

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 9
Interrupt-driven I/O

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

In this lab, we introduce the concept of interrupts and show how to use them on RVfpga.
Interrupts may be generated by software or hardware. In this lab we focus on hardware
interrupts which are triggered by the value of a physical pin changing. Specifically, we begin
in Section 2 by describing the differences between Programmed I/O and Interrupt-driven
I/O. Then, we explain the operation of the RVfpga System’s Interrupt Controller, which is part
of the SweRV EH1 core (Section 3). In Section 4 we describe how to configure external
interrupts using Western Digital’s Peripherals Support Package (PSP) and Board Support
Package (BSP), which are software that include drivers for hardware peripherals. Finally, we
introduce some example programs (Section 5) and propose some exercises (Section 6) for
using and extending the RVfpga System’s hardware interrupts.

2. PROGRAMMED I/O VS. INTERRUPT-DRIVEN I/O

Several methods exist for interacting with peripherals: Programmed I/O, Interrupt-driven I/O,
and Direct Memory Access (DMA). In labs 2-8, we used Programmed I/O to interact with
peripherals. In Programmed I/O, the user program continually polls the I/O interface and,
depending on its state, reacts accordingly. For example, the Fundamental Exercise from Lab
6 used programmed I/O by continuously polling (reading) switches 0 and 1 to control the
speed and direction of a block of four lit LEDs that repeatedly moved from one side of the
LEDs to the other. Programmed I/O is very simple to implement and requires very little
hardware support, but the continuous polling of the I/O interface keeps the processor busy
doing useless work.

Interrupt-driven I/O overcomes this drawback and enables the program to only react when
an event occurs on the peripheral. In this scheme, the peripheral is responsible for sending a
signal (called an interrupt) to the processor when some event occurs – for example, a timer
overflowing, a character being received on a UART interface, a button toggling, etc. When
no event occurs (i.e., there is no interrupt), the processor continues doing useful work. When
the processor receives an interrupt, it stalls the program that it was running and invokes an
interrupt service routine (ISR), also called an interrupt handler. An ISR is essentially a

function with void arguments that handles the interrupt – i.e. it reads the new value of the

button, it does some action related to the timer overflow, etc. Processors usually support
single- and multi-vector modes. In single-vector mode (Figure 1), all interrupts invoke the
same ISR. Thus, when an interrupt occurs, the processor stalls the main program and jumps
to the common ISR, which first determines the interrupt source and then executes the
specific ISR code that corresponds to the identified interrupt cause. In multi-vector mode
(Figure 2), each interrupt invokes a different ISR. Thus, when an interrupt is generated, the
cause of the interrupt is determined first, and then the program jumps to the ISR that
corresponds to the identified cause.

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

Figure 1. Example with 2 interrupts in single-vector mode

Figure 2. Example with 2 interrupts in multi-vector mode

Processors usually allow interrupts to be prioritized. Not only will higher priority interrupts be
handled first, but a higher priority interrupt will pre-empt a lower-priority interrupt that was in
the process of being handled. For example, suppose a button interrupt is set to priority 5, a
timer interrupt is set to priority 7 and the threshold is set to 4 (so both priorities are above the
threshold). If the program is executing its normal flow and the button is pressed, an interrupt
will occur and the processor calls the ISR, which reads the data from the button and handles
it. If a timer overflows while the button ISR is active, the ISR will itself be interrupted so that

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

the processor can immediately handle the timer overflow. When it is done, it will return to
finish the button interrupt before returning to the main program1.

3. THE PROGRAMMABLE INTERRUPT CONTROLLER PROVIDED BY SWERV EH1

The SweRV EH1 core supports interrupts as described in the following references and as
summarized below:

- [PRM v1.7] Revision 1.7 (June 25, 2020), Chapter 6, “RISC-V SweRV EH1
Programmer’s Reference Manual”, available at
https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-
V_SweRV_EH1_PRM.pdf

- [ISM v1.11] Version 1.11-draft (December 1, 2018), Chapter 7, “The RISC-V
Instruction Set Manual – Volume II: Privileged Architecture”, available at
https://github.com/riscv/riscv-isa-manual/releases/tag/draft-20181201-2650e2a

External interrupts in the SweRV EH1 core (see [PRM v1.7]) are modelled largely after the
RISC-V PLIC (Platform-Level Interrupt Controller) specification (see [ISM v1.11]). However,
the interrupt controller is associated with the core, not the platform. Therefore, the more
general term PIC (Programmable Interrupt Controller) is used for referring to the controller
available in the SweRV EH1 core. The PIC provides the following main features:

- Supports up to 255 external interrupt sources (from 1 (highest priority) to 255 (lowest
priority)); each source has its own enable.

