
Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 20

ICCM, DCCM, and Benchmarking

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

1. INTRODUCTION

In this lab, we analyse the scratchpad memories (ICCM and DCCM) available in the SweRV
EH1 processor, and then we provide several benchmarking examples and exercises to
demonstrate some of the concepts from Labs 11 to 20.

Recall from Figure 25 of the RVfpga Getting Started Guide (that we repeat below in Figure 1
for the sake of convenience), that the RVfpga System includes two scratchpad memories
(highlighted in red in the figure): one for data, called Data Closely-Coupled Memory (DCCM),
and one for instructions, called Instruction Closely-Coupled Memory (ICCM).

Figure 1. RVfpgaNexys System

NOTE: Before starting to work on this lab, we recommend reading Sections 1 and 3 of the
paper by Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. “On-chip vs. off-chip
memory: the data partitioning problem in embedded processor-based systems”. ACM
Trans. Design Autom. Electr. Syst. 5(3): 682-704 (2000) (available at:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.2430&rep=rep1&type=pdf).
This paper presents a good introduction to the use of Scratch-Pad memories in embedded
processors.

The RVfpga System memory map was described in Section 4.B of the Getting Started
Guide. The next figure complements that description with an illustration of the address space
occupied by the Instruction Memory (Figure 2a) and by the Data Memory (Figure 2b)
available in the RVfpga System.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.2430&rep=rep1&type=pdf

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

DDR External

Memory

(offchip)

0x00000000

0x07FFFFFF
SweRV EH1

1 cycle

Instruction

Closely-

Coupled

Memory

(onchip)

0xEE000000

0xEE07FFFF

1 cycle

Instruction

Cache

(onchip)

 22 cycles

(a) Address space of Instruction Memory, consisting of an instruction cache (I$)
and DDR External Memory. The ICCM is disabled in the default system.

DDR External

Memory

(offchip)

0x00000000

0x07FFFFFF
SweRV EH1

 22 cycles

Data Closely-

Coupled

Memory

(onchip)

0xF0040000

0xF004FFFF

1 cycle

(b) Address space of Data Memory, consisting of a DCCM and DDR External
Memory.

Figure 2. RVfpga System address space for Instruction and Data Memories

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

In this lab, we focus on the configuration and operation of the Data/Instruction Closely-
Coupled Memories (Sections 2.A and 2.B respectively) and then introduce several
benchmarking examples and exercises (Section 3) where we use both ad-hoc toy programs
that illustrate specific situations and real applications.

2. DATA/INSTRUCTION CLOSELY-COUPLED MEMORIES (DCCM AND ICCM)

In this section, we analyse the Data Closely-Coupled Memory (DCCM) and the Instruction
Closely-Coupled Memory (ICCM) available in the RVfpga System. We first describe how
these two structures can be configured (Section 3.A) and then we illustrate how an access to
the DCCM is performed (Section 3.B).

A. DCCM and ICCM configuration in the RVfpga System

The RVfpga System’s DCCM and ICCM are highly configurable based on a set of
parameters defined in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/common_defines.
vh. The default RVfpga System has the following parameters for these two structures:

DCCM:
`define RV_DCCM_EADR 32'hf004ffff

`define RV_DCCM_FDATA_WIDTH 39

`define RV_LSU_SB_BITS 16

`define RV_DCCM_SIZE 64

`define RV_DCCM_ECC_WIDTH 7

`define RV_DCCM_SADR 32'hf0040000

`define RV_DCCM_BYTE_WIDTH 4

`define RV_DCCM_NUM_BANKS 8

`define RV_DCCM_SIZE_64

`define RV_DCCM_NUM_BANKS_8

`define RV_DCCM_OFFSET 28'h40000

`define RV_DCCM_WIDTH_BITS 2

`define RV_DCCM_ENABLE 1

`define RV_DCCM_DATA_CELL ram_2048x39

`define RV_DCCM_RESERVED 'h1000

`define RV_DCCM_ROWS 2048

`define RV_DCCM_BANK_BITS 3

`define RV_DCCM_DATA_WIDTH 32

`define RV_DCCM_INDEX_BITS 11

`define RV_DCCM_BITS 16

`define RV_DCCM_REGION 4'hf

ICCM:

