TASKS

TASK: Replicate the simulation from Figure 3 on your own computer. To do so, follow the
next steps (as described in detail in Section 7 of the GSG):

If necessary, generate the simulation binary (Vrvfpgasim).

In PlatformlO, open the project provided at: [RVfpgaPath]/RVfpga/Labs/Lab19/LW-
SW_ Instruction_ExtMemory.

Establish the correct path to the RVfpga simulation binary (Vrvfpgasim) in file
platformio.ini.

Generate the simulation trace using Verilator (Generate Trace).

Open the trace on GTKWave.

Use file test_Blocking_Extended.tcl (provided at [RVfpgaPath]/RVfpga/Labs/Lab19/LW-
SW_ Instruction_ExtMemory) for opening the same signals as the ones shown in Figure
6. For that purpose, on GTKWave, click on File — Read Tcl Script File and select the
test_Blocking_Extended.tcl file.

Click on Zoom In ('—') several times and analyse the region starting at 42500 ps.

Solution provided in the main document of Lab 19.

TASK: Using the HW Counters, measure the number of cycles, instructions, loads and
stores in the program from Figure 2. How much time in total (both for reading and writing)
does it take to access the DDR External Memory? You can compare the execution when
using the DDR memory as in Figure 3 and when using the DCCM (another PlatformIO
project is provided at [RVfpgaPath]/RVfpga/Labs/Lab19/LW-SW_Instruction_DCCM/,
which contains the same program prepared for reading from / writing to the DCCM).
Remember that the simulated memory is not the same as the actual DDR memory on the
Nexys A7 board.

DCCM:

Simulation in Verilator:

Signals

Time

dec i8 pc d ext[31:8]=
dec i@ instr |
dec_il instr_
full addr_dcl[31:0]=

clk=

d[31:8] = AED3
d[31:8] = 1DEGE33
dcem rden=i
(ERMNFooioiC Fooaeess Feedean

Each iteration executes 5 instructions in 3 cycles. Only half a cycle is lost per iteration.

Execution on the Board:

Imagination University Programme — RVfpga Lab 19
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

JMSOLE TERMINAL

> Executing task: platformio device mg

le filters and text tra ST

il

m on ;

- Nuit: rtrlsac | Me
30245

En_‘ ructions = 58051

Cycles per iteration = 3

DDR Memory:

Execution on the Board:

OMSOLE TERMINAL

> Executing task: platformio device mo

- Miniterm on ,
- Ouit: ctri+c |

s = 357774

Instructions = 50851

The number of instructions is the same, since the program is the same. However, now
around 358000 cycles are necessary for executing all the iterations, thus:

Number of cycles spent accessing memory per iteration = (358000 - 30000) / 10000 = 33

TASK: Use the example from [RVfpgaPath]/RVfpga/Labs/Lab19/LW _Instruction_ExtMem
to estimate the DDR External Memory read latency using the HW Counters. As in the
previous task, you can use the example from
[RVfpgaPath])/RVfpga/Labs/Lab19/LW_Instruction_DCCM to compare with a program with
no stalls due to the memory accesses. Remember that the simulated memory is not the
same as the actual DDR memory on the Nexys A7 board.

DCCM:

Simulation in Verilator:

Signals Waves

51806 ps 51900 ps

Time
clk=
dec_i@ pc_d ext[31:0]=
dec_i@ instr d[31:0] =
dec il instr d[31:0] =
full addr dcl[31:8] =
dcem_rden=
3=

Each iteration executes 10 instructions in 5 cycles, so it executes with the ideal IPC.

Imagination University Programme — RVfpga Lab 19
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

Execution on the Board:

SOLE TERMIMAL

> Executing task: platformio device mon

Available filters and tex

More details at http'

Miniterm on /de } -
--- Quit: {tr1+{ I Menu: Ctrl+T L EDE
Cycles = 50237
EH_tFHEtlﬂHb = 1000851

Cycles per iteration =5

DDR Memory:

Simulation in Verilator:

Signals
Time

clk=
dec_i@ pc_d ext[31:0] =
dec i@ instr d[31:0]=
dec_il instr_d[31:8]=
lsu_axi_arvalid=l
lsu axi araddr[31:0]=
lsu_axi_rvalid=
lsu_axi_rdata[63:0] = [ESSEEETNETS

JMS0LE TERMINAL

> Executing task: platformio device monitor <

Available filters and tex
More details at http ;
- Miniterm on /dev/ 200,8,N,1
--- Quit: Ctrl+C | Menu: {tﬂ +T | Help: Ctrl+T
Cycles = CJELITE"

Instructions = 188051

The number of instructions is the same, since the program is the same. However, now
around 939000 cycles are necessary for executing all the iterations, thus:

Latency of a DDR memory read = (939000 - 50000) / (10000 * 4) = 22

Imagination University Programme — RVfpga Lab 19
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

To check if it is correct, we double the number of load instructions and execute the program
again:

DCCM:

REPFAT-

RFPFAT -

3, t
t3, 4(t4)

end

> Executing task: platformio de

Latency of a DDR memory read = (1862000 - 90000) / (10000 * 8) = 22

Imagination University Programme — RVfpga Lab 19
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

TASK: A quite complex but very interesting exercise is to analyse the Memory Controller
used in the RVfpga System. Remember that you can find the modules that make up this
controller in folder [RVfpgaPath])/RVfpga/src/LiteDRAM, and that the top module is
implemented in file litedram_top.v inside that folder. You can start with the simulation from
Figure 3 and add and analyse some signals from the LiteDRAM controller.

