading/writing the DDR main memory available on the Nexys A7
board.

RVfpga v2.2 © 2022 <164>
Imagination Technologies

.globl main

.section .midccm

A: .space 8

.text

main:

Register t3 = x28 (register 28)

la t0, A # t0 = addr(A)

li t1, 0x2 # t1 = 2

sw t1, (t0) # A[0] = 2

add t1, t1, 6 # t1 = 8

sw t1, 4(t0) # A[1] = 8

INSERT_NOPS_9

REPEAT:

INSERT_NOPS_1

lw t1, (t0)

INSERT_NOPS_9

INSERT_NOPS_4

lw t1, 4(t0)

INSERT_NOPS_10

INSERT_NOPS_4

beq zero, zero, REPEAT # Repeat the loop

.end

RVfpga Lab 13: Loads – Example Program

RVfpga v2.2 © 2022 <165>
Imagination Technologies

RVfpga Lab 13: Low-latency loads – Simulation

RVfpga v2.2 © 2022 <166>
Imagination Technologies

RVfpga Lab 13: Low-latency Loads – SweRV EH1 pipeline

Decode

lw t1, 4(t0)
Instruction Register
(dec_i0_instr_d)

raddr0

CONTROL
UNIT

Pipeline
Registers

Adder

offset_dc1

rs1_dc1

full_addr_dc1

DC1 DC2 DC3 Commit Writeback

waddr0

wd0

5 (t0)

4

0xF0040000

6 (t1)

8

REGISTER
FILE

rd0

Pipeline
Registers

0xF0040004

dccm_data_lo_dc2

DCCM

8 8 8 8

lsu_offset_d

4

dccm_rden

ls
u

_
rs

1_
d

Address Check
(lsu_addrcheck)

i0
_r

e
su

lt_
e

4
_f

in
al

 [3
1:

0]

1

RVfpga v2.2 © 2022 <167>
Imagination Technologies

• Cycle i: Decode: generates control signals and reads operands:
– t0 = 0xF0040000

– Offset = 0x004

• Cycle i+1: DC1:
– Computes address: full_addr_dc1 = 0xF0040004

– Finds memory region of the access  dccm_rden asserts

• Cycle i+2: DC2: the DCCM is read  dccm_data_lo_dc2 = 0x8

• Cycle i+5: Writeback: The value read from memory is written back to the register file:
– wd0 = 0x8

– wen0 = 1

– waddr0 = 0x6

RVfpga Lab 13: Low-latency Loads – Analysis

RVfpga v2.2 © 2022 <168>
Imagination Technologies

• The figure in the next slide shows a detailed diagram of the main
elements that a lw instruction traverses during its execution through
the I0 Pipe.

• This was already illustrated in Lab 11, but the new figure focuses only
on the LSU Pipe and provides details related to the lw instruction.

• The document for Lab 13 provides deep explanations, not included
here, about each stage shown in the figure for the execution of the lw
instruction.

RVfpga Lab 13: Detailed low-latency Load Analysis

RVfpga v2.2 © 2022 <169>
Imagination Technologies

Decode

lsu_p [18:0]

DC1

Pipeline
Registers

for
Control
Signals

rs1
ff

lsadder

offset_dc1[11:0]

rs1_dc1

lsu_addr_dc1 [31:0] =
full_addr_dc1 [31:0]

dccm_data
_lo_ff

DC2 DC3

Pipeline
Registers

for
Control
Signals

Pipeline
Registers

for
Control
Signals

ls
u_

of
fs

et
_

d

DCCM
(lsu_

dccm_
mem)

addr_in_dccm_dc1 dc
cm

_d
a

ta
_l

o_
dc

2
[3

1
:0

]

dc
cm

_
da

ta
_l

o
_d

c3
 [3

1
:0

]

dccm_data
_hi_ff

dc
cm

_d
a

ta
_h

i_
dc

2
[3

1
:0

]

dc
cm

_
da

ta
_

hi
_d

c3
 [

31
:0

]

ALIGN,
MERGE

And
ERROR
CHECK

Pipeline
Registers

for
Control
Signals

addr_external_dc3

LOGIC

addr_external_dc1

Address Check
(lsu_addrcheck)

dccm_rden

..
.

LOGIC

ex
u

_l
su

_r
s1

_d

ls
u

_r
s1

_
d

LOGIC

end_addr_dc1 [31:0] =
full_end_addr_dc1 [31:0]

offse
tff

ls
u_

ld
_d

a
ta

_
co

rr
_d

c3
 [

31
:0

]

bus_read_data_dc3 [31:0]

ls
u_

re
su

lt_
co

rr
_

dc
3

[3
1

:0
]

lsu_resul
t_corr_dc

4ff

3-1
MUX

i0_result_e4_final [31:0]

ls
u_

re
su

lt_
co

rr
_

dc
4

[3
1:

0
]

Commit

2-1
MUX

Adder
LOGIC

de
c_

ls
u_

of
fs

et
_

d

LOGIC

LOG
IC

ex
u

_i
0_

re
su

lt_
e4

 [
31

:0
]

i0
_

re
su

lt_
e4

 [
31

:0
]

e4d.i0secondary
e4d.i0v
e4d.i0load

Detailed diagram of lw
traversing the I0 pipe

RVfpga v2.2 © 2022 <170>
Imagination Technologies

.globl main

.section .midccm

A: .space 4000

.text

main:

la t0, A # t0 = addr(A)

li t1, 0x2 # t1 = 2

li t2, 1000 # t2 = 1000

INSERT_NOPS_2

REPEAT:

sw t1, (t0)

INSERT_NOPS_10

INSERT_NOPS_4

lw t1, (t0)

INSERT_NOPS_10

add t1,t1,t1

add t0,t0,0x04

add t2,t2,-1

INSERT_NOPS_10

bne t2, zero, REPEAT # Repeat the loop

nop

nop

.end

RVfpga Lab 13: Stores – Example program

RVfpga v2.2 © 2022 <171>
Imagination Technologies

RVfpga Lab 13: Low-latency Store – Simulation

RVfpga v2.2 © 2022 <172>
Imagination Technologies

RVfpga Lab 13: Low-latency Store – SweRV EH1 pipeline
DECODE STAGE

sw t1, (t0)

Instruction Register
(dec_i0_instr_d)

raddr0

CONTROL
UNIT

Pipeline
Registers

Adder

offset_dc1

rs1_dc1

full_addr_dc1

DC1

5 (t0)

0

0xF004000C

REGISTER
FILE

rd0

0xF004000C

DCCM

dccm_wr_addr

rd1
raddr1

Pipeline
Registers

exu_lsu_rs2_d6 (t1)
0x00000010

...

dccm_wr_data

dccm_wren

lsu_rs1_d

lsu_offset_d

0

1

RVfpga v2.2 © 2022 <173>
Imagination Technologies

• Cycle i: Decode: generates control signals and reads operands:
– t0 = 0xF004000C

– Offset = 0x000
– t1 = 0x10

• Cycle i+1: DC1:
– Computes address: full_addr_dc1 = 0xF004000C

• Cycle i+6: DCCM write:
– dccm_wr_addr = 0x000C

– dccm_wr_data = 0x4900000010

RVfpga Lab 13: Store basic analysis – Simulation

RVfpga v2.2 © 2022 <174>
Imagination Technologies

• The figure on the next slide shows the main path the lw instruction
traverses to read Main Memory.

• The processor must stall waiting for data from the External Memory.

• The External Memory is accessed through the AXI bus, which provides
the address to the Lite DRAM controller and, some cycles later, aligns
and sends the requested data to the DC3 stage.

• A 2:1 multiplexer in the DC3 stage selects the data coming from the
External Memory, instead of the data coming from the DCCM.

RVfpga Lab 13: Load to the External Memory

RVfpga v2.2 © 2022 <175>
Imagination Technologies

RVfpga v2.2 © 2022 <176>
Imagination Technologies

.globl main

.data

D: .word 3,5,6,8,7,10,12,2,1,4,11,9

.text

main:

li t2, 0x020

csrrs t1, 0x7F9, t2

la t4, D

li t5, 12

li t6, 0x0

INSERT_NOPS_1

REPEAT:

lw t3, (t4)

add t5, t5, -1

INSERT_NOPS_10

add t6, t3, t6

add t4, t4, 4

INSERT_NOPS_9

bne t5, zero, REPEAT # Repeat the loop

INSERT_NOPS_4

.end

RVfpga Lab 13: External Memory – Example program

RVfpga v2.2 © 2022 <177>
Imagination Technologies

RVfpga Lab 13: External Memory – Simulation

RVfpga v2.2 © 2022 <178>
Imagination Technologies

• The Decode stage computes the address, which in the fourth iteration
of the example is 0x00002204.

• Then, the address is sent to the external memory through the AXI bus:
– lsu_axi_arvalid = 1

– lsu_axi_araddr = 0x00002200

• Some cycles later, the external memory returns 64-bit data read
through the AXI Bus
– lsu_axi_rdata = 0x0000000800000006

– lsu_axi_rvalid = 1

• Finally, the requested 32-bit data is extracted from the 64-bit data,
inserted in the main pipeline path, and written into the Register File.

RVfpga Lab 13: External Memory – Analysis

RVfpga v2.2 © 2022 <179>
Imagination Technologies

RVfpga Lab 13: Tasks - Sample
• TASK. Include signal lsu_p in the simulation from Figure 4 and analyse its bits.

• TASK. Analyse in the Verilog code the path followed by the two inputs to the LSU
(exu_lsu_rs1_d and dec_lsu_offset_d) from the sources where they are obtained.
Several modules are involved in this process: dec, exu, lsu.

• TASK. Analyse the implementation of the two adders from the DC1 stage, which are instantiated
in module lsu_lsc_ctl.