`define RV_ICCM_DATA_CELL ram_16384x39

`define RV_ICCM_BITS 19

`define RV_ICCM_ROWS 16384

`define RV_ICCM_INDEX_BITS 14

`define RV_ICCM_NUM_BANKS 8

`define RV_ICCM_NUM_BANKS_8

`define RV_ICCM_BANK_BITS 3

`define RV_ICCM_SIZE_512

`define RV_ICCM_RESERVED 'h1000

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

`define RV_ICCM_SIZE 512

`define RV_ICCM_REGION 4'he

`define RV_ICCM_OFFSET 10'he000000

`define RV_ICCM_SADR 32'hee000000

`define RV_ICCM_EADR 32'hee07ffff

However, as in the I$, some of the above parameters are overridden in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/global.h:

DCCM:
localparam DCCM_BITS = `RV_DCCM_BITS;

localparam DCCM_BANK_BITS = `RV_DCCM_BANK_BITS;

localparam DCCM_NUM_BANKS = `RV_DCCM_NUM_BANKS;

localparam DCCM_DATA_WIDTH = `RV_DCCM_DATA_WIDTH;

localparam DCCM_FDATA_WIDTH = `RV_DCCM_FDATA_WIDTH;

localparam DCCM_BYTE_WIDTH = `RV_DCCM_BYTE_WIDTH;

localparam DCCM_ECC_WIDTH = `RV_DCCM_ECC_WIDTH;

ICCM:

localparam ICCM_SIZE = `RV_ICCM_SIZE;

localparam ICCM_BITS = `RV_ICCM_BITS;

localparam ICCM_NUM_BANKS = `RV_ICCM_NUM_BANKS;

localparam ICCM_BANK_BITS = `RV_ICCM_BANK_BITS;

localparam ICCM_INDEX_BITS = `RV_ICCM_INDEX_BITS;

localparam ICCM_BANK_HI = 4 + (`RV_ICCM_BANK_BITS/4);

Note that, as shown in Figure 2, the DCCM is enabled in our baseline system

(RV_DCCM_ENABLE = 1) but the ICCM is disabled (RV_ICCM_ENABLE not defined), so no

ICCM is included in the SoC used in the previous labs.

Table 1 summarizes the ICCM and DCCM configurations in the RVfpga System.

Table 1. DCCM and ICCM Configurations

Characteristic Value

DCCM

Enable 1

Address space 0xF0040000 – 0xF004FFFF

Size 64 KiB

Number of banks 8

Bank size 2048x39 bits (7 bits for parity)

ICCM

Enable 0

Figure 3 shows a block diagram of RVfpga’s DCCM configuration. The input signals to the

DCCM (lsu_addr_dc1, end_addr_dc1, stbuf_addr_any, stbuf_ecc_any and

stbuf_data_any) and the output signals from the DDCM (dccm_data_lo_dc2 and

dccm_data_hi_dc2) are provided from/to the Load Store Unit (lsu), as explained in Lab 13

(see Figures 6 and 13 in Lab 13).

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Off

dccm_rd_addr_lo [15:0] dccm_rd_addr_hi [15:0]

Data

From the Store BufferFrom the DC1 stage adders

2 bits

Bank

3 bits

Addr

11 bits

Off

2 bits

Bank

3 bits

Addr

11 bits

Off

2 bits

Bank

3 bits

Addr

11 bits

Parity

7 bits 32 bits

39 bits

0

1

2046

2047

BANK 0

39 bits

BANK 1

39 bits

BANK 6

39 bits

BANK 7

Enable Bank for

reading

Enable Bank for

writing

rden_bank [7:0]

rden_bank[0]

wren_bank[7]
wren_bank [7:0]

dccm_rd_data_lo [38:0] dccm_rd_data_hi [38:0]

dccm_wr_data [38:0]

dccm_wr_addr [4:2]
dccm_rd_addr_hi [4:2]dccm_rd_addr_lo [4:2]

dccm_data_lo_dc2 [31:0] dccm_data_hi_dc2 [31:0]

lsu_addr_dc1 [31:0] end_addr_dc1 [31:0]

Address

computation

addr_bank[7:0][10:0]

dccm_wr_addr [15:0] dccm_wr_data [38:0]

stbuf_addr_any [15:0] { stbuf_ecc_any [6:0] , stbuf_data_any [31:0] }

Figure 3. DCCM internal design.