- Beyond source numbering, provides 15 additional priority levels; two priority schemes
are available: 1-15 (where 1 is lowest priority), or 0-14 (where 14 is lowest priority).
Each source can be assigned a priority.

- Provides support for programmable priority threshold to disable lower-priority
interrupts.

- Support for vectored external interrupts, interrupt chaining, and nested interrupts.

Figure 3 illustrates a simplified version of the the RVfpga System’s interrupt system. All
functional units that generate interrupts are called external interrupt sources. External
interrupt sources indicate an interrupt request by sending an asynchronous signal to the PIC
with signals ending in _irq (an abbreviation for interrupt request). In this lab, we show how to
use interrupts from the timer and the GPIO; these units generate interrupts using signals
ptc_irq and gpio_irq, respectively.

Each external interrupt source connects to a dedicated gateway (located inside the PIC), a
hardware structure responsible for synchronizing the interrupt request to the core’s clock
domain and for converting the request signal to a common interrupt request format for the
PIC. The gateway must provide programmability for interrupt type (i.e., edge- vs. level-
triggered) as well as interrupt signal polarity (i.e., low-to-high vs. high-to-low transition for
edge-triggered interrupts, active-high vs. -low for level-triggered interrupts).

The PIC can only handle one interrupt request per interrupt source at a time. It evaluates all
pending and enabled interrupt requests and picks the highest-priority interrupt with the

1 D. Harris and S. Harris. “Digital Design and Computer Architecture”. Second Edition – 2012. Morgan
Kaufmann Publishers (San Francisco, CA, United States). ISBN:978-0-12-394424-5.

https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
https://github.com/riscv/riscv-isa-manual/releases/tag/draft-20181201-2650e2a

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

lowest source ID. It then compares this priority with a programmable priority threshold and,
to support nested interrupts, the priority of the interrupt handler if one is currently running. If
the picked request’s priority is higher than both thresholds, the PIC sends an interrupt
notification to the core, which stalls the execution of the main program and jumps to the
corresponding ISR, as illustrated in Figure 1 (single-vector mode) and Figure 2 (multi-vector
mode).

Figure 3. The RVfpga System’s interrupt system

The main functionalities of the PIC are summarized in the following basic steps:

1) Enabling/Disabling: the PIC allows enabling/disabling external interrupts
2) Configuration: the PIC can be configured to listen to external interrupts with

different polarities (active-high/active-low) or type (edge-triggered/level-triggered).
The PIC also permits allocating ISRs to different memory addresses.

3) Filtering and priority assignments: the PIC allows assigning priority levels to
interrupts. When the main program is running, the PIC selects the enabled,
triggered interrupt with the highest priority level.

4) Notification: once the PIC selects the interrupt with the highest priority, it notifies
the core to stop the execution of the main program in order to jump to the routine
that services the chosen interrupt.

5) Pre-emption: if nested interrupts are enabled, it is possible to pre-empt the
interrupt being serviced by another one with a higher priority.

4. CONFIGURING EXTERNAL INTERRUPTS IN SweRV EH1

Similarly to any other peripheral, the PIC is configured using memory-mapped registers
which are accessible to the user via load/store instructions. Using the interrupt system at a
register-level would be possible but very complex; fortunately, WD’s Processor Support
Package (PSP) and Board Support Package (BSP)
(https://github.com/westerndigitalcorporation/riscv-fw-infrastructure) include several functions
that provide a much simpler approach to implement programs using interrupts. Table 1
describes the main functions and macros that are required to configure the external
interrupts. For the sake of completeness, the Appendix at the end of this document provides
a description of the different registers available and the steps for register-level configuration
and use of the PIC.

https://github.com/westerndigitalcorporation/riscv-fw-infrastructure

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

Table 1. Basic functions and macros used to configure external interrupts

Header Description
void pspInterruptsSetVectorTableAddress(

 void* pVectTable);
Prepares vector-table address

void pspExternalInterruptSetVectorTableAddress(

 void* pExtIntVectTable);
Prepares external interrupts vector-table
address

void bspInitializeGenerationRegister(

 u32_t uiExtInterruptPolarity)
Put the Generation-Register in its initial
state

void bspClearExtInterrupt(

 u32_t uiExtInterruptNumber)
Clear the trigger that generates external
interrupt

void pspExtInterruptSetPriorityOrder(

 u32_t uiPriorityOrder);
Sets Priority Order (Standard or Reserved)

void pspExtInterruptsSetThreshold(

 u32_t uiThreshold);
Sets the priority threshold of the external
interrupts in the PIC

void pspExtInterruptsSetNestingPriorityThreshold(

 u32_t uiNestingPriorityThreshold);
Sets the nesting priority threshold of the
external interrupts in the PIC

void pspExtInterruptSetPolarity(

 u32_t uiIntNum,
 u32_t uiPolarity);