• TASK. In the program from Figure 2, try different access sizes (byte, half-word) and unaligned
accesses. To do so, change the offset or the access type from lw to lb (load byte) or lh (load half-
word). For example, if you change the offset from 4 to 3, the load word instruction performs an
unaligned access to the 32-bits starting at address 0xF0040003, as shown in Figure 8. Analyse
the value of signals lsu_addr_dc1[31:0] (or full_addr_dc1[31:0]) and
end_addr_dc1[31:0] under these different situations.

• TASK. Analyse unaligned stores to the DCCM, as well as sub-word stores: store byte (sb) or
store half-word (sh).

• TASK. It can also be interesting to analyse the AXI Bus implementation for accessing the DRAM
Controller, for which you can inspect the lsu_bus_intf module.

RVfpga v2.2 © 2022 <180>
Imagination Technologies

Lab 14:
Structural Hazards

RVfpga v2.2 © 2022 <181>
Imagination Technologies

RVfpga Lab 14: Introduction
• Lab 14 illustrates two structural hazards (which have different

performance-cost trade-offs).
– Unit conflict: two mul instructions arrive at the Decode stage in the same cycle.

The multiplier is pipelined, so the second mul instruction is only delayed by one
cycle. Hardware cost and performance degradation (only one cycle) are low.

– Register File write port conflict: Three instructions arrive at the Writeback
stage in the same cycle, one of them being a non-blocking load executed several
cycles earlier. SweRV EH1 has three (instead of two) write ports. The structural
hazard is avoided (resulting in no performance loss), but it has high hardware
cost due to the extra register file port.

– Note that the div instruction can also cause hazards, which is discussed in the
lab’s Appendix.

RVfpga v2.2 © 2022 <182>
Imagination Technologies

RVfpga Lab 14: 2 mul Instructions – Example Program
.globl Test_Assembly

Test_Assembly:

li t2, 0xFFFF

li t3, 0x3

li t4, 0x2

li t5, 0x2

li t6, 0x2

REPEAT:

beq t2, zero, OUT # Stay in the loop?

INSERT_NOPS_9

mul t0, t3, t4 # t0 = t3 * t4

mul t1, t5, t6 # t1 = t5 * t6

INSERT_NOPS_9

add t2, t2, -1

add t0, zero, zero

add t1, zero, zero

j REPEAT

OUT:

.end

RVfpga v2.2 © 2022 <183>
Imagination Technologies

RVfpga Lab 14: 2 mul Instructions – Simulation

RVfpga v2.2 © 2022 <184>
Imagination Technologies

• Cycle i: The two mul instructions arrive at the Decode stage in the same cycle. A
Structural Hazard prevents the second mul instruction from advancing.

• Cycle i+1: The first mul instruction executes in the first stage of the pipelined
multiplier (M1), while the second mul instruction waits in the Decode stage.

• Cycle i+2: The first mul instruction executes in the second stage of the pipelined
multiplier (M2) and the second mul executes in the first stage (M1).

• Cycle i+3: The first mul instruction obtains the result: out = 0x6.

• Cycle i+4: The second mul instruction obtains the result: out = 0x4.

• Cycle i+6: The register file is updated with the result of the first mul (t0 = 0x6).

• Cycle i+7: The register file is updated with the result of the second mul (t1 =
0x4).

RVfpga Lab 14: 2 mul instructions – Analysis

RVfpga v2.2 © 2022 <185>
Imagination Technologies

RVfpga Lab 14: 2 mul Instructions – Diagram

Cycle i Cycle i+1

mul t0, t3, t4 (03de02b3)

mul t1, t5, t6 (03ff0333)

nop (00000013)

nop (00000013)

D Way0

Dst Way1

A Way0

Ast Way1

Cycle i+2 Cycle i+3

M1

D Way0

D Way1

A Way0

M2

M1

EX1 I1

D Way0

M3

M2

EX2 I1

EX1 I0

Cycle i+4 Cycle i+5 Cycle i+6

C Way0

M3

EX3 I1

EX2 I0

WB Way0

C Way0

C Way1

EX3 I0

WB Way0

WB Way1

C Way0

RVfpga v2.2 © 2022 <186>
Imagination Technologies

REPEAT:

lw x28, (x29)

add x30, x30, -1

add x1, x1, 1

add x31, x31, 1

add x3, x3, 1

add x4, x4, 1

add x5, x5, 1

add x6, x6, 1

add x7, x7, 1

add x8, x8, 1

add x9, x9, 1

add x10, x10, 1

add x11, x11, 1

RVfpga Lab 14: 3 Simultaneous Writes – Example Program
add x12, x12, 1

add x13, x13, 1

add x14, x14, 1

add x15, x15, 1

add x16, x16, 1

add x17, x17, 1

add x18, x18, 1

add x19, x19, 1

add x20, x20, 1

add x21, x21, 1

add x22, x22, 1

add x23, x23, 1

add x24, x24, 1

add x25, x25, 1

add x26, x26, 1

add x27, x27, 1

add x31, x31, 1

add x3, x3, 1

add x4, x4, 1

add x5, x5, 1

add x6, x6, 1

add x25, x25, 1

add x26, x26, 1

add x27, x27, 1

bne x30, zero, REPEAT

RVfpga v2.2 © 2022 <187>
Imagination Technologies

RVfpga v2.2 © 2022 <188>
Imagination Technologies

• Cycle i-17: The lw instruction is at the Decode stage.

• Cycle i-16: The effective memory address is computed and sent to the
External Memory through the AXI Bus. The load instruction waits
several cycles for the External Memory to supply the data.

• Cycle i-5: The two conflicting add instructions are decoded.

• Cycle i: The lw instruction and the two conflicting add instructions
proceed to the Writeback stage, where they write the register file,
which is possible because the Register File has three write ports.

RVfpga Lab 14: 3 Simultaneous Writes – Analysis

RVfpga v2.2 © 2022 <189>
Imagination Technologies

RVfpga Lab 14: 3 Simultaneous Writes – Diagram
Cycle i-17 Cycle i-16

lw x28, (x29) (000eae03)

add x30, x30, -1 (ffff0f13)

add x1, x1, 1 (00108093)

add x2, x2, 1 (00110113)

add x21,x21,1 (001a8a93)

add x22,x22,1 (001b0b13)

add x23,x23,1 (001b8b93)

add x24,x24,1 (001c0c13)

DECO

DECO

ALGN

ALGN

Cycle i-15 Cycle i-14 Cycle i-1 Cycle i

DC1

EX1

DECO

DECO

Ext Mem

EX2

EX1

EX1

Ext Mem

EX3

EX2

EX2

Ext Mem

WB

WB

COMMIT

COMMIT

WB

WB

WB

RVfpga v2.2 © 2022 <190>
Imagination Technologies

RVfpga Lab 14: Tasks and Exercises - Sample
• TASK: Inspect the Verilog code from exu_mul_ctl and see how the multiplication is computed. Remember

that RISC-V includes 4 multiply instructions (mul, mulh, mulhsu and mulhu), and all of them must be
supported by the hardware.

• TASK: Remove the nop instructions included within the loop from Figure 1 and measure different events
(cycles, instructions/multiplies committed, etc.) using the Performance Counters available in SweRV EH1,
as explained in Lab 11. Is the number of cycles as expected after analysing the simulation from Figure 2?
Justify your answer. Now reorder the code within the loop trying to reach the ideal throughput. Justify the
results obtained in the original code and in the reordered one.

• TASK: Modify the program from Figure 1, replacing the two mul instructions for two lw instructions to the
DCCM. You should observe a structural hazard analogous to the one analysed in this section and resolved
in a similar way.

• TASK: Compare the simulation shown in Figure 6 (non-blocking load) with the simulation shown in Figure
14 of Lab 13 (blocking load).

• Exercise 1. Analyse, both in simulation and on the board, the structural hazard that happens between two
consecutive memory instructions (you can analyse any combination of two consecutive memory instructions
such as loads and stores) that arrive at the L/S Pipe in the same cycle.

• Exercise 2. This following exercise is based on exercise 4.22 from the book “Computer Organization and
Design – RISC-V Edition”, by Patterson & Hennessy ([PaHe]).

RVfpga v2.2 © 2022 <191>
Imagination Technologies

Lab 15:
Data Hazards

RVfpga v2.2 © 2022 <192>
Imagination Technologies

RVfpga Lab 15: Introduction
• Lab 15 analyses how RAW data hazards are resolved.

• RAW data hazards are resolved by stalling the processor or
forwarding (also called bypassing) the value from an
instruction executing in a later stage.

• Two scenarios analysed:
– RAW data hazards resolved by forwarding to the Decode stage (using several

new multiplexers)

– RAW data hazards resolved in the Commit stage using two additional ALUs

RVfpga v2.2 © 2022 <193>
Imagination Technologies

RVfpga Lab 15: Solving Data Hazards by Forwarding

• Forwarding to the Decode stage requires adding multiplexers in front of
the Functional Units (ALUs, Multiplier, Adder that computes the Effective
Address in DC1, etc.) to select operands from either the Register File or
from subsequent stages.