Solution not provided.

TASK: Analyse module ifu_ic_mem to understand how the elements in Figure 4 are
implemented.

Module ifu_ic_mem:
Data Array and Tag Array instantiation:

IC TAG #(.ICACHE_TAG HIGH(
.ICACHE_TAG_LOW(ICACH
.ICACHE_TAG DEPTH(I(

} ic_tag inst
(
= 2
.ic_wr_en (ic_wr_en[3:8]),
.ic_debug_addr(ic_debug_addr[ICAC
.ic_rw_addr (ic_rw_addr[31:3

) ;

IC_DATA #(.ICACHE_TAG_HIGH(I(
.ICACHE_TAG_LOW(
.ICACHE_IC_DEPTH(I(
) ic_data inst

(

-3
.ic_wr_en (ic_wr_en[3:08]),
.ic_debug addr(ic_debug_addr[
.ic_rw_addr (ic_rw_addr[I

I

Data Array plus Parity bits (In our case RV_ICACHE_ECC is not defined):

Imagination University Programme — RVfpga Lab 19
Version 2.2 — 9th May 2022
© Copyright Imagination Technologies

(genvar k=0; k<NUM SUBBANKS

ic_bank_way_clken[i][k] ic_bank_read[k] ic_b_sb_wren[k][i];

rvoclkhdr bank ¢ (.en(ic_bank_way clken[i][k] clk override), .1lclk(ic_bank way clk[i][k]), .*);

r_data (
ic_bank_way_clk[i][k]),
(ic_b_sb_wren[k][i])

. ic_bank way clk[i][k]),

WE (ic_b _sb wren[k][i]),

D (ic_sb_wr_data[k][3 1
ic_rw_addr_g[€
(wb_dout[i][(k+1)*3

4-1 Multiplexer:

ic_premux_data_ext;
wb_dout_way;
logic [3:0] [1 8] wb_dout_way_with_premux;

ic_premux_data_ext[. | | ,ic_premux_data[,ic_premux_data[ic_premux_dat
wb_dout_way[@][1 W ic_bank_read ff[3] N ic_bank_read ff[2] ic_bank_read ff[1] 4{ic_bank_read_ff[2]
wb_dout_way[1][1 8) ic_bank_read_ff[3] > ic_bank_read_ff[2] ic_bank_read_ff[1]
wh_dout_way[2][1 wh_ ic_bank_read ff[3] N ic_bank_read ff[2] ic_bank_read ff[1]
wb_dout_way[3][1 whb_ 1 34{ic_bank_read_ff[3] > ic_bank_read_ff[2] ic_bank_read_ff[1]

wb_dout_way_with_premux[8][1 2] ic_sel_premux_data ° ic_premux_data_ext[1l wb_dout_way[@]
wb_dout_way with premux[1][1 ic_sel premux data ° ic_premux data wb_dout way[1]
wb_dout_way_with_premux[2][1 B ic_sel_premux_data ° ic_premux_data 1 whb_dout_way[2]
wb_dout_way with premux[3][1 @ ic_sel premux data ° ic_premux data ext[1 wb_dout_way[3]

[
[
[
[

ic_rd data[l (ic_rd_hit g[e] ic_sel_premux data wb_dout_way with premux[e][13
(ic_rd_hit_q[1] i el_premux_data wb_dout_way_with_premux[1][

(ic_rd_hit gq[2] ic_sel_premux data wb_dout_way with premux[2][
(1

6{ic_rd_hit_q[3 ic_sel_premux_data wb_dout_way_with_premux[3][135:6

Tag Array plus Parity bits (In our case RV_ICACHE_ECC is not defined):

Imagination University Programme — RVfpga Lab 19
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

(genvar i=-8; i<NUM S; 1++) WAYS
rvoclkhdr ic_tag cl_cgc (.en(ic_tag_clken[i]), -11lclk(ic_tag_ clk[i]), -*);
ICACHE_SZ_16