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

The RVfpga System’s DCCM is implemented in module lsu_dccm_mem, included in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/lsu/lsu_dccm_mem.sv.
As shown in Figure 3, the DCCM is divided into 8 banks. Two read addresses are provided

for supporting unaligned accesses: dccm_rd_addr_lo[15:0] = lsu_addr_dc1[15:0]

and dccm_rd_addr_hi[15:0] = end_addr_dc1[15:0]. These addresses are logically

divided into 3 fields:
- Bank: Bank selected.
- Addr: Address of the 32-bit word read within the bank.
- Off: Byte read within the 32-bit word.
- Note that 7 parity bits are added to each 32-bit word.

As also explained in Lab 13 and as it can be seen in Figure 3, one write address is provided

in signal dccm_wr_addr[15:0] by the Store Buffer (see the appendix from Lab 13 for

further descriptions of the Store Buffer operation). The write address is divided as the read
addresses (see the previous item). Based on the 3-bit Bank field of these addresses (plus
other signals not specified in the figure that you will analyse in a task below), 8 read/write

enable bits are obtained in rden_bank[7:0] and wren_bank[7:0], respectively. Each

bit determines if the corresponding bank must be enabled or disabled for reading and
writing.

Based on the 11-bit Addr field of these addresses (and other signals not specified in the
figure that you will analyse in a task below), eight 11-bit addresses are obtained in

addr_bank[7:0][10:0], one 11-bit address per bank.

Each of the 8 banks can be accessed independently, as you will analyse in a task below.
Thus, for example, in the most extreme situation, it would be possible to perform two reads
and one write in the same cycle, as long as the three accesses are to three different banks:

- In an unaligned read, banks j and k can be read in the same cycle by providing the

11-bit addresses in signals addr_bank[j] (which is obtained from the 11-bit Addr

field of signal dccm_rd_addr_lo) and addr_bank[k] (which is obtained from the

11-bit Addr field of signal dccm_rd_addr_hi), and by setting the corresponding

enable signals: rden_bank[j] = rden_bank[k] = 1.

- At the same time, it is also possible to write to bank i, by providing the 11-bit address

in signal addr_bank[i] (obtained from the 11-bit Addr field of signal

dccm_wr_addr), and by setting the corresponding enable signal: wren_bank[i] =

1.

TASK: Using the instructions provided in Lab 1, implement a new RVfpga System that
includes a 64 KiB ICCM.

Remember that the ICCM is disabled in our default system. Thus, as explained in Section
2.A of the SweRVref document, in order to enable the ICCM you must include the following
line in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/common_define
s.vh:

`define RV_ICCM_ENABLE 1

In addition, the parameters provided in the default RVfpga System are for a 512 KiB ICCM.
Thus, in order to implement a 64 KiB ICCM, you must modify the following lines of the

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

same file (file common_defines.vh):
RV_ICCM_DATA_CELL ram_16384x39  RV_ICCM_DATA_CELL ram_2048x39

RV_ICCM_BITS 19  RV_ICCM_BITS 16

RV_ICCM_ROWS 16384  RV_ICCM_ROWS 2048

RV_ICCM_INDEX_BITS 14  RV_ICCM_INDEX_BITS 11

RV_ICCM_SIZE_512  RV_ICCM_SIZE_64

RV_ICCM_SIZE 512  RV_ICCM_SIZE 64

RV_ICCM_EADR 32'hee07ffff  RV_ICCM_EADR 32'hee00ffff

As explained in Section 2.A of the SweRVref document, instead of manually modifying file
common_defines.vh, you can also modify the configuration of the SweRV EH1 processor
using the swerv.config script.