• The figure on the next slide shows the forwarded values in the Decode
stage. The Forwarding Logic produces bypass signals for each of the
two source operands in each of the Ways

RVfpga v2.2 © 2022 <194>
Imagination Technologies

raddr0 [4:0]

raddr1 [4:0]

rd0 [31:0]

rd1 [31:0]

Register File
(dec_gpr_ctl)

MUX

b = mul_rs2_d

I0 Pipe

L/S Pipe

Mult Pipe

a = mul_rs1_d

MUX

rd0

rd1

MUX

b = i0_rs2_d

a = i0_rs1_final_d

MUX

rd0

rd1

MUX
exu_lsu_rs1_d

rd0

exu_lsu_rs2_d
MUX

rd1

raddr2 [4:0]

raddr3 [4:0]

rd2 [31:0]

rd3 [31:0]

rd2

rd3

rd3

rd2

I1 Pipe
MUX

MUX

rd2

rd3

MUX

MUX

rd0

rd1

rd2

rd3

dividend

divisor
Divider

Forwarding
Logic

i0_rs1_bypass_data_d[31:0]

i0_rs2_bypass_data_d[31:0]

i1_rs1_bypass_data_d[31:0]

i1_rs2_bypass_data_d[31:0]

From
subsequent

stages

DECODE STAGE EX1/DC1/M1

b = i1_rs2_d

a = i1_rs1_d

i0_rs1_bypass_data_d

i0_rs2_bypass_data_d

i1_rs1_bypass_data_d

i1_rs2_bypass_data_d

i0_rs1_bypass_data_d

i1_rs1_bypass_data_d

i0_rs2_bypass_data_d

i1_rs2_bypass_data_d

i0_rs2_bypass_data_d

i1_rs2_bypass_data_d

i0_rs1_bypass_data_d

i1_rs1_bypass_data_d

i0_rs1_bypass_data_d

i1_rs1_bypass_data_d

i0_rs2_bypass_data_d

i1_rs2_bypass_data_d

RVfpga v2.2 © 2022 <195>
Imagination Technologies

.globl Test_Assembly

.text

Test_Assembly:

li t3, 0x3

li t4, 0x2

li t5, 0x1

li t6, 0xFFFF

REPEAT:

INSERT_NOPS_8

add t4, t4, t5 # t4 = t4 + t5 (t4 = 2 + 1)

add t6, t6, -1

add t3, t3, t4 # t3 = t3 + t4 (t3 = 3 + 3)

INSERT_NOPS_9

li t3, 0x3

li t4, 0x2

li t5, 0x1

bne t6, zero, REPEAT # Repeat the loop

RVfpga Lab 15: Solving Data hazards by Forwarding – Example

00000180 <REPEAT>:
180: 01ee8eb3 add t4,t4,t5
184: ffff8f93 addi t6,t6,-1
188: 01de0e33 add t3,t3,t4
18c: 00300e13 li t3,3
190: 00200e93 li t4,2
194: 00100f13 li t5,1
198: fe0f94e3 bnez t6,180 <REPEAT>

RVfpga v2.2 © 2022 <196>
Imagination Technologies

RVfpga Lab 15: Solving Data Hazards by Forwarding – Diagram

Cycle i-1 Cycle i

...

add t4,t4,t5 (01ee8eb3)

add t6,t6,-1 (ffff8f93)

add t3,t3,t4 (01de0e33)

nop (00000013)

nop (00000013)

nop (00000013)

nop (00000013)

nop (00000013)

...

DECO

DECO

ALGN

ALGN

FC2

FC2

FC1

FC1

Cycle i+1 Cycle i+3

EX1

EX1

DECO

DECO

ALGN

ALGN

FC2

FC2

EX2

EX2

EX1

EX1

DECO

DECO

ALGN

ALGN

EX3

EX3

EX2

EX2

EX1

EX1

DECO

DECO

Cycle i+4 Cycle i+5 Cycle i+6

COMMIT

COMMIT

EX3

EX3

EX2

EX2

EX1

EX1

WB

WB

COMMIT

COMMIT

EX3

EX3

EX2

EX2

WB

WB

COMMIT

COMMIT

EX3

EX3

RVfpga v2.2 © 2022 <197>
Imagination Technologies

RVfpga Lab 15: Solving Data Hazards by Forwarding – Pipeline – Cycle i
DECODE STAGE EX1 STAGE

r0 [31:0]

r1 [31:0]

out [31:0]

aff

bff

ALU
(exu_alu_ctl)

gpr_i0_rs1_d [31:0]

gpr_i0_rs2_d [31:0]

a

b

a_ff

b_ff

i0_result_e1 [31:0]

Register File
(dec_gpr_ctl)

3-1
MUX

3-1
MUX

add t3,t3,t4 (0x01de0e33) add t4,t4,t5 (0x01ee8eb3)

3
2

1

3
3

3

3

Forwarding Logic

i0_rs2_bypass_data_d[31:0]

2

RVfpga v2.2 © 2022 <198>
Imagination Technologies

RVfpga Lab 15: Solving Data Hazards by Forwarding – Simulation

RVfpga v2.2 © 2022 <199>
Imagination Technologies

• Instruction add t4,t4,t5 (0x01ee8eb3):
– Cycle i: This add instruction is in the EX1 stage of the I0 Pipe (i0_inst_e1 = 0x01ee8eb3). It

computes the following addition in the ALU:
• a_ff (2) + b_ff (1) = out (3)

– The result is sent to the Forwarding Logic in the Decode stage.

• Instruction add t3,t3,t4 (0x01de0e33):
– Cycle i: This add instruction is in the Decode stage of Way-0 (dec_i0_instr_d =

0x01de0e33). The Forwarding Logic forwards the result from EX1 (i0_result_e1) to the
Decode stage (i0_rs2_bypass_data_d). Two 3:1 multiplexers produce the operands,
specifically:

• Operand a = 3 (from the Register File)

• Operand b = 3 (from the ALU output in the EX1 stage of the I0 Pipe, through the Forwarding Logic)

– Cycle i+1: This add instruction is in the EX1 stage of the I0 Pipe (i0_inst_e1 =
0x01de0e33). It computes the correct addition in the ALU:

• a_ff (3) + b_ff (3) = out (6)

RVfpga Lab 15: Solving Data Hazards by Forwarding – Analysis

RVfpga v2.2 © 2022 <200>
Imagination Technologies

Decode EX1

rd0 [31:0]

rd1 [31:0]

out [31:0]
aff

bff

ALU
(exu_alu

_ctl)

gpr_i0_rs1_d

gpr_i0_rs2_d

a
 =

 i0
_r

s1
_

fin
a

l_
d

b
 =

 i0
_

rs
2_

d

a_ff

b_ff

i0_ap_e1 [19:0]

i0_result_e1 [31:0] =
exu_i0_result_e1 [31:0]

i0e2res
ultff

i0
_

re
su

lt_
e

2
[3

1
:0

]

i0e3res
ultff

EX2

i0
_r

es
u

lt_
e3

 [3
1:

0
]

i0e4res
ultff

EX3

i0
_r

es
u

lt_
e3

_f
in

a
l [

31
:0

]

3-1
MUX

i0
_

re
su

lt_
e

4
[3

1
:0

]

i0wbre
sultff

Commit

i0
_

re
su

lt_
e

4_
fin

al
 [

31
:0

]

Register File
(dec_gpr_ctl)

Writeback

3-1
MUX

3-1
MUX

3-1
MUX

e3d

10-1
MUX

i0_rs2_bypass_data_d[31:0]

i0_result_wb [31:0]

i1_result_wb

i1_result_e4_final

i1_result_e3_final

i1_result_e2

i1_result_e1

dec_i0_immed_d[31:0]

Detailed diagram of
forwarding logic

RVfpga v2.2 © 2022 <201>
Imagination Technologies

RVfpga Lab 15: Solving Data Hazards by Forwarding at Commit

• Instructions that need several cycles to obtain the result (i.e. a multi-
cycle operation, such as a lw, mul, and div) cannot forward to
Decode stage.

• But SweRV EH1 adds an extra ALU (the Secondary ALU) in the
Commit stage of each way. This ALU recalculates the arithmetic-logic
operation with the proper inputs when necessary.

• Thus, no cycles are lost due to stalling – but the cost is two extra
ALUs (one per way) as well as added control signals and logic.

RVfpga v2.2 © 2022 <202>
Imagination Technologies

out [31:0]

Secondary ALU
(exu_alu_ctl)

a aff

bff

EX3

i0_result_e3_final

i0_result_e4 [31:0]

Commit

i0_result_e4_final [31:0] i0_result_wb [31:0]

Writeback

3-1
MUX

4-1
MUX

aff

bff
2-1

MUX

LOGIC
LOGIC

i0_result_e4_eff [31:0]

i0_result_wb_eff [31:0]

i0_rs2_e3 [31:0]
i0

_r
s2

_
by

p
as

s_
da

ta
_e

3
[3

1
:0

]

i1_result_e4_eff [31:0]

i1_result_wb_eff [31:0]
b = i0_rs2_e3_final

exu_i0_result_e4[31:0]

lsu_result_corr_dc4 [31:0]

Secondary ALU Forwarding Logic

RVfpga Lab 15: Solving Data Hazards by Forwarding at Commit – Pipeline

RVfpga v2.2 © 2022 <203>
Imagination Technologies

RVfpga Lab 15: Solving Data Hazards by Forwarding at Commit – Example

.globl Test_Assembly

.section .midccm

A: .space 4

.text

Test_Assembly:

la t0, A # t0 = addr(A)

li t1, 0x1 # t1 = 1

sw t1, (t0) # A[0] = 1

li t1, 0x0 li t3, 0x1 li t6, 0xFFFF

REPEAT:

beq t6, zero, OUT # Stay in the loop?

