

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 18

Adding New Features:
Instructions and Counters

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

In this lab, you will apply the knowledge acquired in previous labs to modify the SweRV EH1
processor to add the following new features:

- Add A-L instructions: Add Arithmetic-Logic instructions from the new bit
manipulation extension available in the RISC-V architecture.

- Add floating-point instructions: Add three floating point instructions: add, multiply,
and divide. Then use them to compute the bisection algorithm.

- Add counter: Add a new hardware counter that counts the number of I-Type

instructions executed.

In some of these exercises we guide you through the process of modifying the core, and in
others you will figure out on your own what needs to be done.

2. EXERCISES

1) The bit-manipulation (bitmanip) extension is comprised of several component extensions

to the base RISC-V architecture that are intended to provide some combination of code
size reduction, performance improvement, and energy reduction. You can find the
complete specification at https://github.com/riscv/riscv-bitmanip. File
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0.pdf
describes in detail all the instructions that belong to this extension.

In this exercise, you will include a new instruction from the bitmanip extension in the
SweRV EH1 processor. Specifically, you will add the minu instruction, which places the

smaller of the two unsigned integers in rs1 and rs2 into rd. The format used for this

instruction is shown in the following illustration.

Figure 1. Format used for the minu instruction (figure obtained from

https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0.pdf).

In order to include a new Arithmetic-Logic instruction, you must modify two main parts of
the processor: the Control Unit and the Execution Unit. Figure 2 highlights in red the

specific structures within these two units that you must modify for including the minu

instruction (remember that this figure was first included in Lab 11 as Figure 4).

https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0.pdf
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0.pdf

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

dec_i0_instr_d [31:0]

DECODE STAGE

CONTROL

UNIT
(dec_decode_ctl)

CONTROL

SIGNALS

raddr0 [4:0]

raddr1 [4:0]

EX1/DC1/M1

rd0 [31:0]

rd1 [31:0]

EX2/DC2/M2 EX3/DC3/M3

3-1

MUX

COMMIT
 STAGE

waddr0 [4:0]

wd0 [31:0]

Register File

(dec_gpr_ctl)

WB
STAGE

MUX

b

I0 Pipe

L/S Pipe

Mult Pipe
a

DCCM

A
L

IG
N

 &
 M

E
R

G
E

I0-ALU-E1

(exu_alu_ctl)

ADDER

MULTIPLIER

(exu_mul_ctl)
MUX

rd0

rd1

MUX

b

a

MUX

rd0

rd1

MUX

exu_lsu_

rs1_d
rd0

exu_lsu_

rs2_d
MUX

rd1
waddr1 [4:0]

wd1 [31:0]

raddr2 [4:0]

raddr3 [4:0]

rd2 [31:0]

rd3 [31:0]

rd2

rd3

rd3

rd2

3-1

MUX

I1 PipeMUX

b

a

MUX

rd2

rd3

dec_lsu_offset_d

dec_i1_instr_d [31:0]

Lite DRAM

Controller

Control

Pipeline

Registers

Control

Pipeline

Registers

aff

bff

i0_result_e3

exu_mul_result_e3

i1_result_e3

i0
_

re
s
u
lt
_

e
4

_
fi
n
a
l

i1
_

re
s
u
lt
_

e
4

_
fi
n

a
l

34-cycle Out-Of-Pipe

DIVIDER

(exu_div_ctl)

a_e1

b_e1

rs1_dc1

offset_dc1

aff

bff

MUX

MUX

rd0

rd1

rd2

rd3

MUX

dividend

divisor

i1_result_wb

i0_result_wb

INSTRUCTION

REGISTERS

(dec_ib_ctl)

I1-ALU-E1

(exu_alu_ctl)

Control

Pipeline

Registers

Control

Pipeline

Registers

Control

Pipeline

Registers

Store

Buffer for

DCCM

Lite DRAM

Controller

3-1

MUX

lsu_result_corr_dc4

I0-ALU-E4

3-1

MUX

I1-ALU-E4

lsu_result_dc3

lsu_result_corr_dc3

Figure 2. SweRV EH1’s Decode, Execution, Commit and Writeback stages

In this exercise, we give step-by-step instructions on how to add a new instruction, in this

case minu. Then, in Exercise 2, you will follow a similar procedure to add other bitmanip

instructions.