TASK: Draw a figure similar to Figure 3 for the ICCM implemented in the previous task.

B. Accessing the DCCM

Similar to the I$ that we analysed in Lab 19, the ICCM and the DCCM have a low access
latency – that is, that allows data to be read or written in a single cycle (see Figure 2).
However, as opposed to the I$, the ICCM and DCCM are controlled by software.

In this section we illustrate and describe an access to the DCCM. We use the DCCM internal
design shown in Figure 3 as a reference and execute a program similar to one already used
in Lab 19. This program, shown in Figure 4, is provided in folder
[RVfpgaPath]/RVfpga/Labs/Lab20/LW-SW_Instruction_DCCM/. It traverses a 250-element

array, reading each element (lw instruction, highlighted in red), adding one to it and storing

the element (sw instruction, highlighted in red) back to the same array element. The loop

contains 20 nop instructions to isolate the iterations from each other. The array is initialized

before accessing it (the initialization loop is not shown in Figure 4, but you can see the array
initialization in the PlatformIO project).

// Access array

la t4, D

li t5, 50

li t0, 1000

la t6, D

add t6, t6, t0

li t5, 1

REPEAT_Access:

 lw t3, (t4)

 add t3, t3, t5

 sw t3, (t4)

 add t4, t4, 4

 INSERT_NOPS_10

 INSERT_NOPS_10

 bne t4, t6, REPEAT_Access # Repeat the loop

Figure 4. Example program

Open the project in PlatformIO, build it, and open the disassembly file (available at
[RVfpgaPath]/RVfpga/Labs/Lab20/LW-

SW_Instruction_DCCM/.pio/build/swervolf_nexys/firmware.dis). Notice that the lw

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

instruction (0x000eae03) and the sw instruction (0x01cea023) are placed at addresses

0x000001c0 and 0x000001c8, respectively.

 0x000001c0: 000eae03 lw t3,0(t4)

…

0x000001c8: 01cea023 sw t3,0(t4)

Figure 5 shows the simulation of a random iteration of the loop from Figure 4. The figure
includes some of the signals shown in Figure 3 as well as some of the LSU core signals that
we described in Lab 13.

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Figure 5. Simulation of a random iteration of the program from Figure 4

i i+1 i+2 i+8

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

TASK: Replicate the simulation from Figure 5 on your own computer. To do so, follow the
next steps (as described in detail in Section 7 of the GSG):
- If necessary, generate the simulation binary (Vrvfpgasim).
- In PlatformIO, open the project provided at: [RVfpgaPath]/RVfpga/Labs/Lab20/LW-

SW_Instruction_DCCM.
- Establish the correct path to the RVfpga simulation binary (Vrvfpgasim) in file

platformio.ini.
- Generate the simulation trace using Verilator (Generate Trace).
- Open the trace on GTKWave.
- Use file scriptLoadStore.tcl (provided at [RVfpgaPath]/RVfpga/Labs/Lab20/LW-

SW_Instruction_DCCM) for opening the same signals as the ones shown in Figure 5.
For that purpose, in GTKWave, click on File → Read Tcl Script File and select the
scriptLoadStore.tcl file.

- Click on Zoom In () several times and analyse the region starting at 43900 ps.

Memory reads and writes using the DCCM occur as follows:

o Cycle i: The lw instruction is decoded in Way 1: dec_i1_instr_d = 0x000eae03.

o Cycle i+1: The address is generated in the DC1 stage, as described in Lab 13 (see

Figure 6 of that lab), and provided to the DCCM:

 lsu_addr_dc1[31:0] = 0xF0040024  dccm_rd_addr_lo[15:0] = 0x0024

 end_addr_dc1[15:0] = 0x0027  dccm_rd_addr_hi[15:0] = 0x0027

As a result of the address check, reading the DCCM is enabled: dccm_rden = 1. This

signal is provided to the DCCM and, along with the 3-bit Bank field of the address,
determines the bank that must be read. In this case, only the second bank of the access

needs to be read as the access is word-aligned: rden_bank = 0x02 (in binary

00000010).