INSERT_NOPS_9

lw t1, (t0)

add t6, t6, -1

add t3, t3, t1 # t3 = t3 + t1

INSERT_NOPS_8

li t1, 0x0

li t3, 0x1

add t4, t4, 0x1

add t5, t5, 0x1

j REPEAT

OUT:

.end

RVfpga v2.2 © 2022 <204>
Imagination Technologies

RVfpga Lab 15: Solving Data Hazards by Forwarding at Commit – Pipeline

out [31:0]

ALU (exu_alu_ctl)

a

b

aff

bff

EX3 STAGE

i0_result_e3_final [31:0]

i0_result_e4 [31:0]

COMMIT STAGE

i0_result_e4_final [31:0]3-1
MUX

4-1
MUX

aff

bff
2-1

MUX

LOGIC
i0_result_e4_eff [31:0]

i0_rs2_e3 [31:0]

add t3,t3,t1 lw t1,(t0)

1

1

1
1

1

Cycle i

lsu_result_corr_dc4 [31:0]

1

out [31:0]

ALU
(exu_alu_ctl)

aff

bff

i0_result_e4 [31:0]

EX4 STAGE

i0_result_e4_final [31:0]
3-1

MUX

aff

bff

add t3,t3,t1

1

1

2

2

Cycle i+1

RVfpga v2.2 © 2022 <205>
Imagination Technologies

RVfpga Lab 15: Solving Data Hazards by Forwarding at Commit – Simulation

RVfpga v2.2 © 2022 <206>
Imagination Technologies

• Trace Signals
– Cycle i: the add instruction is in the EX3 stage of Way 0 (i0_inst_e3 = 0x006E0E33), and the lw

instruction is in the Commit stage of the I0 Pipe (i0_inst_e4 = 0x0002A303).

– Cycle i+1: the add instruction is in the Commit stage of Way 0 (i0_inst_e4 = 0x006E0E33).

• 4:1 Multiplexer
– Cycle i: the result from the lw instruction (in the Commit stage), is selected:

i0_rs2_bypass_data_e3 = i0_result_e4_eff = 0x00000001

• 2:1 Multiplexer
– Cycle i: the bypass value is selected due to the dependency between the lw and the add:

i0_rs2_e3_final = i0_rs2_bypass_data_e3 = 0x00000001

• Commit stage ALU
– Cycle i+1: the add operation is recomputed using the correct values:

out = a_ff + b_ff = 0x00000001 + 0x00000001 = 0x00000002

• 3:1 multiplexer
– Cycle i+1: The Secondary ALU’s output is selected (exu_i0_result_e4). (When no dependency exists,

i0_result_e4 is selected.)

RVfpga Lab 15: Solving Data Hazards by Forwarding at Commit – Simulation

RVfpga v2.2 © 2022 <207>
Imagination Technologies

RVfpga Lab 15: Tasks – Sample
• TASK: Remove all nop instructions in the example from Figure 2. Draw a figure similar to Figure

3 for two consecutive iterations of the loop, then analyse and confirm that the figure is correct by
comparing it to a Verilator simulation, and finally compute the IPC by using the Performance
Counters while executing the program on the board.

• TASK: In the example from Figure 2, remove all nop instructions and move the add t6,t6,-1
instruction after the add t3,t3,t4 instruction, and then re-examine the program both in
simulation and on the board. In this reordered program, the two dependent add instructions (add
t4,t4,t5 and add t3,t3,t4) arrive at the Decode stage in the same cycle, and this has an
impact in performance. Explain the impact of these changes, using both simulation and execution
on the board.

• TASK: Compare the equations for the 10:1 multiplexer in the Forwarding Logic with the ones
explained for the pipelined processor from DDCARV.

• TASK: Remove the nop instructions in the example from Figure 11 and obtain the IPC using the
HW Counters.

• TASK: Disable the Secondary ALU as explained in Lab 11 and analyse the example from Figure
11 both with a Verilator simulation and with an execution on the board.

RVfpga v2.2 © 2022 <208>
Imagination Technologies

RVfpga Lab 15: Exercises – Sample
• Exercise 1. Modify the program used in Section 3 by adding an extra arithmetic-logic instruction that

depends on the result of the add instruction. Analyse the Verilator simulation and explain how data hazards
are handled for the new A-L instruction. Then remove all nop instructions and analyse the results provided
by the HW counters.

• Exercise 2. Analyse the same situation as the one described in Section 3 for a mul instruction followed by
an add instruction that uses the result of the multiplication. In the program from Figure 11 you can simply
substitute the lw for a mul that writes to register t1.

• Exercise 5. In the program from Section 2.C of Lab 14, replace instruction add x1, x1, 1 with add
x28, x1, 1. This introduces a WAW hazard between the modified add instruction and the non-blocking
load at the beginning of the loop (lw x28, (x29)). Analyse in simulation how this hazard is handled in
SweRV EH1, for which you can look at the value of signal wen2 in the Register File. Try to understand how
this signal is computed in the Control Unit (module dec).

• Exercise 7. In the program from Section 2.C of Lab 14, replace instruction add x1, x1, 1 with add x1,
x28, 1, and instruction add x7, x7, 1 with add x28, x7, 1. This causes both a RAW and a WAW
hazard to occur. Analyse in simulation how these two hazards are handled.

• Exercise 8 - Store to Load Forwarding: This is a very interesting situation that we have not analysed in
this lab and that you will analyse in this exercise.

RVfpga v2.2 © 2022 <209>
Imagination Technologies

Lab 16:
Control Hazards and Branch

Instructions

RVfpga v2.2 © 2022 <210>
Imagination Technologies

RVfpga Lab 16: Control Hazards & Branches
• Branch instructions calculate the address of the next instruction after its fetch.

• Control hazards may:

– Stall the pipeline until next instruction address is calculated, or

– Predict whether the branch will be taken and fetch instructions from the
predicted path.

• SweRV EH1 has two possible branch predictors (BPs) :

– Naïve Branch Predictor: always predicts branch not taken. Has poor
performance but at no hardware cost.

– Gshare Branch Predictor: offers higher performance at the cost of extra
hardware.

• This lab analyzes the execution of a beq instruction using both the naïve and
Gshare BP.

RVfpga v2.2 © 2022 <211>
Imagination Technologies

RVfpga Lab 16: Execution of a beq Instruction and PC Calculation

==

DECODE

In
s

tr
u

ct
io

n
 R

e
g

is
te

r
(d
e
c
_
i
0
_
i
n
s
t
r
_
d

)

raddr0

raddr1

CONTROL
UNIT

a

b

eq

EX1

REGISTER
FILE

rd0

rd1

ap.beq

flush_upper

FC1

ifu_mem_ctl

pc_ff [31:1]

brimm_ff [12:1]

LOGIC

flush_path [31:1]

exu_flush_path_final [31:1]

ibradder

+

FC2 ALN

ifc_fetch_addr_f1 [31:1] (PC)
1

0
ifc_fetch_addr_f1_raw [31:1]

LOGIC

LOGIC

+
16

fe
tc

h
_

a
dd

r_
b

f
[3

1
:1

] (
N

e
xt

 P
C

)

5-1 Mux

exu_flush_final

2-1 Mux
aff

a_ff

bff
b_ff

pcff
pc [31:1]

MUX

MUX

fetch_addr_next [31:1]

ifu_bp_btb_target_f2 [31:1]

miss_addr [31:1]

exu_flush_path_final [31:1]

faddrf1
_ff

i0_ap

RVfpga v2.2 © 2022 <212>
Imagination Technologies

Test_Assembly:

li t2, 0x008 # Disable Branch Predictor

csrrs t1, 0x7F9, t2

li t3, 0xFFFF

li t4, 0x1

li t5, 0x0

li t6, 0x0

LOOP:

add t5, t5, 1

INSERT_NOPS_7

beq t3, t4, OUT

INSERT_NOPS_7

add t4, t4, 1

INSERT_NOPS_7

beq t3, t3, LOOP

INSERT_NOPS_7

OUT:

INSERT_NOPS_8

.end

RVfpga Lab 16: Execution of a beq Instruction and PC Calculation – Example

RVfpga v2.2 © 2022 <213>
Imagination Technologies

RVfpga Lab 16: Execution of First beq Instruction – Simulation

RVfpga v2.2 © 2022 <214>
Imagination Technologies

• Cycle i - Decode stage for the beq instruction: The first beq (0x07DE0063) is decoded in Way
0. Control signals are generated, the Register File is read, and the branch instruction is
routed to the I0 Pipe. Signals a and b (0xFFFF and 0xC4, respectively, in this example) contain
the inputs to the comparator used in the next stage.

• Cycle i+1 - EX1 stage for the beq instruction: The beq instruction is executed. Signals a_ff
and b_ff are compared. The two numbers (0xFFFF and 0xC4) are different, so the branch is not
taken. In this example the Gshare predictor is disabled, thus all branches are predicted not taken
(i0_ap.predict_nt = 1). Thus, the branch has been predicted correctly, and the pipeline is not
flushed (flush_upper = 0).

• Cycle i+2 - FC1 stage: Given that the branch was predicted and resolved as not taken, fetching
simply continues sequentially. Notice that exu_flush_final = 0 and
ifc_fetch_addr_f1_ext[31:0] = ifc_fetch_addr_f1_raw_ext[31:0] = 0x000001F0.
This address points to the next sequential 128-bit bundle of instructions.

RVfpga Lab 16: Execution of First beq Instruction – Analysis

RVfpga v2.2 © 2022 <215>
Imagination Technologies

RVfpga Lab 16: Execution of Second beq Instruction – Simulation

RVfpga v2.2 © 2022 <216>
Imagination Technologies

• Cycle i - Decode stage for the beq instruction: The second beq (0xFBCE00E3) is decoded in
Way 0. Pipeline control signals are generated, the Register File is read, and the branch
instruction is routed to the I0 Pipe. Signals a and b (0xFFFF for both of them, in this example)
contain the inputs to the comparator used in the next stage.

• Cycle i+1 - EX1 stage for the beq instruction: The beq instruction is executed. Signals a_ff
and b_ff are compared. The two numbers are equal, so the branch is taken. However, the Naïve
BP predicts all branches as not taken (i0_ap.predict_nt = 1). So, the branch has been
mispredicted, and the fetched instructions must be flushed (flush_upper = 1)..