Control Unit Modfications:

NOTE: We recommend reviewing Section 2.C.i of Lab 11 and Section 4 of the
SweRVref.docx before completing the next steps.

Now we will modify/create new control signals necessary to support the new instruction.

- Create two new bits in file

[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/swerv_typ

es.sv. These two bits inform the processor if a minu instruction is executing.

o Create a new bit, called minu, as part of the structure type dec_pkt_t

(Figure 3). Remember that this is the main structure type used in the Control
Unit.

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

Figure 3. New bit in structure dec_pkt_t

o Create a new bit, called minu, as part of the structure type alu_pkt_t

(Figure 4). Remember that this is the specific structure type used for
Arithmetic-Logic instructions.

Figure 4. New bit in structure alu_pkt_t

- Assign a value to the new control signals in module dec_decode_ctl (implemented

in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/dec/dec_decode_
ctl.sv).

o Assign the value to the new minu bit in the Decode stage, using signals

i0_dp_raw and i1_dp_raw. To do so, you must modify the equations from

module dec_dec_ctl (lines 2497-2672 of file dec_decode_ctl.sv), as
explained next (note that these explanations are summarized in lines 2482-
2495 of module dec_decode_ctl, from where we have obtained them and
extended them a bit):

1. File

[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/dec/de
code is a human readable file that has all of the instruction decodes
defined in the SweRV EH1 processor, and that you must modify as

explained next for including the minu instruction.

- In section .definition, create a new line (Figure 5) for the new

instruction according to its format, shown in Figure 1.

Figure 5. Modify .definition section

- In section .output, create a new bit called minu (Figure 6).

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

Figure 6. Modify .output section

- In section .decode, create a new line for instruction minu (Figure

7). For the new instruction, the same bits as the ones enabled for

an add instruction should be enabled, except the add bit. That is:

alu, rs1, rs2, rd, pm_alu. Besides, the new minu bit should also be
enabled.

Figure 7. Modify .decode section

2. In the same folder

([RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/dec/),
generate the general equations, which, after the modification of the
decode file, include the instructions supported by SweRV EH1 plus the

minu instruction.

./coredecode -in decode > coredecode.e

./espresso.linux -Dso -oeqntott coredecode.e |

./addassign -pre out. > equations

These two commands will generate files coredecode.e and equations.

3. In the same folder
([RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/dec/),
generate the legal equation.

./coredecode -in decode -legal > legal.e

./espresso.linux -Dso -oeqntott legal.e |

./addassign -pre out. > legal_equation

These two commands will generate files legal.e and legal_equations.

4. Modify the dec_dec_ctl module by substituting the existing equations
(lines 2497-2672 of file dec_decode_ctl.sv), for the new ones, as defined
in files equations and legal_equations.

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

o In module dec_decode_ctl, assign a value to the new minu bit in signals
i0_ap and i1_ap, using signals i0_dp and i1_dp (Figure 8).

Figure 8. Assign value to minu bits

These steps describe the general procedure that must be followed for modifying the
control unit when including a new instruction in the SweRV EH1 processor.

Execution Unit Changes:

Next, modify the Execution Unit, which is implemented in modules exu, exu_alu_ctl,
exu_mul_ctl, exu_div_ctl (the files that contain these modules are named after the
modules). In future exercises, we will analyse complex situations where a new whole
pipe is necessary. However, in this exercise, only a few small changes are required in
module exu_alu_ctl (Figure 9).

Figure 9. Modify the ALUs

Once you have completed these changes, you are ready to test the new instruction.
Perform a simulation in Verilator that illustrates the use of the new instruction. You can
use the program provided in Figure 10, or you can create your own program.