o Cycle i+2: The read data is obtained from the DCCM and provided to the core. Given

that it is an aligned access, the two read signals are equal and only

dccm_data_lo_dc2 is effectively used by the core (again, this was explained in Lab

13):

 dccm_rd_data_lo = 0x4400000009  dccm_data_lo_dc2 = 0x00000009

 dccm_rd_data_hi = 0x4400000009  dccm_data_hi_dc2 = 0x00000009

o Cycle i+8: After adding 1 (the immediate) to the read value (0x00000009 + 1 =

0x0000000A) and traversing the Store Buffer, as explained in the appendix of Lab 13,
the data and address are provided to the DCCM, and writing of the correct bank is
enabled using the following signals:

 dccm_wren = 1

 wren_bank = 0x02 (in binary 00000010; i.e, the second bank)

 dccm_wr_addr = 0x0024

 dccm_wr_data = 0x420000000A

TASK: Explain how signals rden_bank, wren_bank, and addr_bank are obtained in

lines 103, 104, and 105 of module lsu_dccm_mem.

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

TASK: Simulate an unaligned read to the DCCM and analyse how it is handled inside the
DCCM. You can use the program used above ([RVfpgaPath]/RVfpga/Labs/Lab20/LW-
SW_Instruction_DCCM/) and simply substitute the load instruction as follows:

lw t3, (t4)  lw t3, 1(t4)

TASK: Simulate a DCCM bank conflict by modifying the program from Figure 4
([RVfpgaPath]/RVfpga/Labs/Lab20/LW-SW_Instruction_DCCM/).

1st modification: Remove the 20 nop instructions, regenerate the simulation, and

analyse the lw and the sw in a random iteration of the loop.

2nd modification: Modify the immediate of the sw instruction for making the lw and

sw try to access the same bank in the same cycle:
 sw t3, (t4)  sw t3, 8(t4)

3. BENCHMARKING

To benchmark a processor, a program (or set of programs) is run and the processor
performance is measured. We compare processors by running the same benchmarks (i.e.,
sets of programs) on those processors. We introduce two common benchmarks: CoreMark
and Dhrystone. These benchmarks are in folder
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks. We describe these benchmarks, along
with the Image Processing program from Lab 5, next.

Folder [RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/CoreMark_HwCounters contains
a PlatformIO project of the CoreMark benchmark targeted to the RVfpga System. We have
adapted CoreMark to the RVfpga System using the sources provided by Chips Alliance at
https://github.com/chipsalliance/Cores-SweRV. For any benchmark, we use the hardware
counters (HW Counters) to measure various processor events, such as numbers of
instructions executed and number of processor cycles, as explained in Lab 11. In addition to
modifying the benchmark to use the RISC-V HW Counters, we have added some support for
using the DCCM/ICCM and for using compiler optimizations.

In the next section, we show how to run CoreMark on the Nexys A7 board under various
scenarios.

A. Variation 1: No compiler optimizations or DCCM/ICCM

First, we show how to execute the CoreMark benchmark under the processor conditions
used in previous labs: debug mode and no use of the DCCM/ICCM. To do so, follow the next
steps:

- Open the CoreMark_HwCounters project in PlatformIO.

- Open file src/Test.c (see Figure 6), which includes the main function of our program:

o The main function first configures the HW Counters for measuring four events:

number of cycles, I-bus transactions (instructions) and D-bus transactions (ld/st

instructions). For this purpose, function pspPerformanceCounterSet() is

https://github.com/chipsalliance/Cores-SweRV

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 13

used.
o It then configures the different features of the SweRV EH1 processor, using two

assembly instructions (li and csrrs) as explained in Section 2.C of the

SweRVref document. In this case, all features are left to their default values.
o The program then executes a loop that is only exited when any of the switches on

the board is inverted. The purpose of this loop is to allow the user to open the
serial monitor before the benchmark executes and outputs its results.

o The program then invokes function main_cmark(), which implements the

CoreMark benchmark itself, which is implemented in file src/cmark.c.

o It finally prints the four events using function printfNexys().