• Cycle i+2 - FC1 stage: Execution must continue at the branch target address. exu_flush_final
= 1 and ifc_fetch_addr_f1_ext = exu_flush_path_final_ext = 0x00000188. This
address corresponds to the branch target address, which is the address of the first instruction of
the loop.

RVfpga Lab 16: Execution of Second beq Instruction – Analysis

RVfpga v2.2 © 2022 <217>
Imagination Technologies

RVfpga Lab 16: The Gshare Branch Predictor used by SweRV EH1
FC1

ifu_mem_ctl

exu_flush_path_final [31:1]

FC2

ifc_fetch_addr_f1 [31:1] (PC)
1

0
ifc_fetch_addr_f1_raw [31:1]

+
16

fetch_addr_bf [31:1]
(Next PC)

5-1 Mux
2-1 Mux

fetch_addr_next [31:1]

ifu_bp_btb_target_f2 [31:1]

miss_addr [31:1]

exu_flush_path_final [31:1]

faddrf1
_ff

ifu_bp_btb_target_f2 [31:1]

fghr_ns [4:0] (Global History)

LOGIC

ifu_bp_kill_next_f2Branch History
Table (BHT)

Branch Target
Buffer (BTB)

+

Hashing
modules

faddrf2
_ff

LOGIC

2-1 Mux

From Return
Address Stack

offset [11:0]

pc [31:1]

predtgt_addr

dout [31:1]

RVfpga v2.2 © 2022 <218>
Imagination Technologies

RVfpga Lab 16: The Gshare Branch Predictor for the Second beq

RVfpga v2.2 © 2022 <219>
Imagination Technologies

• Cycle i: The address of the bundle that contains the second branch is provided to the Instruction
Cache: ifc_fetch_addr_f1_ext = 0x000001E0. The Branch Target Buffer (BTB) is read using
this address.

• Cycle i+2: A hit takes place in the BTB: wayhit_f2 = 0x20. The address of the branch (pc_ext =
0x000001E8) is added to the offset provided by the BTB (offset_ext = 0x1FA0, which is a
negative value), which results in the predicted target address (ifu_bp_btb_target_f2_ext =
0x00000188). Given that the branch is predicted taken by the BHT (ifu_bp_kill_next_f2 = 1),
it is used as the Next Fetch PC (fetch_addr_bf_ext = 0x00000188).

• Cycle i+3: The Fetch Address is the predicted target address of the branch, which was computed
in the previous cycle: ifc_fetch_addr_f1_ext = 0x00000188.

• Cycle i+7: The branch is decoded in Way 1 (dec_i1_instr_d = 0xFBCE00E3).

• Cycle i+8: The branch executes. The prediction was correct, so no flush needs to be triggered
(flush_upper = 0).

• Cycle i+9: Execution continues normally through the branch target address given that the
prediction was correct.

RVfpga Lab 16: The Gshare Branch Predictor for the second beq

RVfpga v2.2 © 2022 <220>
Imagination Technologies

RVfpga Lab 16: Tasks and Exercises - Sample
• TASK: In Lab 15, we analysed how RAW data hazards are resolved in the Commit stage by

means of the Secondary ALUs. Similar to the A-L instructions that we studied in that lab, a
conditional branch instruction can have a RAW data hazard with a previous multi-cycle operation
that must be resolved at commit time. If the branch is determined to have been mispredicted, the
pipeline must be flushed and redirected from the Commit stage. Analyse this situation using a
slightly modified version of the program from Figure 2.

• TASK: In the example from Figure 2, remove all the nop instructions and analyse the simulation.
Then compute the IPC with the Performance Counters by executing the program on the board.
Enable the branch predictor used in SweRV EH1 (by commenting out the two initial instructions
in Figure 2) and analyse the simulation and the execution on the board. Compare the two
experiments and explain the results.

• TASK: Explain how the Global History Register is updated at module ifu_bp_ctl.

• Exercise 1) Implement a Bimodal Branch Predictor and compare its performance to the Gshare
BP.

• Exercise 2) This exercise is based on exercise 4.25 from the book “Computer Organization and
Design – RISC-V Edition”, by Patterson & Hennessy ([HePa]).

RVfpga v2.2 © 2022 <221>
Imagination Technologies

Lab 17:
Superscalar Execution

RVfpga v2.2 © 2022 <222>
Imagination Technologies

RVfpga Lab 17: Introduction
• Western Digital’s SweRV EH1 processor is a 9-stage pipelined 32-bit 2-

way superscalar core.

• A superscalar processor contains multiple copies of the datapath
hardware to execute multiple instructions simultaneously.

• The latency of executing a single instruction is the same as a scalar
processor, but the processor can execute and commit more instructions
per cycle, thus improving its throughput.

• SweRV EH1 does not include support for dynamic instruction
scheduling with out-of-order execution, except for the non-blocking
loads. However, it is possible to statically reorder the code in order to
better exploit the resources, including the two ways of the pipeline.

RVfpga v2.2 © 2022 <223>
Imagination Technologies

RVfpga Lab 17: Introduction
• SweRV EH1 is a 2-way superscalar processor.

– It fetches, executes, and commits up to two instructions per cycle.

– The multi-ported register file reads up to four source operands and writes two
values back in each cycle (plus one more value coming from a non-blocking load,
as analysed in Lab 15).

– Each way contains independent pipes: two Integer pipes, one Multiply pipe, one
Load-Store pipe, and one non-pipelined Divider.

• Ideally, in a 2-way superscalar processor, throughput (IPC) doubles compared
to a single-issue processor. Unfortunately, actual programs typically exhibit
performance improvements of 1.3x-1.5x when going from 1- to 2-way
processors; however, adding the second way requires much more hardware.

• In this lab, we analyse two simple programs, comparing the behaviour when
using single-issue and dual-issue configurations of SweRV EH1.

RVfpga v2.2 © 2022 <224>
Imagination Technologies

RVfpga Lab 17: Four Independent A-L Instructions – Example – Single-Issue

.globl Test_Assembly

.text

Test_Assembly:

li t2, 0x400 # Disable Dual-Issue Execution

csrrs t1, 0x7F9, t2

li t0, 0x0

li t1, 0x1

li t2, 0x1

li t3, 0x3

li t4, 0x4

li t5, 0x5

li t6, 0x6

lui t2, 0xF4

add t2, t2, 0x240

REPEAT:

add t0, t0, 1

INSERT_NOPS_10

INSERT_NOPS_4

add t3, t3, t1

sub t4, t4, t1

or t5, t5, t1

xor t6, t6, t1

INSERT_NOPS_10

INSERT_NOPS_3

bne t0, t2, REPEAT # Repeat the loop

RVfpga v2.2 © 2022 <225>
Imagination Technologies

RVfpga Lab 17: Four Independent A-L Instructions – Simulation – Single-Issue

RVfpga v2.2 © 2022 <226>
Imagination Technologies

• The instructions are received in both ways at decode time, but they are only sent to execution in
Way 0, because Way 1 is disabled.

– Way 0:
• Signal dec_i0_decode_d is always 1 in our example; specifically, it is 1 for the four AL instructions under analysis.

• The instruction in the Decode Stage is propagated to the I0 Pipe (i0_inst_e1[31:0])

– Way 1:
• Signal dec_i1_decode_d is always 0 in our example; specifically, it is 0 for the four AL instructions under analysis.

• The instruction at the Decode Stage is NOT propagated (i1_inst_e1[31:0]) to the Execution Stage.

• Accordingly, only the ALU from the I0 Pipe is used (see signals aff, bff and out in both ways)
and only write port 0 of the Register File is used (see signals waddr, wen and wd in both ways).

RVfpga Lab 17: Four Independent A-L Instructions – Simulation – Single-Issue

RVfpga v2.2 © 2022 <227>
Imagination Technologies

RVfpga Lab 17: Four Independent A-L Instructions – Diagram – Single-Issue

Cyc 1

EX1

EX2

EX3

Decode add

Commit

Writeback

Cyc 2

sub

add

Cyc 3 Cyc 4

xor

or

sub

add

or

sub

add

Cyc 5

xor

or

sub

add

Cyc 6

xor

or

sub

add

Cyc 7

xor

or

sub

Cyc 8

xor

or

Cyc 9

xor

RVfpga v2.2 © 2022 <228>
Imagination Technologies

RVfpga Lab 17: Four Independent A-L Instructions – Example – Dual-Issue

.globl Test_Assembly

.text

Test_Assembly:

li t2, 0x400 # Disable Dual-Issue Execution

csrrs t1, 0x7F9, t2

li t0, 0x0

li t1, 0x1

li t2, 0x1

li t3, 0x3

li t4, 0x4

li t5, 0x5

li t6, 0x6

lui t2, 0xF4

add t2, t2, 0x240

REPEAT:

add t0, t0, 1

INSERT_NOPS_10

INSERT_NOPS_4

add t3, t3, t1

sub t4, t4, t1

or t5, t5, t1

xor t6, t6, t1

INSERT_NOPS_10

INSERT_NOPS_3

bne t0, t2, REPEAT # Repeat the loop

RVfpga v2.2 © 2022 <229>
Imagination Technologies

RVfpga Lab 17: Four Independent A-L Instructions – Simulation – Dual-Issue

RVfpga v2.2 © 2022 <230>
Imagination Technologies

• In each cycle, two instructions are decoded, one in each way, and two instructions
are sent to the Execute stages, one through the I0 pipe and the other through I1.

– Way 0:
• Signal dec_i0_decode_d is always 1 – being true for two of the four A-L instructions of our

example (the other two A-L instructions are decoded in Way 1).
• The instruction in the Decode stage is propagated to the I0 Pipe (i0_inst_e1[31:0]).