The program in Figure 10 creates an endless loop that computes the minimum value of
two registers in each iteration. Note that the new instruction cannot be used normally
(with a mnemonic), but it has to be used directly in machine format, as the RISC-V
compiler does not support it yet.

.globl main

main:

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

li t3, 0x2

li t4, 0x30

li t6, -0x5

REPEAT:

 nop

 nop

 add t3, t3, t3

 add t4, t4, t6

 nop

 .word 0x0bde5f33 # minu t5, t4, t3 0000 101 | 1 1101 | 1110 0 | 101 | 1111 0 | 011 0011

 nop

 nop

 beq zero, zero, REPEAT # Repeat the loop

 nop

.end

Figure 10. Simple program for testing the new instruction, highlighted in red

Figure 11 shows the Verilator simulation (as usual, we use a .tcl script for including the
signals). The waveform shows two iterations of the loop, which shows two executions of

the new instruction (ifu_i0_instr or ifu_i1_instr = 0x0BDE5F33). Its main

control bits (i0_dp_raw or i1_dp_raw = 0x7A00000000003) and its ALU control bits

(i0_ap or i1_ap = 0x180000) are the same as in an add instruction except for the

minu bit and the add bit. The result written in t5 (shown in the bottom of the figure) is the

minimum value of the two numbers read from t3 and t4. Note that the second minu

execution compares 0xFFFFFFFE with 0x00000800; given that it is an unsigned min
instruction, 0xFFFFFFFE represents a large positive number, and thus the minimum
value among the two is 0x00000800.

Figure 11. Verilator simulation of the program from Figure 10

Modify the program to perform different comparisons, and then simulate the program
using Verilator.

Once you have checked that your implementation works correctly, generate the new
bitstream in Vivado and test the new instruction on the board using any of the tests built
for simulation.

Build a program that reads the 16 switches and compares the binary value of the 8 least
significant switches with the binary value of the 8 most significant ones using the new
instruction. Then, display the minimum value on the 7-segment displays.

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

Finally, build different tests to confirm that the instruction works as expected, and
demonstrate the results on the board.

2) Implement other instructions that belong to the RISC-V bitmanip extension. Begin by

completing the remaining min/max instructions: min, max, and maxu.

3) In this exercise you will extend the SweRV EH1 processor to include three new

instructions that belong to the RISC-V Single-Precision Floating-Point extension (F

extension): fadd.s, fmul.s and fdiv.s.

- The instructions assume that the operands are represented in single-precision

floating-point IEEE 754 format
(https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF). In a
floating-point number, the register is logically divided into three fields: Sign (1 bit
long), Exponent (8 bits) and Mantissa (23 bits).

Sign | E7 … E0 | M22 … M0

- Instruction fadd.s rd, rs1, rs2 adds the two floating-point values in rs1 and

rs2 and stores the result in rd. Instruction fmul.s rd, rs1, rs2 multiplies the

two floating-point values in rs1 and rs2 and stores the result in rd. Finally,

instruction fdiv.s rd, rs1, rs2 divides the two floating-point values in rs1 and

rs2 and stores the result in rd.

- The formats used for these instructions, as defined in the RISC-V F extension, are:

 fadd.s: 0000000 | rs2 | rs1 | Rounding-Mode | rd | 1010011

 fmul.s: 0001000 | rs2 | rs1 | Rounding-Mode | rd | 1010011

 fdiv.s: 0001100 | rs2 | rs1 | Rounding-Mode | rd | 1010011

- Although this extension assumes a processor that has 32 floating-point registers, in

this exercise, for the sake of simplicity, you will use the existing Register File used by
any other instruction (i.e. the x registers). Also, we assume other simplifications: only
one floating-point instruction can execute at once and floating-point instructions are
blocking.