Sets the polarity (active-high or active-low)
of a specified interrupt line

void pspExtInterruptSetType(

 u32_t uiIntNum,
 u32_t uiIntType);

Sets the type (Level-triggered or Edge-
triggered) of a specified interrupt line

void pspExtInterruptClearPendingInt(

 u32_t uiIntNum);
Clears the indication of pending interrupt
for the specified interrupt line

void pspExtInterruptSetPriority(

 u32_t uiIntNum,
 u32_t uiPriority);

Sets the priority of a specified interrupt line

void pspExternalInterruptEnableNumber(

 u32_t uiIntNum);
Enables a specified interrupt line in the PIC

void pspInterruptsEnable(

 void);
Enable interrupts (in all privilege levels)
regardless their previous state

void pspInterruptsDisable(

 u32_t *pOutPrevIntState);
Disables interrupts and return the current
interrupt state in each one of the privileged
levels

Example interrupt service routines (ISRs) are given later in the lab. They follow the steps
described below to configure the RVfpga System interrupts, based on the functions from
Table 1. Note that, in addition to configuring the PIC, the peripherals generating the external
interrupt must be configured as well (this will be described later for each of the peripherals
used in the examples and exercises).

DEFAULT INITIALIZATION OF THE INTERRUPT SYSTEM:
1. In multi-vector mode, set the base address of the external vectored interrupt address

table. Use functions pspInterruptsSetVectorTableAddress and

pspExternalInterruptSetVectorTableAddress.

2. Put the Generation Register in its initial state. Use function

bspInitializeGenerationRegister.

3. Make sure the external-interrupt triggers are cleared. Use function

bspClearExtInterrupt.

4. Set default values for the priority order (function

pspExtInterruptSetPriorityOrder), threshold (function

pspExtInterruptsSetThreshold) and nesting priority threshold (function

pspExtInterruptsSetNestingPriorityThreshold).

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

INITIALIZATION OF EACH INTERRUPT SOURCE:
1. For each interrupt source, set the polarity (active-high/active-low) and type (level-

triggered/edge-triggered) using functions pspExtInterruptSetPolarity and
pspExtInterruptSetType

2. Clear any pending interrupt using function pspExtInterruptClearPendingInt.

3. Set the priority level for each external interrupt source by using function

pspExtInterruptSetPriority.

4. Enable interrupts for the appropriate external interrupt source by using function

pspExternalInterruptEnableNumber.

5. In multi-vector mode, for each external interrupt source, write the address of the
corresponding handler in the external vectored interrupt address table.

ADVANCED TASK: In order to gain a deeper understanding about these basic functions,
view the PSP code located at .platformio/packages/framework-wd-riscv-sdk/psp and the
BSP code located at .platformio/packages/framework-wd-riscv-
sdk/board/nexys_a7_eh1/bsp. Of special interest are the files listed below, some of them
contained within the api_inc subfolder.

- bsp_external_interrupts.h: external_interrupts creation in RVfpga

- psp_interrupts_eh1.h: it provides information and registration APIs for ISRs on the EH1 core

- psp_ext_interrupts_eh1.h: it defines the psp external interrupts interfaces for SweRV EH1

- psp_macros_eh1.h: it defines the psp macros for SweRV EH1

- psp_csrs_eh1.h: definitions of SweRV EH1 CSRs

It is also recommended to analyse at least one of these functions down to the register-
level. For this purpose, you can use the information provided in the Appendix, which
describes how the SweRV EH1 Core’s PIC configures and manages external interrupts at
a register-level.

