

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 2
RISC-V Assembly Language

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

Programming in higher-level languages such as C, Java, and Python are efficient for the
programmer. These higher-level languages are translated into assembly language, which is
a group of simple instructions. Sometimes performance- or timing-critical sections of code
are written in assembly to guarantee specific timing or reduce computation time. This lab
shows you how to create a RISC-V assembly language program that you can run on the
RVfpga System using PlatformIO. We first give a brief overview of RISC-V assembly and
then show how to create and run an assembly program on RVfpgaNexys (remember that
you can also execute the programs on simulation by using Verilator or Whisper). Then we
provide exercises for you to practice writing your own RISC-V assembly programs.

2. RISC-V Assembly Language Overview

RISC-V assembly language includes simple instructions that are used to implement higher-

level code. For example, some common RISC-V instructions include the add, sub, and mul

instructions that add, subtract or multiply two operands.

The basic types of RISC-V instructions are: computational (arithmetic, logical, and shift)
instructions, memory operations, and branches/jumps. The most common RISC-V
instructions are given in Table 1. Instructions use operands that are located in registers or
memory or that are encoded as a constant (i.e., immediate). RISC-V includes 32 32-bit
registers. Table 2 lists the names of the 32 RISC-V registers. They can be specified by either

their name (for example, zero, s0, t5, etc.) or their register number (i.e., x0, x8, x30).

Programmers typically use register names which retains some information about the typical

purpose of the register. For example, the saved registers, s0-s11, are typically used for

program variables, while the temporary registers, t0-t6 are used for temporary calculations.

The zero register (x0) always contains the value 0, as this is a value commonly needed in

programs. The other registers have specific uses as well, as shown in Table 2, but in this

lab, you need only use the zero register and the temporary and saved registers.

Table 1. Common RISC-V assembly instructions

 RISC-V Assembly Description Operation

C
o

m
p

u
ta

ti
o

n
a
l

add s0, s1, s2 Add s0 = s1 + s2

sub s0, s1, s2 Subtract s0 = s1 - s2

addi t3, t1, -10 Add immediate t3 = t1 – 10

mul t0, t2, t3 32-bit multiply t0 = t2 * t3

div s9, t5, t6 Division t9 = t5 / t6

rem s4, s1, s2 Remainder s4 = s1 % s2

and t0, t1, t2 Bit-wise AND t0 = t1 & t2

or t0, t1, t5 Bit-wise OR t0 = t1 | t5

xor s3, s4, s5 Bit-wise XOR s3 = s4 ^ s5

andi t1, t2, 0xFFB Bit-wise AND immediate t1 = t2 & 0xFFFFFFFB

ori t0, t1, 0x2C Bit-wise OR immediate t0 = t1 | 0x2C

xori s3, s4, 0xABC Bit-wise XOR immediate s3 = s4 ^ 0xFFFFFABC

sll t0, t1, t2 Shift left logical t0 = t1 << t2

srl t0, t1, t5 Shift right logical t0 = t1 >> t5

sra s3, s4, s5 Shift right arithmetic s3 = s4 >>> s5

slli t1, t2, 30 Shift left logical immediate t1 = t2 << 30

srli t0, t1, 5 Shift right logical immediate t0 = t1 >> 5

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

srai s3, s4, 31 Shift right arithmetic immediate s3 = s4 >>> 31

M
e
m

o
ry

lw s7, 0x2C(t1) Load word s7 = memory[t1+0x2C]

lh s5, 0x5A(s3) Load half-word s5 = SignExt(memory[s3+0x5A]15:0)

lb s1, -3(t4) Load byte s1 = SignExt(memory[t4-3]7:0)

sw t2, 0x7C(t1) Store word memory[t1+0x7C] = t2

sh t3, 22(s3) Store half-word memory[s3+22]15:0 = t315:0

sb t4, 5(s4) Store byte memory[s4+5]7:0 = t47:0

B
ra

n
c
h
 beq s1, s2, L1 Branch if equal if (s1==s2), PC = L1

bne t3, t4, Loop Branch if not equal if (s1!=s2), PC = Loop

blt t4, t5, L3 Branch if less than if (t4 < t5), PC = L3

bge s8, s9, Done Branch if greater than or equal if (s8>=s9), PC = Done

P
s
e
u

d
o

in
s
tr

u
c
ti

o
n

s

li s1, 0xABCDEF12 Load immediate s1 = 0xABCDEF12

la s1, A Load address s1 = Memory address where

variable A is stored

nop Nop no operation

mv s3, s7 Move s3 = s7

not t1, t2 Not (Invert) t1 = ~t2

neg s1, s3 Negate s1 = -s3

j Label Jump PC = Label

jal L7 Jump and link PC = L7; ra = PC + 4

jr s1 Jump register PC = s1

In addition to actual RISC-V instructions, RISC-V includes pseudoinstructions (as shown in
the bottom of Table 1), instructions that are not really RISC-V instructions but that are
commonly used by programmers. Pseudoinstructions are implemented using one or more

real RISC-V instruction. For example, the move pseudoinstruction (mv s1, s2) copies the

contents of s2 and puts it in s1. It is implemented using the real RISC-V instruction: addi

s1, s2, 0.