Figure 6. File src/Test.c in CoreMark PlatformIO project

- Briefly analyse the functions from the CoreMark benchmark implemented in file

src/cmark.c. Note that the HW Counters are started and stopped inside the

main_cmark() function (lines 1109-1112 and 1130-1133), and that the benchmark

itself is executed inbetween (lines 1114-1128).

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

Figure 7. File src/cmark.c in CoreMark PlatformIO project

- Run the program on the board. Then open the serial monitor as explained in Section 6.F

of the GSG.

After opening the serial monitor, you will first see a repeating message that asks you to
invert a switch in the board for executing the CoreMark benchmark (see the upper red
box in Figure 8). Once you invert a switch, the benchmark executes and outputs the
results, as shown in Figure 8.

CoreMark runs multiple iterations of a loop (you can easily modify the number of

iterations by means of a parameter called ITERATIONS and defined in file src/cmark.c).

The number of iterations it completes per second is called the CoreMark score (CM).
The number of iterations per MHz is CM/MHz. The benchmark provides the CM/MHz –
also called Iterat/Sec/MHz (iterations/second/MHz) – which is 0.47. You can also view
the values provided by the hardware counters, which were used to calculate the
CM/MHz.

The execution took ~2 million cycles and approximately half million instructions were
processed, resulting in an IPC (instructions per cycle) ≈ 0.25; specifically, ½ million
instructions / 2 million cycles ≈ 0.25. This performance is really poor: recall that the ideal
IPC in the SweRV EH1 processor is 2 because it is two-way superscalar. However,

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 15

performance is graded because of the large number of data reads/writes and the slow
DDR External Memory. The number of data transactions through the bus is about
133,000. The number of instruction transactions through the bus is only 392 because
most instruction accesses hit in the I$. Recall that the RVfpga System does not have a
D$ (data cache).

Figure 8. Execution results of the CoreMark benchmark

B. Variation 2: Using the DCCM

Now we enable the DCCM in the RVfpga System so that most data accesses use the DCCM
(instead of the external DDR memory). As we will see, this change increases performance,
as expected. Follow the next steps to run CoreMark on a version of the RVfpga system that
uses the DCCM:

- The default linker script that we have used so far in most labs is available at

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 16

.platformio/packages/framework-wd-riscv-sdk/board/nexys_a7_eh1/link.lds. However, in
order to use the DCCM to store some data of the program, we make use of a specific
linker script that is provided as part of the PlatformIO project that you are using and
which is available at:
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/CoreMark_HwCounters/ld/link_DCC
M.ld. Open this file and inspect it. Figure 9 shows some parts of this file, which we
describe briefly.

In the upper screenshot of Figure 9 defines one memory section for the DCCM (called

dccm), which corresponds to the address space defined in Figure 2(b) for this memory:
dccm (wxa!ri) : ORIGIN = 0xf0040000, LENGTH = 64K

The remaining screenshots map several code sections to the DCCM memory: .rodata,

.data, .sdata, .bss and .stack.

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 17

Figure 9. File ld/link_DCCM.ld in the CoreMark PlatformIO project

- Open file platformio.ini and uncomment line 18 (see Figure 10) so that the program uses

the linker script from Figure 9 instead the default linker script. This way, as explained
above, most data will be accessed in the fast DCCM instead of the slow DDR memory.

Figure 10. File platformio.ini in the CoreMark PlatformIO project

- Run the program on the board and open the serial monitor. Then invert a switch on the

board. You will obtain the results shown in Figure 11.

In this case, the CM/MHz (i.e., the value of Iterat/Sec/MHz) is 1.88. The number of
cycles has decreased to about a half million cycles. As in the previous version of the
processor, about a half million instructions are processed; so we obtain an IPC of 1. By
mapping sections of the program to the DCCM, performance has increased by a factor of
four.

Finally, the number of data transactions through the bus is now 0, given that data are
stored in the DCCM.