– Way 1:
• Signal dec_i1_decode_d is always 1 – being true for two of the four A-L instructions of our

example (the other two A-L instructions are decoded in Way 0).
• The instruction in the Decode stage is propagated to the I1 Pipe (i1_inst_e1[31:0]).

• Thus, the ALUs in both pipes (I0 and I1) are used (see signals aff, bff, and out
in both ways), and both Register File write ports are used (see signals waddr, wen
and wd in both ways).

RVfpga Lab 17: Four Independent A-L Instructions – Analysis – Dual-Issue

RVfpga v2.2 © 2022 <231>
Imagination Technologies

RVfpga Lab 17: Four Independent A-L Instructions – Diagram – Dual-Issue

Cyc 1

EX1

EX2

EX3

Decode add

Commit

Writeback

sub

I0 I1 I0 I1 I0 I1 I0 I1 I0 I1 I0 I1 I0 I1

Cyc 2

or xor

add sub

Cyc 3 Cyc 4

or xor

add sub or xor

add sub

Cyc 5

or xor

add sub

Cyc 6

or xor

add sub

Cyc 7

or xor

RVfpga v2.2 © 2022 <232>
Imagination Technologies

RVfpga Lab 17: Two mul Instructions Interleaved with Two A-L Instructions – Example – Dual-Issue

.globl Test_Assembly

.text

Test_Assembly:

li t2, 0x400 # Disable Dual-Issue Execution

csrrs t1, 0x7F9, t2

li t3, 0x3

li t4, 0x4

li t5, 0x5

li t6, 0x6

li t0, 0x0

lui t1, 0xF4

add t1, t1, 0x240

REPEAT:

add t0, t0, 1

INSERT_NOPS_10

INSERT_NOPS_4

mul t3, t3, t1

add t4, t4, t1

mul t5, t5, t1

sub t6, t6, t1

INSERT_NOPS_10

INSERT_NOPS_3

bne t0, t1, REPEAT # Repeat the loop

.end

RVfpga v2.2 © 2022 <233>
Imagination Technologies

RVfpga Lab 17: Two mul Instructions Interleaved with Two A-L Instructions – Simulation – Dual-Issue

RVfpga v2.2 © 2022 <234>
Imagination Technologies

• The instructions are received in both ways at decode time and are sent to the
execution stages in both ways.

– Way 0:
• Signal dec_i0_decode_d is always 1 – for two of the four instructions analysed in our

example (the other two instructions are decoded in Way 1).
• The instruction in the Decode stage is sent to the Multiply pipe (i0_inst_e1[31:0])

– Way 1:
• Signal dec_i1_decode_d is always 1 – for two of the four instructions analysed in our

example (the other two instructions are decoded in Way 1).
• The instruction in DECODE (dec_i1_instr_d[31:0]) is propagated to the I1 Pipe

(i1_inst_e1[31:0])

• Thus, the ALU from the I1 pipe and the Multiplier are used (see signals a_ff_e1,
b_ff_e1, and out and signals a_ff, b_ff, and out), and both Register File
write ports are used (see signals waddr, wen, and wd in both ways).

RVfpga Lab 17: Two mul Instructions Interleaved with Two A-L Instructions – Analysis – Dual-Issue

RVfpga v2.2 © 2022 <235>
Imagination Technologies

RVfpga Lab 17: Tasks and Exercises - Sample
• TASK: Remove all the nop instructions within the body of the loop from Figure 2. Repeat the

simulation from Figure 3. What is the expected IPC for this program? Execute the program on the
board and verify that the IPC obtained is the one that you expected.

• Exercise 2) Analyse the differences between the (dual-issue) SweRV EH1 processor and the
example superscalar processor proposed in Section 7.7.4 of the textbook by S. Harris and D.
Harris, “Digital Design and Computer Architecture: RISC-V Edition” [DDCARV] (shown in Figure 1
for convenience).

• Exercise 3) Analyse the program from Figure 7.70 in Section 7.7.4 of DDCARV, which is
provided in a PlatformIO project. Run the program on SweRV EH1, both in simulation and on the
board (for the latter remove the nop instructions). Explain the results. If necessary, reorder the
program trying to obtain the optimal IPC. Next, disable the dual-issue execution as explained in
this lab – and in SweRVref.docx (Section 2). Compare the simulation and the results obtained on
the board when compared to when the dual-issue feature is enabled.

• Exercises 5, 6 and 7) These exercises are based on exercises from the books:
– “Computer Organization and Design – RISC-V Edition”, by Patterson & Hennessy.

– “Digital Design and Computer Architecture: RISC-V Edition”, by S. Harris and D. Harris.

RVfpga v2.2 © 2022 <236>
Imagination Technologies

Lab 18:
Adding New Features:

Instructions and Counters

RVfpga v2.2 © 2022 <237>
Imagination Technologies

RVfpga Lab 18: Adding Instructions & Features
• In this lab, you will apply the knowledge acquired in previous labs to

modify the SweRV EH1 processor to add the following new features:
– Add A-L instructions: Add Arithmetic-Logic instructions from the new bit

manipulation extension available in the RISC-V architecture.

– Add floating-point instructions: Add three floating point instructions: add,
multiply, and divide. Then use them to compute the bisection algorithm.

– Add counter: Add a new hardware counter that counts the number of I-Type
instructions executed.

• In some of these exercises we guide you through the process of
modifying the core, and in others you will figure out on your own what
needs to be done.

RVfpga v2.2 © 2022 <238>
Imagination Technologies

Lab 19:
Instruction Cache

RVfpga v2.2 © 2022 <239>
Imagination Technologies

RVfpga Lab 19: Introduction
• This lab describes and explores the memory system of the RVfpga

System. RVfpga’s Memory System has the following elements:
– External DDR Main Memory

– Cache for instructions (I$)

– Two Scratchpad memories (also called closely-coupled memories), one for data
(DCCM) and one for instructions (ICCM). The ICCM is disabled in the default
system.

• In this lab, we first describe how data are read from and written to the
DDR External Memory, and then we delve into the operation and
management of the I$ available in the RVfpga System.

RVfpga v2.2 © 2022 <240>
Imagination Technologies

.data

D: .space 40000

.text

Test_Assembly:

li t2, 0x000

csrrs t1, 0x7F9, t2

la t4, D

li t5, 50

li t0, 40000

la t6, D

add t6, t6, t0

REPEAT:

lw t3, (t4)

add t3, t3, t5

sw t3, (t4)

add t4, t4, 4

bne t4, t6, REPEAT

RVfpga Lab 19: Data read and write to Memory – Example

RVfpga v2.2 © 2022 <241>
Imagination Technologies

The example illustrates a program that includes a load instruction
followed by a store instruction

• Cycle i – i+8: The processor reads data from the DDR External Memory (yellow
square) into t3, through the bus.

• Cycle i+16 – i+21: The processor writes the value of t3 to the DDR External
Memory (red square), through the bus.

RVfpga Lab 19: Data read and write to Memory – Simulation

RVfpga v2.2 © 2022 <242>
Imagination Technologies

TAG SET OFFSET

20 bits 6 bits 4 bits

20 bits
+ Parity

64 Bytes
+ Parity

20 bits
+ Parity

20 bits
+ Parity

20 bits
+ Parity

WAY 0 WAY 1 WAY 2 WAY 3

SET 0

SET 1

SET 62

SET 63

= = = =

ic_rd_hit [3:0]

ic_rw_addr [31:2] (Fetch Address)

4-1 Multiplexer

1 1 1 1

ic_rd_data[135:0] (ic_rd_data_only[127:0] + Parity)

64 Bytes
+ Parity

64 Bytes
+ Parity

64 Bytes
+ Parity

2 bits

TagWay0
TagWay1

TagWay2
TagWay3

ic_tag_valid [3:0]

DataWay0 DataWay1 DataWay2 DataWay3

adr_ff
(Register)

ic_rw_addr_ff [31:12]

3 bits

LRU0

LRU1

LRU62

LRU63

RVfpga Lab 19: I$ Configuration and Operation

RVfpga v2.2 © 2022 <243>
Imagination Technologies

Test_Assembly:

INSERT_NOPS_3

INSERT_NOPS_8

INSERT_NOPS_8

li t6, 0x10000

REPEAT:

add t6, t6, -1

add t0, t0, t0

add t1, t1, t1

add t2, t2, t2

add t3, t3, t3

add t4, t4, t4

add t5, t5, t5

add t6, t6, t6

add a7, a7, a7

add t0, t0, t0

add t2, t2, t2

add t1, t1, t1

add t3, t3, t3

add t4, t4, t4

add t6, t6, t6

add t5, t5, t5

add a7, a7, a7

INSERT_NOPS_8

INSERT_NOPS_8

INSERT_NOPS_8

INSERT_NOPS_8

INSERT_NOPS_8

INSERT_NOPS_8

bne t6, zero, REPEAT

ret

RVfpga Lab 19: I$ Miss and Hit Management – Example

RVfpga v2.2 © 2022 <244>
Imagination Technologies

RVfpga Lab 19: I$ Miss Management - Simulation

RVfpga v2.2 © 2022 <245>
Imagination Technologies

• The simulation shows the fetch of the 16 add instructions the first time they are
executed. Given that these instructions are not in the I$ yet, a miss is triggered in
the I$ and the instructions must be copied from the DDR External Memory into the
I$.
– An I$ miss is signalled at around 29ns (ic_act_miss_f2 = 1), which triggers the request of

the block through the AXI bus (ifu_axi_arvalid = 1).

– The eight 64-bit chunks that make up the target block are requested sequentially through the
AXI bus.