Table 2. RISC-V registers

Name Register Number Use
zero x0 Constant value 0
ra x1 Return address
sp x2 Stack pointer
gp x3 Global pointer
tp x4 Thread pointer
t0-2 x5-7 Temporary variables
s0/fp x8 Saved register / Frame pointer
s1 x9 Saved register
a0-1 x10-11 Function arguments / Return values
a2-7 x12-17 Function arguments
s2-11 x18-27 Saved registers
t3-6 x28-31 Temporary variables

The commands that start with a period are assembler directives. They are commands to the
assembler rather than code to be translated by it. They tell the assembler where to place
code and data, specify text and data constants for use in the program, and so forth. Table 3
shows the main assembler directives of RISC-V (The RISC-V Reader: An Open Architecture
Atlas, Patterson & Waterman, © 2017).

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

Table 3. RISC-V main directives

Directive Description
.text Subsequent items are stored in the text section (machine

code).
.data Subsequent items are stored in the data section (global

variables).
.bss Subsequent items are stored in the bss section (global

variables initialized to 0).
.section .foo Subsequent items are stored in the section named .foo.
.align n Align the next datum on a 2n-byte boundary. For example,

.align 2 aligns the next value on a word boundary.
.balign n Align the next datum on an n-byte boundary. For example,

.balign 4 aligns the next value on a word boundary.
.globl sym Declare that label sym is global and may be referenced from

other files
.string “str” Store the string str in memory and null-terminate it.
.word w1,…,wn Store the n 32-bit quantities in successive memory words.
.byte b1,…,bn Store the n 8-bit quantities in successive bytes of memory.
.space Reserve memory space to store variables without an initial

value. It is commonly used to declare the output variables,
when they are not also serving as input variables. The space
we want to reserve must always be expressed as a number of

bytes. For example, the directive RES: .space 4 reserves

four bytes (i.e. one word) that are not initialized.
.equ name,constant Define symbol name with value constant. For example, .equ

N,12, defines symbol N with the value 12.
.end The assembler will conclude its work when it reaches the

directive .end. Any text located after this directive will be

ignored.

The examples below (see Table 4 - Table 5) show how to code some common high-level

constructs in RISC-V assembly. Notice that branch instructions (beq, bne, blt, and bge)

conditionally jump to a label; whereas the jump instruction (j) unconditionally jumps to a

label. Single-line comments are indicated by // in C and # in RISC-V assembly.

In the first example (implementing an if/else statement, see Table 4), notice that the C code
and RISC-V assembly code check for the opposite cases: the C code checks for less than
(<) and the assembly equivalent checks for greater than or equal (>=).

Table 4. RISC-V Assembly Example 1: if/else statement
// C Code

int a, b, c;

if (a < b)

 c = 5;

else

 c = a + b;

RISC-V Assembly

s0 = a, s1 = b, s2 = c

 bge s0, s1, L1 # if (a >= b) goto L1

 addi s2, zero, 5 # c = 5

 j L2 # jump over else block

L1: add s2, s0, s1 # c = a + b

L2:

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

In the second example (manipulating an array of integers, see Table 5), the RISC-V

assembly code uses temporary registers (t0-t3) to hold temporary values, such as the

constant 100 and the base address of the data array. After initializing the registers in the first

three instructions, the RISC-V assembly code checks for i >= 100 using the bge (branch if

greater than or equal to) instruction; again, this is the opposite case from the C code. If that

condition is met, the for loop is done. If the branch is not taken, i is less than 100 and the

remaining code is executed. Notice that the index i is multiplied by 4 (using the slli t2,

s0, 2 instruction) before it is added to the base address because integers (32-bit two’s

complement numbers) occupy 4 bytes of memory. In RISC-V, memory is byte-addressable

(i.e., each byte has its own address). If the array had been an array of characters (i.e., char

data[100];), then each array element would only occupy a byte and i could be added

directly to the base address to form the address of array index i, i.e., array[i]. After the

array element is read, decremented by ten, and written (via the lw, addi, and sw

instructions, respectively), the array index i (i.e., s0) is incremented and the program jumps

back to the beginning of the for loop (using the j L5 instruction).

Table 5. RISC-V Assembly Example 2: manipulating an array of integers

// C Code

int i;

int data[100];

for (i=0; i<100; i++)

 array[i] = array[i]-10;

RISC-V Assembly

s0 = i, t1 = base address of data (assumed

to be at 0x300)

 addi s0, zero, 0 # i = 0

 addi t0, zero, 100 # t0 = 100

 li t1, 0x300 # base address of array

L5: bge s0, t0, L7 # if (i>=100) exit loop

 slli t2, s0, 2 # t2 = i*4

 add t2, t1, t2 # address of data[i]

 lw t3, 0(t2) # t3 = array[i]

 addi t3, t3, -10 # t3 = array[i]-10

 sw t3, 0(t2) # array[i] = array[i]-10

 addi s0, s0, 1 # i++

 j L5 # loop

L7:

For more details about the RISC-V assembly language, refer to the RISC-V Instruction Set
Manual (available here: https://github.com/riscv/riscv-isa-
manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf) or a textbook such
as Digital Design and Computer Architecture: RISC-V Edition, Harris & Harris, © Morgan
Kaufmann 2021 or The RISC-V Reader: An Open Architecture Atlas, Patterson & Waterman,
© 2017.