In order to include support for these instructions in the SweRV EH1 processor, you must
make the following modifications:

Execution Unit Changes:

You will add hardware for floating-point addition, multiplication, and division (you may
find some sources on the Internet as we detail below). You will then use this hardware

when a fadd, a fmul, or a fdiv instruction is executed. To do so, complete the

following:

- Download the multi-cycle floating-point Adder, Multiplier, and Divider provided at:

https://github.com/dawsonjon/fpu. These are non-pipelined multi-cycle units
similar to the integer Divider available in SweRV EH1.

https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://github.com/dawsonjon/fpu

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

- Even though the new units constitute new pipes and thus could be treated

independently, you can instantiate the three floating-point units inside the
exu_div_ctl module, given that this execution pipe provides some signals that
are useful for supporting the new instructions, such as signals finish and div_stall.

If you do it this way, you must enable the same bits as a div instruction, plus the

new floating-point bits, when generating the equations for the Control Unit as
explained below.

Control Unit Changes:

Modify/create new control signals to support the new instructions.

- Create new bits and structure types in file

[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/swerv_typ
es.sv.

o Create a new structure type called fp_pkt_t which includes 3 bits: fp_add,

fp_mul, and fp_div, which indicate, respectively, if the processor is executing
a floating-point addition, a floating-point multiplication or a floating-point
division.

o Create three new bits, called fp_add, fp_mul and fp_div, that are part of the

structure type dec_pkt_t. Remember that this is the main structure type

used in the Control Unit.

- Assign a value to the new control signals in module dec_decode_ctl (implemented
in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/dec/dec_decode_
ctl.sv).

o Assign values to the new bits in signals i0_dp_raw and i1_dp_raw. For

that purpose, you must regenerate the equations from module dec_dec_ctl
as explained in Exercise 1. As mentioned above, if you manage the new

instructions as a div instruction, you must enable the same bits as a div

instruction, plus the new floating-point bits, when generating the equations
from module dec_dec_ctl.

o Create a new signal of type fp_pkt_t called fp_p. Then assign values to

the three bits of this structure, using signals i0_dp and i1_dp. Note that,

similarly to the mul or div instructions, only one signal of this type is

required, because only one floating point instruction can execute in a given
cycle.

After modifying the hardware, perform a simulation in Verilator that illustrates the use of
the new instructions. You can use the program provided in Figure 12, or you can create
your own one. The program in Figure 12 creates an endless loop that computes three
instructions: floating-point add, multiply, and divide.

.globl main

main:

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

li t0, 0x4

li t1, 0x2

li t3, 0x40800000

li t4, 0x40000000

REPEAT:

 div t5, t0, t1

 nop

 nop

 .word 0x01ce8f53 # fadd.s 0000000 | 11100 | 11101 | 000 | 11110 | 1010011

 nop

 nop

 .word 0x11ce8f53 # fmul.s 0001000 | 11100 | 11101 | 000 | 11110 | 1010011

 nop

 nop

 .word 0x19ce8f53 # fdiv.s 0001100 | 11100 | 11101 | 000 | 11110 | 1010011

 nop

 nop

 beq zero, zero, REPEAT # Repeat the loop

 nop

.end

Figure 12. Simple program for testing the new instructions, highlighted in red

Figure 13 shows the results of the Verilator simulation. To check the results, you can use
a floating-point converter, such as the one available at: https://www.h-
schmidt.net/FloatConverter/IEEE754.html.

In Figure 13-a, the three floating-point instructions are fetched into ifu_i0_instr or

ifu_i1_instr. Their main control bits (dec_pkt_t) are the same as those for a div

instruction (i0_dp_raw = 0x11A00000006021) with the three extra bits added as

described above. The FP (floating-point) control bits (fp_pkt_t) are 100 for fadd (as

shown in the figure), 010 for fmul, and 001 for fdiv.

Figure 13-b shows the FP add writing its result into t5 several cycles later. Note that the
input values are 0x40800000 and 0x40000000, thus the result of the addition is
0x40c00000.

Figure 13-c shows the FP multiply writing its result into t5 several cycles later. Note that
the input values are 0x40800000 and 0x40000000, thus the result of the multiplication is
0x41000000.