• Signal ifu_axi_arvalid goes high for 27 cycles. This signal indicates that the channel is
signalling valid read address and control information.

• During these 27 cycles where ifu_axi_arvalid = 1 the initial addresses of the eight 64-
bit chunks are provided sequentially through the AXI bus using signal ifu_axi_araddr,
which provides the 8 addresses that must be read from the DDR Memory.

RVfpga Lab 19: I$ Miss Management - Analysis

RVfpga v2.2 © 2022 <246>
Imagination Technologies

– The middle figure shows the eight 64-bit chunks arriving sequentially to the
processor through the AXI bus in signal ifu_axi_rdata.

• Signal ifu_axi_rvalid, which indicates that the channel is signalling the
required read data, goes high for one cycle every 7 cycles.

• Each of the eight 64-bit chunks (each containing two instructions) is
provided in signal ifu_axi_rdata.

– The two bottom figures show that each of the eight 64-bit chunks is written into
the I$ right after their arrival to the cache controller.

– Finally, you can see that the four instructions are bypassed from the I$
controller to the pipeline so that it can restart execution as soon as possible
after the I$ miss. Several cycles later, the four instructions arrive at the Decode
Stage.

RVfpga Lab 19: I$ Miss Management - Analysis

RVfpga v2.2 © 2022 <247>
Imagination Technologies

RVfpga Lab 19: I$ Hit Management - Simulation

RVfpga v2.2 © 2022 <248>
Imagination Technologies

• In the previous simulation you can see a hit in the I$.
– Cycle i: The address of the first add instruction (add t0,t0,t0) is given in signal

ifc_fetch_addr_f1_ext. This signal is passed to the I$ except for its two least significant bits, which
are not needed because instructions are 4-byte (32-bit) aligned. Thus, ic_rw_addr = 0x0000070. The
Tag and Data Arrays use a subset of the Fetch Address.

– Cycle i+1: The four tags, one per cache way, are in signals TagWay0-TagWay3. These are compared to
the TAG field of the Fetch Address. In this case, all tags are the same as the TAG field, however only one
way (Way 0) is valid (ic_tag_valid = 0001), thus a hit is signalled in Way 0: ic_rd_hit = 0001. Also,
four 128-bit bundles are in signals DataWay0-DataWay3: ic_rd_data_only =
0x01ce0e33007383b300630333005282b3

– Cycle i+2: The first and second add instructions are extracted in the Align stage from buffer q1:
ifu_i0_instr = 0x005282b3 and ifu_i1_instr = 0x00630333

– Cycle i+3: The third and fourth add instructions are extracted in the Align stage and, at the same time, the
first and second add instructions are decoded: ifu_i0_instr = 0x007383b3, ifu_i1_instr =
0x01ce0e33, dec_i0_instr_d = 0x005282b3 and dec_i1_instr_d = 0x00630333

– Cycle i+4: Finally, the third and fourth add instructions are decoded: dec_i0_instr_d = 0x007383b3
and dec_i1_instr_d = 0x01ce0e33

RVfpga Lab 19: I$ Hit Management - Analysis

RVfpga v2.2 © 2022 <249>
Imagination Technologies

RVfpga Lab 19: I$ Replacement Policy
• Most associative caches have a least recently used (LRU) replacement policy.

However, tracking the least recently used way becomes complicated, thus
approximate LRU policies (usually called Pseudo LRU) are often used and are good
enough in practice.

• SweRV EH1 uses an approximate policy called Binary Tree Pseudo LRU.
– It requires N-1 bits per set (which we call LRU State) in an N-way associative cache. This

translates into 3 bits per set in SweRV EH1’s I$.

Block Replacement LRU State Updating

LRU State Way to replace
x00 Way 0
x10 Way 1
0x1 Way 2
1x1 Way 3

Written Way Next LRU state
Way 0 -11
Way 1 -01
Way 2 1-0
Way 3 0-0

RVfpga v2.2 © 2022 <250>
Imagination Technologies

Set8_Block1: j Set8_Block2 # This j instruction is at address 0x00000200

INSERT_NOPS_1023

Set8_Block2: j Set8_Block3 # This j instruction is at address 0x00001200

INSERT_NOPS_1023

Set8_Block3: j Set8_Block4 # This j instruction is at address 0x00002200

INSERT_NOPS_1023

Set8_Block4: j Set8_Block5 # This j instruction is at address 0x00003200

INSERT_NOPS_1023

Set8_Block5: j Set8_Block1 # This j instruction is at address 0x00004200

RVfpga Lab 19: I$ Replacement Policy – Example
• The example below accesses five different I$ blocks inside an infinite loop. All five

blocks map to the same I$ set: SET = 8.
• The infinite loop contains five j (jump) instructions, where each pair of j instructions

is separated by 1023 nops. The j instruction plus the nops occupy 4 KiB, which is
equal to the size of each Way in the I$.

RVfpga v2.2 © 2022 <251>
Imagination Technologies

00000000000000000000 j Set8_Block2 | nop | ... | nop WAY 01

SET 8 after execution of the first j instruction at 0x200

0

0

0

00000000000000000001 j Set8_Block3 | nop | ... | nop1

WAY 1

WAY 2

WAY 3

LRU STATE = 011

00000000000000000010 j Set8_Block4 | nop | ... | nop1

00000000000000000011 j Set8_Block5 | nop | ... | nop1

00000000000000000000 j Set8_Block2 | nop | ... | nop WAY 01

SET 8 after execution of the second j instruction at 0x1200

0

0

WAY 1

WAY 2

WAY 3

LRU STATE = 001

00000000000000000001 j Set8_Block3 | nop | ... | nop1

00000000000000000000 j Set8_Block2 | nop | ... | nop WAY 01

SET 8 after execution of the third j instruction at 0x2200

0

WAY 1

WAY 2

WAY 3

LRU STATE = 100

00000000000000000010 j Set8_Block4 | nop | ... | nop1

00000000000000000001 j Set8_Block3 | nop | ... | nop1

00000000000000000000 j Set8_Block2 | nop | ... | nop WAY 01

SET 8 after execution of the fourth j instruction at 0x3200

WAY 1

WAY 2

WAY 3

LRU STATE = 000

00000000000000000011 j Set8_Block5 | nop | ... | nop1

00000000000000000010 j Set8_Block4 | nop | ... | nop1

00000000000000000001 j Set8_Block3 | nop | ... | nop1

00000000000000000100 j Set8_Block1 | nop | ... | nop WAY 01

SET 8 after execution of the fifth j instruction at 0x4200

WAY 1

WAY 2

WAY 3

LRU STATE = 011

Valid Tag Data

RV
fp

ga
La

b
19

: I
$

Re
pl

ac
em

en
t P

ol
ic

y
–

Ev
ol

ut
io

n
of

 S
ET

 8
 o

f t
he

 I$

RVfpga v2.2 © 2022 <252>
Imagination Technologies

RVfpga Lab 19: I$ Replacement Policy – 1st Jump

• The first jump’s address (0x200) maps to Set 8 of the I$. That set is initially empty, thus, the new
block must be written in Way 0: replace_way_mb_any = ic_wr_en = 0001. The LRU state of
Set 8 is updated as follows: way_status_new = 011.

• The I$ block is read from the DDR Memory and written into the I$ in 64-bit chunks. The figure
illustrates the write of the tag and the two first instructions of the new block into SET 8:

– ic_rw_addr_q[11:4] = 00100000 (SET 8)

– ic_tag_wr_data[19:0] = 0x0

– ic_wr_data1[31:0] = 0x0000106F (j Set8_Block2)

– ic_wr_data2[31:0] = 0x00000013 (nop)

RVfpga v2.2 © 2022 <253>
Imagination Technologies

RVfpga Lab 19: I$ Replacement Policy – 2nd Jump

• The second jump’s address (0x1200) also maps to Set 8 of the I$. Only way 0 is valid in that set:
tagv_mb_ff = 0001. Thus, the new block must be written in Way 1: replace_way_mb_any =
ic_wr_en = 0010. The LRU state of Set 8 is updated as follows: way_status_new = 001.

• The I$ block is read from the DDR Memory and written into the I$ in 64-bit chunks. The figure
illustrates the write of the tag and the two first instructions of the new block into SET 8:

– ic_rw_addr_q[11:4] = 00100000 (SET 8)

– ic_tag_wr_data[19:0] = 0x1

– ic_wr_data1[31:0] = 0x0000106F (j Set8_Block3)

– ic_wr_data2[31:0] = 0x00000013 (nop)

RVfpga v2.2 © 2022 <254>
Imagination Technologies

RVfpga Lab 19: I$ Replacement Policy – 5th Jump

• The fifth jump’s address (0x4200) also maps to Set 8 of the I$. However, in this case the set is full:
tagv_mb_ff = 1111. Thus, the new block must be written to Way 1: replace_way_mb_any =
ic_wr_en = 0001. The LRU state of Set 8 is updated as follows: way_status_new = 011.

• The I$ block is read from the DDR Memory and written into the I$ in 64-bit chunks. The figure
illustrates the write of the tag and the two first instructions of the new block into SET 8:

– ic_rw_addr_q[11:4] = 00100000 (SET 8)

– ic_tag_wr_data[19:0] = 0x4

– ic_wr_data1[31:0] = 0x800fc06f (j Set8_Block1)

– ic_wr_data2[31:0] = 0x00008067 (ret)

RVfpga v2.2 © 2022 <255>
Imagination Technologies

RVfpga Lab 19: Tasks and Exercises – Sample
• TASK: Using the HW Counters, measure the number of cycles, instructions, loads and

stores in the program from Figure 2. How much time in total (both for reading and
writing) does it take to access the DDR External Memory?