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 18

Figure 11. Execution results of the CoreMark benchmark

TASK: In file platformio.ini (see Figure 10), comment out line 18 and uncomment line 19 so
that the program uses the linker script provided at:
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/CoreMark_HwCounters/ld/link_DCCM
-ICCM.ld. Analyse this new linker script, which uses both the DCCM for storing most data
and the ICCM for storing the instructions. Execute the CoreMark benchmark and compare
the results with the ones obtained in this section. In this case, given that our default RVfpga
System does not include an ICCM, use either the bitstream that you created in the first task
of this lab or the bitstream we provide at:
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/Bitstreams/rvfpganexys_DCCM-
ICCM.bit.

C. Variation: Using the DCCM and compiler optimizations

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 19

Now we add another way to improve performance: compiler optimizations. As in the previous
section, we use the DCCM to store most of the data sections of the application – but now we
also enable compiler optimizations. Up until this point, we have executed programs in debug
mode with no compiler optimizations. To enable compiler optimizations, follow the next
steps:

- Use the

[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/CoreMark_HwCounters/ld/link_DCC
M.ld linker script again. To do so, open file platformio.ini and uncomment line 18 (see
Figure 10) and comment out line 19.

- Using a different procedure than previously used, run the program on the board:
Upload the usual bitstream but then use option “Upload and Monitor” available in the
Project Tasks of PlatformIO (see Figure 12).

Figure 12. Upload and Monitor

This option will compile the program, execute it on the board and open the serial monitor.
This option compiles using the optimization flags determined by the build_flags option in
platformio.ini, in this case -O2 (see Figure 13).

Figure 13. File platformio.ini, option build_flags

Once the program starts executing, as usual, invert a switch on the board. You will
obtain the results shown in Figure 14.

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 20

The CM/MHz (Iterat/Sec/MHz) is now 3.47. The number of cycles has decreased to
around 288,000, and the number of instructions is now around 309,000. Even though the
IPC ≈ 1, the performance (CM/MHz and thus, execution time) is now much better than in
the scenario analysed in Section B, as both the number of cycles and instructions have
decreased significantly. This improvement is due to enabling compiler optimizations. The
number of data bus transactions is still 0 given that data is stored in the DCCM.

Figure 14. Execution results of CoreMark when using compiler optimizations

TASK: Modify the compilation optimization to -O3 and explain the results.

4. EXERCISES

1) Do the same analysis as was done for CoreMark but this time using the Dhrystone
benchmark. A PlatformIO project that contains the Dhrystone benchmark is in:
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/Dhrystone_HwCounters. As
required by all benchmarks, this Dhrystone benchmark has been adapted to the
specific system, in this case the RVfpga System, using the sources provided at
https://github.com/chipsalliance/Cores-SweRV. File Test.c is similar to the one from

https://github.com/chipsalliance/Cores-SweRV

Imagination University Programme – RVfpga Lab 20: ICCM, DCCM, and Benchmarking
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 21

CoreMark (Figure 6) but it invokes function main_dhry(), which includes the

Dhrystone benchmark itself.

2) Do the same analysis as was done for CoreMark but this time for the
ImageProcessing application. A PlatformIO project that contains the
ImageProcessing application is in:
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/ImageProcessing_HwCounters.
These are the applications we used in Lab 5 for transforming an RGB image into
grayscale. File Test.c is similar to the one from CoreMark (Figure 6) but it invokes

function ImageTransformation(), which includes the Image Transformation

benchmark that we analysed in Lab 5. The DCCM of the default RVfpga System is
not big enough to store the image, so instead use the RVfpga System (bitstream)
that has a 128 KiB DCCM, which is at:
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/Bitstreams/rvfpganexys_DCCM-
128.bit.

3) Enable/disable various core features as described in Section 2.C of this lab.
Compare the performance results – that is, values of the HW Counters when
executing the programs on these modified cores. Run all three programs (CoreMark,
Dhrystone, and ImageProcessing) on these modified RVfpga Systems on the Nexys
A7 board. Variations include:
- Using different Branch Predictor configurations and implementations (such as
always not-taken, Gshare, and the bimodal predictor implemented in Exercise 1 of
Lab 16).
- Enabling/disabling the dual-issue feature.
- Using various I$/DCCM/ICCM configurations (such as different sizes or different I$
Replacement Policies).