ADVANCED TASK: We also recommend that you analyse and execute the external
interrupts demo provided by Western Digital at
https://github.com/westerndigitalcorporation/riscv-fw-infrastructure and available as a
PlatformIO project at: [RVfpgaPath]/RVfpga/Labs/Lab9/WD_demo_external_int_Original. If
everything works correctly, you should see the following messages in the serial console:

5. EXAMPLES

In this section, we provide examples of converting programmed I/O programs to interrupt-
driven I/O programs. We show three examples that illustrate the different problems inherent

https://github.com/westerndigitalcorporation/riscv-fw-infrastructure

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

to Programming I/O (first and second examples) and then show how these problems can be
easily solved by using an Interrupt-driven I/O scheme (third example).

A. LED-Switch_C-Lang program
The LED-Switch_C-Lang program (see Figure 4) inverts the right-most LED state every time
a 01 transition occurs on the right-most switch. The program is available at:
 [RVfpgaPath]/RVfpga/Labs/Lab9/LED-Switch_C-Lang.c

After the initialization of the peripherals, the program enters an infinite loop that compares
the current switch state with the previous switch state and, in case a 01 transition is
detected, it inverts the LED state (note that, when a 10 transition occurs, nothing
happens).

In previous examples and exercises written in C, we defined macros for accessing the I/O

registers (READ_GPIO, READ_Reg, WRITE_GPIO, WRITE_Reg, etc.). In this example, we

instead use two macros defined in the PSP for the same purpose:

M_PSP_READ_REGISTER_32, that reads a 32-bit register provided as an argument, and

M_PSP_WRITE_REGISTER_32, that writes a 32-bit register with the value provided in the

second argument. Remember that, for being able to use these macros, you must include line

framework = wd-riscv-sdk in file platformio.ini (this is the default when a project is

created with RVfpga as the target) and line #include "psp_api.h" at the beginning of

the program (Figure 4, line 1).

Figure 4. LED-Switch_C-Lang program

TASK: Analyse the LED-Switch_C-Lang program to understand it in detail. If needed, you
can use the debugger for analysing the program step-by-step.

The program works correctly, but it is very inefficient, as the processor does nothing else
than reading/writing the switches/LEDs. Obviously, we want our processor to do more things
than only communicating with the I/O devices.

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

B. LED-Switch_7SegDispl_C-Lang program
In this second example, LED-Switch_7SegDispl_C-Lang, the program extends LED-
Switch_C-Lang with a second peripheral: the 7-segment displays. The program performs
two tasks:

- As in the first example, it inverts the right-most LED every time a 01 transition on
the right-most switch occurs.

- It shows an ascending count in the 8-digit 7-segment displays, that increments
around once per second. Note that, for simplicity, we create the delay of one second

with a for loop (in Exercise 1, you will use the timer from Lab 8 for this purpose).

You can see this program in Figure 5 and you can find it at:
 [RVfpgaPath]/RVfpga/Labs/Lab9/LED-Switch_7SegDispl_C-Lang.c

After some initializations, the program enters an infinite loop that compares the current
switch state with the previous one and, in case a 01 transition is detected, it inverts the
LED state. Then, the value shown on the 8-digit 7-segment displays is incremented and a
delay is generated. See the red box in Figure 5.

Figure 5. LED-Switch_7SegDispl_C-Lang program

TASK: Analyse the LED-Switch_7SegDispl_C-Lang program in order to understand it in
detail. If needed, you can use the debugger for analysing the program step-by-step.

Note that, in this case, the program does not even work correctly in some situations. For
example, a 010 switch transition that occurs within the delay loop will never be detected.
Moreover, we still have the same problem as in the previous example: the processor is busy
all the time just reading/writing the devices or creating a delay.

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

How could we improve these situations? The answer is Interrupt-driven I/O. In the following
example and in the exercises proposed in the next section, we show how to resolve all of
these problems and implement programs that are more efficient and work correctly in all
situations.

C. LED-Switch_7SegDispl_Interrupts_C-Lang program
In this final example ([RVfpgaPath]/RVfpga/Labs/Lab9/LED-Switch_7SegDispl_Interrupts_C-
Lang.c), we show how to use Interrupt-driven I/O to read the state of the right-most switch.
Using this strategy fixes the problem of the program missing switch transitions that occur
during the delay loop. Note, however, that the problem of having the processor busy in a
delay loop still persists. (You will deal with this problem in Exercise 1.)