• TASK: Use the example from
[RVfpgaPath]/RVfpga/Labs/Lab19/LW_Instruction_ExtMem to estimate the DDR
External Memory read latency using the HW Counters.

• TASK: A quite complex but very interesting exercise is to analyse the Memory Controller
used in the RVfpga System. Remember that you can find the modules that make up this
controller in folder [RVfpgaPath]/RVfpga/src/LiteDRAM, and that the top module is
implemented in file litedram_top.v inside that folder. You can start with the simulation
from Figure 3 and add and analyse some signals from the LiteDRAM controller.

• Exercise 4) Analyse in simulation and on the board other I$ configurations, such as an
I$ with a different block size. Recall that the number of ways cannot be modified.

• Exercise 5) Analyse the logic that checks the correctness of the parity information from
the Data Array and from the Tag Array.

RVfpga v2.2 © 2022 <256>
Imagination Technologies

Lab 20:
ICCM, DCCM, and

Benchmarking

RVfpga v2.2 © 2022 <257>
Imagination Technologies

RVfpga Lab 20: ICCM, DDCM & Benchmarking
• Scratchpad memories:

– Instruction Closely-Coupled Memory (ICCM)

– Data Closely-Coupled Memory (DCCM)

RVfpga v2.2 © 2022 <258>
Imagination Technologies

RVfpga Lab 20: Address Space (Instructions)

DDR External
Memory
(offchip)

0x00000000

0x07FFFFFF
SweRV EH1

1 cycle

Instruction
Closely-
Coupled
Memory
(onchip)

0xEE000000

0xEE07FFFF

1 cycle

Instruction
Cache

(onchip)

≈ 22 cycles

RVfpga v2.2 © 2022 <259>
Imagination Technologies

RVfpga Lab 20: Address Space (Data)

DDR External
Memory
(offchip)

0x00000000

0x07FFFFFF
SweRV EH1

≈ 22 cycles

Data Closely-
Coupled
Memory
(onchip)

0xF0040000

0xF004FFFF

1 cycle

• External memory (~22 cycles):
0x00000000 – 0x07FFFFFF

• On-chip memory (DCCM, ~1 cycle):
0xF0040000 – 0xF004FFFF

RVfpga v2.2 © 2022 <260>
Imagination Technologies

RVfpga Lab 20: ICCM Configuration and Operation

RVfpga v2.2 © 2022 <261>
Imagination Technologies

RVfpga Lab 20: Accessing the ICCM – Example

// Access array

la t4, D

li t5, 50

li t0, 1000

la t6, D

add t6, t6, t0

li t5, 1

REPEAT_Access:

lw t3, (t4)

add t3, t3, t5

sw t3, (t4)

add t4, t4, 4

INSERT_NOPS_10

INSERT_NOPS_10

bne t4, t6, REPEAT_Access

RVfpga v2.2 © 2022 <262>
Imagination Technologies

RVfpga Lab 20: Accessing the ICCM – Example

RVfpga v2.2 © 2022 <263>
Imagination Technologies

• Cycle i: The lw instruction is decoded in Way 1: dec_i1_instr_d = 0x000eae03.

• Cycle i+1: The address is generated in the DC1 stage and provided to the DCCM.
As a result of the address check, reading the DCCM is enabled: dccm_rden = 1.
This signal is provided to the DCCM and, along with the 3-bit Bank field of the
address, determines the bank that must be read.

• Cycle i+2: The read data is obtained from the DCCM and provided to the core.

• Cycle i+8: After adding 1 (the immediate) to the read value (0x00000009 + 1 =
0x0000000A) and traversing the Store Buffer, as explained in Lab 13, the data and
address are provided to the DCCM, and writing of the correct bank is enabled.

RVfpga Lab 20: Accessing the ICCM – Example

RVfpga v2.2 © 2022 <264>
Imagination Technologies

• Benchmarks:
– Run set of programs on processor

– Compare processors

• Two common benchmarks:
– CoreMark

– Dhrystone

• Benchmarks use hardware counters (HW Counters) to measure
events (such as number of instructions, number of cycles).

RVfpga Lab 20: Benchmarking

RVfpga v2.2 © 2022 <265>
Imagination Technologies

RISC-V Hardware Counters
• Special-purpose registers to record performance and other metrics

(shown below).

Table 7-2 in SweRV EH1 Programmer’s Reference Manual: https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf

RVfpga v2.2 © 2022 <266>
Imagination Technologies

How to Use and Initialize Hardware Counters
• Include Western Digital’s PSP (Platform Support Package):

– #include <psp_api.h>

• Enable counters:
– pspEnableAllPerformanceMonitor(1);

• Set counters to measure various metrics:
– pspPerformanceCounterSet(D_PSP_COUNTER0, E_CYCLES_CLOCKS_ACTIVE);

– pspPerformanceCounterSet(D_PSP_COUNTER1, E_INSTR_COMMITTED_ALL);

• Read metrics:
– cyc_end = pspPerformanceCounterGet(D_PSP_COUNTER0);

– instr_end = pspPerformanceCounterGet(D_PSP_COUNTER1);

• Print metrics:
– printfNexys("Cycles = %d", cyc_end - cyc_beg);

– printfNexys("Instructions = %d", instr_end - instr_beg);

RVfpga v2.2 © 2022 <267>
Imagination Technologies

Example Program with Hardware Counters
// Also include board support package (bsp) header files) – see Lab 20 files
#include <psp_api.h>
int main(void) {

int cyc_beg, cyc_end, instr_beg, instr_end;

uartInit();

pspEnableAllPerformanceMonitor(1); // enable counters

pspPerformanceCounterSet(D_PSP_COUNTER0, E_CYCLES_CLOCKS_ACTIVE); // assign
pspPerformanceCounterSet(D_PSP_COUNTER1, E_INSTR_COMMITTED_ALL); // counters

cyc_beg = pspPerformanceCounterGet(D_PSP_COUNTER0); // read counters
instr_beg = pspPerformanceCounterGet(D_PSP_COUNTER1);

Test_Assembly();

cyc_end = pspPerformanceCounterGet(D_PSP_COUNTER0); // read counters
instr_end = pspPerformanceCounterGet(D_PSP_COUNTER1);

printfNexys("Cycles = %d", cyc_end-cyc_beg); // print values
printfNexys("Instructions = %d", instr_end-instr_beg);

}

RVfpga v2.2 © 2022 <268>
Imagination Technologies

• CoreMark Metrics
– CoreMark runs multiple iterations of a loop.

– CoreMark Score (CM): The number of iterations it completes per second (i.e., the
iterations/second).

– CM/MHz: CM divided by the clock frequency in MHz (also called Iterat/Sec/MHz or
iterations/second/MHz).

• Recall, ideal IPC (instructions per cycle) is 2 for SweRV EH1 because it
is 2-way superscalar.

RVfpga Lab 20: Metrics

RVfpga v2.2 © 2022 <269>
Imagination Technologies

Compiler = debug
External Memory

Compiler = debug
DCCM

Compiler = optimized
DCCM

CM/MHz 0.47 1.88 3.47
Instructions ~0.5 million ~0.5 million 0.309 million
Cycles ~2 million ~0.5 million 0.288 million
IPC (instructions/cycle) 0.25 ~1 ~1
Data Bus
Transactions

~133,000
(all go to external
memory)

0
(due to DCCM)

0
(due to DCCM)

Instruction Bus
Transactions

392
(due to I$)

392
(due to I$)

392
(due to I$)

RVfpga Lab 20: CoreMark Performance

RVfpga v2.2 © 2022 <270>
Imagination Technologies

RVfpga Lab 20: Tasks and Exercises – Sample
• TASK: Using the instructions provided in Lab 1, implement a new RVfpga System that includes a

64 KiB ICCM.

• TASK: Simulate an unaligned read to the DCCM and analyse how it is handled inside the DCCM.

• TASK: Simulate a DCCM bank conflict by modifying the program from Figure 4.

• TASK: Modify file platformio.ini to use both the DCCM for storing most data and the ICCM for
storing the instructions. Execute the CoreMark benchmark and compare the results with the ones
obtained in this section.

• TASK: Modify the compilation optimization to -O3 and explain the results.

• Exercise 1) Do the same analysis as was done for CoreMark but this time using the Dhrystone
benchmark.

• Exercise 2) Do the same analysis as was done for CoreMark but this time for the
ImageProcessing application from Lab 4.

• Exercise 3) Enable/disable various core features. Compare the performance results. Run all
three programs (CoreMark, Dhrystone, and ImageProcessing) on these modified RVfpga
Systems on the Nexys A7 board.

RVfpga v2.2 © 2022 <271>
Imagination Technologies

Acknowledgements

Sponsors and Supporters

AUTHORS
Prof. Sarah Harris
Prof. Daniel Chaver
Zubair Kakakhel
M. Hamza Liaqat

ADVISER
Prof. David Patterson

CONTRIBUTORS
Robert Owen
Olof Kindgren
Prof. Luis Piñuel
Ivan Kravets
Valerii Koval
Ted Marena
Prof. Roy Kravitz
Prof. Peng Liu

ASSOCIATES
Prof. José Ignacio Gómez
Prof. Christian Tenllado
Prof. Daniel León
Prof. Katzalin Olcoz
Prof. Alberto del Barrio
Prof. Fernando Castro
Prof. Manuel Prieto

Prof. Francisco Tirado
Prof. Román Hermida
Prof. Julio Villalba
Prof Ataur Patwary
Cathal McCabe
Dan Hugo
Braden Harwood
Prof. David Burnett

Gage Elerding
Prof. Brian Cruickshank
Deepen Parmar
Thong Doan
Oliver Rew
Niko Nikolay
Guanyang He
Prof. Peng Liu