Finally, Figure 13-d shows the FP divide writing its result into t5 several cycles later.
Note that the input values are 0x40800000 and 0x40000000, thus the result of the
division is 0x40000000.

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

(a)

(b)

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

(c)

(d)

Figure 13. Verilator simulation of the program from Figure 12

Modify the program to test other cases and demonstrate that the instructions work
correctly. For example, test negative numbers, data dependencies with
previous/subsequent instructions, etc. Then simulate them using Verilator.

Next, test the new instructions in hardware on the board. To do so, program the example

DotProduct_C-Lang provided in the GSG, using the new fmul and fadd instructions

for performing the floating-point computations. Compare the execution of this algorithm
when floating-point instructions are emulated vs. when these instructions are
implemented in hardware.

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 13

You can also add more functionality, such as providing support for: other floating-point
formats (such as double precision), other floating-point rounding modes, a new register
file for the floating-point values, your own FP unit implementation, etc.

4) Implement the Bisection Method. You can find a lot of information about this root-finding

algorithm on the internet, for example, at: https://en.wikipedia.org/wiki/Bisection_method.

Compare the execution of this algorithm when floating-point instructions are emulated vs.
when these instructions are implemented in hardware.

5) Implement any of the instructions proposed in the exercises from Chapter 4 from the

book “Computer Organization and Design – RISC-V Edition”, by Patterson & Hennessy
([HePa]), such as:

a. (from [HePa] Exercise 4.11):

i. Instruction “Load With Increment”: lwi.d rd, rs1, rs2

ii. Interpretation: rd = Mem[rs1 + rs2]

b. (from [HePa] Exercise 4.12):

i. Instruction “Swap”: swap rs1, rs2

ii. Interpretation: rs2 = rs1; rs1 = rs2

c. (from [HePa] Exercise 4.13):

i. Instruction “Store Sum”: ss rs1, rs2, imm

ii. Interpretation: Mem[rs1] = rs2 + imm

6) Similar to the previous exercise, implement the instructions proposed in Exercises 3-6

from Chapter 7 of the textbook by S. Harris and D. Harris, “Digital Design and Computer
Architecture: RISC-V Edition” [DDCARV]. We repeat below all of the instructions
included in these four exercises. Some of them are already supported by our SweRV
EH1 processor, in which case, instead of implementing them, you can simply explain
how they are implemented.

a. Exercise 3: xor, sll, srl, bne. (Already implemented in SweRV EH1)

b. Exercise 4: lui, sra, lbu, blt, bltu, bge, bgeu, jalr, auipc,

sb, slli, srai. (Already implemented in SweRV EH1)

c. Exercise 5: lwpostinc rd,imm(rs) (the instruction is equivalent to the

following two instructions: lw rd, 0(rs) followed by addi rs, rs, imm).

d. Exercise 6: lwpreinc rd, imm(rs) (the instruction is equivalent to the

following two instructions: lw rd, imm(rs) followed by addi rs, rs, imm).

7) Include a new event for counting the number of I-Type instructions executed in a

program. We provide some guidance to help you complete this exercise:

o You will need to modify some structures from file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/swerv

https://en.wikipedia.org/wiki/Bisection_method

Imagination University Programme – RVfpga Lab 18: Adding New Features: Instructions and Counters
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

_types.sv. Specifically, you should add another field in the following structure
type:

 Structure inst_t: new field for an I-Type instruction.

o As you know, the control bits are assigned in module dec_decode_ctl (file

[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/dec/dec_deco

de_ctl.sv). Modify the assignment of signals i0_itype and i1_itype to add

the new instruction type included in the previous item.

o The hardware counters are implemented in module dec_tlu_ctl (file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/dec/dec_tlu_ct
l.sv). Open that file and analyse the code included in lines 1882 to 2143. You will
have to modify this part of the code to include the new counter.

After the new counter has been included in the Verilog code, debug the implementation
using Verilator. Once your implementation has been verified through simulation,
generate the new bitstream for the SoC and test the operation of the new counter in
hardware on the board.