The new main function, shown in Figure 7, performs the following tasks:

- Initialize the interrupt system:
o Default initialization of the interrupts: invoke function

DefaultInitialization (line 119), which we show in Figure 8.

o Set a specific threshold, by invoking function

pspExtInterruptsSetThreshold(5) (line 120). External interrupts

whose priority is not above this threshold will be ignored.
- Initialize external interrupt line IRQ4:

o Initialize line IRQ4: invoke function ExternalIntLine_Initialization

(line 123) for interrupt line 4, with a priority of 6 and GPIO_ISR as the

Interrupt Service Routine. We analyse this function in Figure 9.
o Connect IRQ4 with GPIO interrupt line (line 124). This is done by setting bit 0

of word 0x80001018 (tagged as Select_INT in the example). This System

Controller memory-mapped register contains 2 bits (see Figure 6): bit 0,
called irq_gpio_enable, used to connect the GPIO interrupt line with IRQ4
when it is set to 1; and bit 1, called irq_ptc_enable, used to connect the timer
interrupt line with IRQ3 when it is set to 1. For now, it is enough that you know
this high-level functionality; later, in Exercise 2, we explain the Verilog
implementation in detail, so that you can modify it as part of that exercise.

Figure 6. Register 0x80001018 of the RVfpga System.

- Initialize the peripherals (in this example, the GPIO and the 7-segment displays):

o Invoke function GPIO_Initialization at line 127. We analyse that

function in Figure 10.
o Enable the eight 7-segment displays (line 128).

- Enable the interrupts:

o Invoke function pspInterruptsEnable (line 131) and macro

M_PSP_SET_CSR (line 132). Constants D_PSP_MIE_NUM and

D_PSP_MIE_MEIE_MASK are defined by WD’s PSP.
- Finally, the 7-segment displays are written, and a delay is established within a loop

that repeats forever (lines 134-141).

… irq_ptc_
enable

irq_gpio
_enable

Bit 0Bit 1Bit 2Bit 31

0x80001018

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

Figure 7. main function.

The DefaultInitialization function, shown in Figure 8, performs the steps

explained in Section 4 below item “DEFAULT INITIALIZATION OF THE INTERRUPT
SYSTEM”:

- It configures the vector-table (lines 53 and 56). Note that, in this example, array

G_Ext_Interrupt_Handlers stores the vector-table.

- It initializes the register used for triggering the IRQs (line 59).
- It clears all external interrupts (in our case IRQ3 and IRQ4) at lines 61-65. Constants

D_BSP_FIRST_IRQ_NUM and D_BSP_LAST_IRQ_NUM are defined by WD’s BSP
to 3 and 4, respectively.

- It establishes the default threshold and priorities (lines 68, 71 and 74). Again, the
constants used by these functions are defined by WD’s PSP.

Figure 8. DefaultInitialization function

The ExternalIntLine_Initialization function, shown in Figure 9, performs the

steps explained in Section 4 below item “INITIALIZATION OF EACH INTERRUPT
SOURCE”:

- It configures the type and polarity of the IRQ4 interrupt (the constants used by these

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

functions are defined by WD’s PSP) and it clears any potential pending interrupts at
the corresponding gateway (lines 81, 84 and 87).

- It sets the priority for IRQ4 (line 90).
- It enables IRQ4 interrupts in the PIC at line 93.
- It registers the GPIO Interrupt Service Routine (GPIO_ISR) in the vector-table (at line

96), which is stored in array G_Ext_Interrupt_Handlers.

Figure 9. ExternalIntLine_Initialization function

The GPIO_Initialization function, shown in Figure 10, performs the following tasks:

- Configure the GPIO pins as input/output and initialize the LEDs to 0 (lines 103 and
104).

- Configure the GPIO interrupts. (To further understand the functionality of each GPIO
register, use the GPIO Core Specification, available at:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/gpio/docs/gpio_spec.pdf.)

o RGPIO_INTE: it determines which general-purpose pins generate an interrupt
(line 107).

o RGPIO_PTRIG: it determines the edge that generates an interrupt (line 108).
o RGPIO_INTS: it clears the interrupts of all pins (line 109).
o RGPIO_CTRL: the least-significant bit of this register enables interrupt

generation (line 110).

Figure 10. GPIO_Initialization function.

Finally, the ISR (i.e., the GPIO_ISR function shown in Figure 11) is invoked when an

interrupt is triggered at the GPIO. This ISR (Interrupt Service Routine) performs the following
tasks:

- The current state of the LEDs is read (line 35).

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 13

- The LEDs are inverted and masked (lines 36-37).
- The LEDs are written with the new value (line 38).
- The GPIO interrupt is cleared (line 41).
- The IRQ4 external interrupt is cleared (line 44).

Figure 11. GPIO_ISR function.