RV_ICACHE_ECC
5 dic way tag (

.CLK(ic_tag_clk[i]),

WE (ic_tag_wren_g[i]),

D (ic_tag_wr_dats
ADR(ic_rw_addr_g[

.0 (ic_tag_data_raw)

w_tout[i] _TAG ic_tag_data_raw[i][3
w_tout[i] ic_tag_data_raw[i][2

rvecc decode ecc decode (
.en{~dec_tlu_core_ecc_disable),
.sed_ded (1'b1),
,ic_tag_data_raw[i]
, ic_tag_data_raw[i]
.dout(ic_tag corrected data unc[i][
_tag_corrected_ecc_unc[i][
(ic_tag_single ecc_error[i]),
.double (ic_tag_double ecc_error[i]));

ic_tag_way_perr[i]- ic_tag_single_ecc_error[i] @ ic_tag_double ecc_error[i] ;

4x21 ic_way_tag (
.CLK(ic_tag_clk[i]),
WE (ic_tag_wren_g[i]),
D (ic_tag_wr_dats
-ADR(ic_rw_addr_qg[
.0 (ic_tag data re

iE

w_tout[i][3 \CHE_TAG_HIGH] = ic_tag_data raw[i][3 ACHE_TAG_HIGH:@] ;
w_tout[i][3 ic_tag_data_raw[i] ;

rveven paritycheck #(32-ICACHE_TAG_HIGH) parcheck(.data_in (w_tout[i][31:ICACHE_TAG_HIGH]),
.p in (w_tout[i][32]),
(ic_tag_way perr[i]));
“endif

Comparators:

ic_rd_hit[@] (w_tout[@][31:ICAC (ic_rw_addr_ff[31:ICAC AG_HIG ic_tag_valid[@];
ic_rd_hit[1] 1:IC ic_rw_addr_ff[31 G ic_tag valid[1];

ic_rd_hit[2] 2][31:1IC ic_rw_addr ff[31 G ic_tag valid[2];
ic_rd_hit[3] {w_tout[3][31:ICAl ic_rw_addr ff[31:ICAC AC G ic_tag_wvalid[3];

TASK: Replicate the simulation from Figure 6 on your own computer. To do so, follow the

next steps (as described in detail in Section 7 of the GSG):

- If necessary, generate the simulation binary (Vrvfpgasim).

- In PlatformlO, open the project provided at:
[RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_Example.

- Update the path to the RVfpga simulation binary (Vrvfpgasim) in file platformio.ini.

- Generate the simulation trace with Verilator (Generate Trace).

- Open the trace on GTKWave.

- Use file testl_Miss.tcl (provided at
[RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_Example) for opening the same
signals as the ones shown in Figure 6. For that purpose, on GTKWave, click on File —
Read Tcl Script File and select the testl_Miss.tcl file.

- Click on Zoom In ('i') several times and analyse the region from 28900 ps to 30220

Imagination University Programme — RVfpga Lab 19
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

ps.

You can also analyse some things in more detail, such as the write to the I$ or the bypass
of the initial instructions.

Solution provided in the main document of Lab 19.

TASK: Replicate the simulation from Figure 7 on your own computer. Use file testl Hit.tcl

(provided at [RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_Example). Zoom In ('i'
) several times and move to 34680ps.

Solution provided in the main document of Lab 19.

TASK: Analyse the Verilog code from Figure 9 and explain how it operates based on the
above explanations.

Solution not provided.

TASK: Analyse the Verilog code from Figure 10 and explain how it operates based on the
above explanations.

Solution not provided.

1. EXERCISES

1) Transform the infinite loop from Figure 11 into a loop with 0x10000 iterations, but
keep the 5 instructions at the same addresses. Measure the number of cycles and 1$
hits and misses. Then remove one of the 5 instructions and measure the same
metrics. Compare and explain the results.

5 jump instructions: 4 jump instructions:

Imagination University Programme — RVfpga Lab 19
Version 2.2 — 9th May 2022
© Copyright Imagination Technologies

te, &
INSERT NOP
INSERT_NO

Blockl:

_Bloc
NOPS 1623

set8 Bloc
NOPS_1023

Set8 Block5: Set8 Blockl
set8_Blockl - N

TERMINAL PROBLEM TPUT DEB NSOLE TERMINAL

> Executing task: platformio device monito > Executing task: platformio device monit

= 1784291

In the program with 4 5 instructions the number of I$ misses and the number of cycles
decrease drastically, as now only the blocks do not conflict with each other. At the same
time, the number of I$ hits increases a lot.

2) Use the program from Figure 5 to analyse an I$ hit from the point of view of the 1$
Replacement Policy.

Solution not provided.

3) Extend Figure 6 to analyse in detail how each 64-bit chunk is written in the 1$.
Solution not provided.

4) Analyse in simulation and on the board other I$ configurations, such as an I$ with a
different block size. Recall that the number of ways cannot be modified.
Solution not provided.

5) Analyse the logic that checks the correctness of the parity information from the Data
Array and from the Tag Array.

Solution not provided.

Imagination University Programme — RVfpga Lab 19
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