TASK: Analyse the LED-Switch_7SegDispl_Interrupts_C-Lang program to understand it in
detail. You can compare the implementation with the explanations of Section 4 and, if
needed, use the debugger for analysing the program step-by-step.

6. EXERCISES

Exercise 1. Modify the LED-Switch_7SegDispl_Interrupts_C-Lang program to include a
second interrupt source, in this case generated by the timer. Recall that a timer can act as a
PWM generator, timer, or counter, so it is generally referred to as a PTC unit.

 In the RVfpga System, the timer interrupt is connected to IRQ3 by setting bit 1
(irq_ptc_enable) of word 0x80001018 (see Figure 6).

 Create a function that initializes PTC interrupts, similar to

GPIO_Initialization in the previous example.

 Create a second ISR called PTC_ISR. It should be similar to GPIO_ISR in the LED-

Switch_7SegDispl_Interrupts_C-Lang program, but it should instead be invoked

using IRQ3. PTC_ISR should handle and clear the timer interrupt.

Once the program is implemented and debugged, use the PSP functions

pspExtInterruptsSetThreshold(threshold) and

pspExtInterruptSetPriority(interrupt_source, priority) to analyse

different combinations of the priorities and the threshold. Note that you can even change the
priorities at execution time; for example, you can show the 7-segment displays count up to
10 and then stop counting by modifying the priority of the appropriate external interrupt
source.

Exercise 2. Modify RVfpgaNexys to include a third interrupt source coming from the second
GPIO that you designed in Lab 6 for controlling the on-board pushbuttons (GPIO2). Two
approaches are possible for completing this exercise:

- You can connect the GPIO2 interrupt to an unused external interrupt source. SweRV

EH1 provides up to 255 different interrupt lines and so far we have only used 2 of
them. The drawback of this approach is that WD’s libraries need to be modified.

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

- You can connect the GPIO2 interrupt to IRQ4, so that the GPIO module (that

connects to the LEDs and switches) and GPIO2 (that connects to the pushbuttons)
use a single-vector interrupt mode. Although multi-vector mode is preferable under
some situations, the advantage of this approach is that you can reuse the BSP.

We provide some guidance for the second approach by providing some details about the
low-level implementation of interrupts in the RVfpga System.

Figure 12 shows the circuit that connects the various interrupt sources (GPIO interrupt, timer
interrupt – and the interrupt sources originally available in the SweRVolf core, which we do
not analyse nor use here) with IRQ4 and IRQ3. Specifically, IRQ4 is connected to the GPIO
when irq_gpio_enable = 1 (Figure 6), whereas IRQ3 is connected with the timer when
irq_ptc_enable = 1 (Figure 6). When irq_gpio_enable = irq_ptc_enable = 0, IRQ4 and IRQ3
are connected with the SweRVolf original interrupt sources, which we do not use in this lab
(if you are interested in using these interrupt sources, you can view more information from
https://github.com/chipsalliance/Cores-SweRVolf).

Figure 12. Logic implementation: connection of GPIO and timer interrupts with
IRQ4 and IRQ3 respectively

Figure 13 shows the Verilog region of module swervolf_core that implements the
connection between the interrupt sources and IRQ4 and IRQ3. The GPIO interrupt is
connected with IRQ4 when signal irq_gpio_enable is 1 (top part of the red box). The timer
interrupt is connected to IRQ3 when signal irq_ptc_enable is 1 (bottom part of the red box).
When both signals are 0 (code not highlighted in the figure), the interrupt sources
implemented in SweRVolfX are connected to IRQ3 and IRQ4.

https://github.com/chipsalliance/Cores-SweRVolf

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 15

Figure 13. Verilog implementation: highlighted in red, connection of GPIO and
timer interrupts with IRQ4 and IRQ3, respectively.

In this exercise you must extend the previous implementation (Figure 12) to include a new
interrupt source connected to IRQ4 as shown in Figure 14.

Figure 14. Logic implementation: connection of a second interrupt source
(provided by the GPIO that reads the pushbuttons) with IRQ4

We highlight a few other Verilog regions that you should also understand, although you do
not need to modify them in this example.

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 16

 The interrupt sources are inserted into the SweRV processor at line 600 of the
swervolf_core module (Figure 15). Although four interrupt sources are available, in
this lab we are only interested in sources sw_irq4, and sw_irq3.

Figure 15. Interrupt sources sent to SweRV

 The enable signals, irq_gpio_enable and irq_ptc_enable (accessible at address
0x80001018, see Figure 6), are written by the core at lines 192-196 of the
swervolf_syscon module (Figure 16).

Figure 16. Writing of register 0x80001018 from the SweRV core

These enable signals, irq_gpio_enable and irq_ptc_enable, are read at lines 248-249 by the
swervolf_syscon module from the core (see Figure 17).

Figure 17. Reading of register 0x80001018 into the SweRV core

Exercise 3. Use the extended RVfpgaNexys version that you designed in the previous
exercise to implement a C program that displays an increasingly incrementing binary count
on the LEDs, starting at 1. Create a delay with the timer, using interrupts, for waiting
between displaying each incremented value so that the values are viewable by the human
eye. Read BTNC and use it to change the speed of the count, and read Switch[0] and use it
to restart the count.

With your extended RVfpgaNexys from Exercise 2, you now have three possible interrupt
sources:

 GPIO (interrupts from the switches)

 GPIO2 (interrupts from the buttons, that you designed in the previous exercise,
Exercise 2)

 PTC (the timer)

Given that the extended RVfpgaNexys implementation from Exercise 2 has two interrupt
sources that share the same line (IRQ4), the corresponding Interrupt Service Routine

(GPIO_ISR) has to identify the device that generated the interrupt. You can obtain that

information from the GPIO registers.

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 17

APPENDIX

This appendix describes how the SweRV EH1 Core’s Programmable Interrupt Controller
(PIC) manages external interrupts at a register level. The PIC uses the memory-mapped
registers shown in Table 2. It must be noted that the PIC memory space starts at address
0xF00C0000; This address is referred to as RV_PIC_BASE. Addresses are given relative to
this base address.

Table 2. PIC Memory-mapped Register Address Map

Name Addresses (relative to
RV_PIC_BASE)

Description Location at
the manual

meiplS 0x0004 – 0x0004+Smax*4-1 External interrupt priority level
register

Table 6-2 of
[PRM v1.7]

meipX 0x1000 – 0x1000+(Xmax+1)*4-1 External interrupt pending register Table 6-3 of
[PRM v1.7]

meieS 0x2000 – 0x2000+Smax*4-1 External interrupt enable register Table 6-4 of
[PRM v1.7]

mpiccfg 0x3000 – 0x3003 External interrupt PIC
configuration register

Table 6-1 of
[PRM v1.7]

meigwctrlS 0x4004 – 0x4004+Smax*4-1 External interrupt gateway
configuration register (for
configurable gateways only)

Table 6-11 of
[PRM v1.7]

meigwclrS 0x5004 – 0x5004+Smax*4-1 External interrupt gateway clear
register (for configurable
gateways only)

Table 6-12 of
[PRM v1.7]

All registers are 32 bits wide and are accessible through load and store instructions, as usual
for memory-mapped I/O. The access type depends on the specific bits that we want to
access (this can be viewed at [PRM v1.7]).

Some of the registers have parameterized names, which end in S or X. Several instances of
these registers can exist. The parameter S refers to the number of external interrupt
sources, which in SweRV EH1 is equivalent to the number of gateways. Thus, registers
ending with ‘S’ have 1 to 255 register instances available. In this lab we only use 2 external
interrupt sources: IRQ3 (associated with the timer), and IRQ4 (associated with the GPIO).
The parameter X refers to a group of 32 gateways. This does not mean that the gateways
are grouped, but grouping them reduces the size of required memory for certain 32-bit
registers where 1 bit is enough for performing an action on a group of external interrupt
sources. Such is the case of the external interrupt pending register, where one bit is enough
to distinguish whether or not the interrupt has been serviced. In order to get more
information about these registers, the rightmost column of Table 1 points to the place within
[PRM v1.7] where the bit-level (specific interrupt) description is contained.

Besides the registers shown in Table 2, the PIC contains Control and Status Registers
(CSRs). The standard RISC-V ISA establishes a 12-bit encoding space (csr[11:0]) for up to
4,096 CSRs. By convention, the upper 4 bits of the CSR address (csr[11:8]) are used to
encode the read and write accessibility of the CSRs according to privilege level. The top two
bits (csr[11:10]) indicate whether the register is read/write (00, 01, or 10) or read-only (11).
The next two bits (csr[9:8]) encode the lowest privilege level that can access the CSR. More
information about the CSRs is available in [PRM v1.7] and [ISM v1.11]. Table 3 lists those
CSRs that are useful for managing the external interrupts in the SwerRV EH1 core. These
are accessible through dedicated load and store instructions such as csrrw or csrrs (CSR
read/write and CSR read/set).

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 18

Table 3. PIC Non-standard RISC-V CSR Address Map.

Name Number Description Location

meivt 0xBC8 External interrupt vector table register Table 6-6 of
[PRM v1.7]

meipt 0xBC9 External interrupt priority threshold register Table 6-5 of
[PRM v1.7]

meicpct 0xBCA External interrupt claim ID / priority level capture trigger
register

Table 6-8 of
[PRM v1.7]

meicidpl 0xBCB External interrupt claim ID’s priority level register Table 6-9 of
[PRM v1.7]

meicurpl 0xBCC External interrupt current priority level register Table 6-10 of
[PRM v1.7]

meihap 0xFC8 External interrupt handler address pointer register Table 6-7 of
[PRM v1.7]

mie 0x304 Machine interrupt enable register Table 11-1 of
[PRM v1.7]

mstatus 0x300 Machine status register Figure 3.7 of
[ISM v1.11]

The right-most column on Table 3 points to the place in [PRM v1.7] or [ISM v1.11] where bit-
level information is described for the given CSR (note that the mstatus bits description is not
provided in [PRM v1.7] but in [ISM v1.11] instead).

A. External Interrupt Configuration

In this subsection we summarize the basic steps needed to configure an external interrupt
using the aforementioned registers:

1. Disable all external interrupts by clearing bit miep within the mie CSR.
2. Configure the priority order by writing the priord bit of the mpiccfg register.
3. In multi-vector mode, if not configured, set the base address of the external vectored

interrupt address table by writing the base field of the meivt register.
4. Set the priority threshold by writing the prithresh field of the meipt register.
5. Initialize the nesting priority thresholds by writing ‘0’ (or ‘15’ for reversed priority

order) to the clidpri field of the meicidpl and the currpri field of the meicurpl registers.
6. For each configurable gateway S, set the polarity (active-high/active-low) and type

(level-triggered/edge-triggered) in the meigwctrlS register and clear the IP bit by
writing to the gateway’s meigwclrS register.

7. In multi-vector mode, for each external interrupt source S, write the address of the
corresponding handler in the external vectored interrupt address table.

8. Set the priority level for each external interrupt source S by writing the corresponding
priority field of the meiplS registers.

9. Enable interrupts for the appropriate external interrupt sources by setting the inten bit
of the meieS registers for each interrupt source S.

10. Activate the mei bit within the mstatus CSR.
11. Enable all external interrupts by setting bit miep within the mie CSR.

These are the general steps for S gateways. However, in the RVfpga System we only use 2
interrupt sources (IRQ3 and IRQ4), each of which has its own gateway. Furthermore, it must
be noted that the order is not fully strict, as some actions are interchangeable (e.g., step 4

Imagination University Programme – RVfpga Lab 9: Interrupt-Driven I/O
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 19

can be completed prior to step 2). Besides, because each function calls pspInterruptsDisable
upon entry, step 1 is not strictly needed.

B. External Interrupt Operating Mode

In this subsection we describe how the PIC operates once an external interrupt is triggered.
Once the desired event occurs on the external interrupt line (wire), the following actions take
place:

1. The PIC decides which pending interrupt possesses the highest priority.
2. When the target hart (hardware thread) takes the external interrupt, it disables all

interrupts (i.e., it clears the mie bit in the RISC-V hart’s mstatus register) and jumps
to the external interrupt handler.

3. The external interrupt handler writes to the meicpct register to trigger the capture of
the interrupt source ID of the highest priority external interrupt that is pending (in the
meihap register) and its corresponding priority (in the meicidpl register).

4. The handler then reads the meihap register to obtain the interrupt source ID provided
in the claimid field. Based on the contents of the meihap register, the external
interrupt handler jumps to the handler specific to this external interrupt source. This
can be observed in Figure 18.

5. The source-specific interrupt handler (ISR) services the external interrupt, and then:
a. For level-triggered interrupt sources, the interrupt handler clears the state in

the SoC IP which initiated the interrupt request.
b. For edge-triggered interrupt sources, the interrupt handler clears the IP bit in

the source’s gateway by writing to the meigwclrS register.
This deasserts the source’s interrupt request.

6. Meanwhile, in the background, the PIC continues evaluating pending interrupts.

Figure 18. Vectored External Interrupts (taken from [PRM v1.7])

It must be noted that this is regular operation mode. Nested interrupts (a maximum of 15)
are also supported in the SweRV EH1 core. For more information, please consult the [PRM
v1.7].