3. Writing a RISC-V Assembly Program for RVfpga

Now you are ready to explore and practice writing RISC-V assembly programs on your own.
Before you write your own programs, follow these steps to setup a PlatformIO project and
create and run an assembly program on RVfpgaNexys (remember that you can also run
these programs on simulation, using Verilator or Whisper):

1. Create an RVfpga project
2. Write a RISC-V assembly language program
3. Download RVfpgaNexys onto Nexys A7 FPGA board
4. Compile, download, and run assembly program

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

Step 1. Create an RVfpga project
Follow Step 1 from RVfpga Lab 1 – repeated here for convenience. Open VSCode by
clicking on the Start button and typing VSCode and then clicking on Virtual Studio Code (see
Figure 1).

Figure 1. Open VSCode

If PlatformIO does not automatically open when you start VSCode, click on the PlatformIO
icon in the left menu ribbon and then click on PIO Home → Open (see Figure 2).

Figure 2. Open PlatformIO and create new project

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

Now in the PIO Home welcome window, click on New Project (see Figure 2).

As shown in Figure 3, name the project Project1 and choose the Board as RVfpga: Digilent
Nexys A7 (start typing in RVfpga and the board will come up). Leave the default framework
as WD-framework (Western Digital framework – which includes the Freedom-E SDK gcc and
gdb). Unclick the Use default location and place your program in:

[RVfpgaPath]/RVfpga/Labs/Lab02

Figure 3. Name project and select board and project folder

Then click Finish at the bottom of the window (see Figure 4).

Figure 4. Finish creating project

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

In the Explorer pane on the left, under PROJECT1 (which you may need to expand), double-
click on platformio.ini to open it (see Figure 5). This is the PlatformIO initialization file.

Figure 5. PlatformIO initialization file: platformio.ini

Add the following line to the platformio.ini file, as shown in Figure 6:

board_build.bitstream_file = [RVfpgaPath]/RVfpga/src/rvfpganexys.bit

This line indicates where PlatformIO should find the bitstream file to load onto the FPGA.
You will use the RVfpgaNexys bitstream distributed with the Getting Started Guide at:
[RVfpgaPath]/RVfpga/src/rvfpganexys.bit. Press Ctrl-s to save the platformio.ini file.

Figure 6. Add location of RVfpgaNexys bitstream file (rvfpganexys.bit)

Remember that a more complete platformio.ini file was used in the examples used in the
Getting Started Guide. If you want to use any functionality that requires extra commands
(such as the path to the Verilator simulator, the configuration of the serial console, the
whisper debug tool, etc.), you can use the platformio.ini from those examples.

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

Step 2. Write a RISC-V assembly language program
Now you will write a RISC-V assembly program. Click on File → New File (see Figure 7).

Figure 7. Add file to project

A blank window will open. Type (or copy/paste) the following RISC-V assembly program into
that window (see Figure 8). This program is also available in:

 [RVfpgaPath]/RVfpga/Labs/Lab02/ReadSwitches.S

// memory-mapped I/O addresses

GPIO_SWs = 0x80001400

GPIO_LEDs = 0x80001404

GPIO_INOUT = 0x80001408

.globl main

main:

main:

 li t0, 0x80001400 # base address of GPIO memory-mapped registers

 li t1, 0xFFFF # set direction of GPIOs

 # upper half = switches (inputs) (=0)

 # lower half = outputs (LEDs) (=1)

 sw t1, 8(t0) # GPIO_INOUT = 0xFFFF

repeat:

 lw t1, 0(t0) # read switches: t1 = GPIO_SWs

 srli t1, t1, 16 # shift val to the right by 16 bits

 sw t1, 4(t0) # write value to LEDs: GPIO_LEDs = t1

 j repeat # repeat loop

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

Figure 8. Enter RISC-V assembly program

The assembly code must contain the following lines at the beginning of the code:

.globl main

main:

The .globl assembler directive makes the label visible in all linked files. The boot code

(~/.platformio/packages/framework-wd-riscv-sdk/board/nexys_a7_eh1/startup.S) will
configure the system and jump to this label (main). The debugger will set a temporary
breakpoint there when it begins.

This RISC-V assembly program is the same example program as in Lab 1, but this time
written in RISC-V assembly. It sets the direction of the inputs and outputs of the general-
purpose I/O (GPIO) and then repeatedly reads the value of the switches and writes that
value to the LEDs.

After entering the program into the pane, press Ctrl-s to save the file. Name it
ReadSwitches.S and save it to the src folder of the Project1 directory (see Figure 9).

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

Figure 9. Save file as ReadSwitches.S

Step 3. Download RVfpgaNexys onto Nexys A7 FPGA board
You will now download RVfpgaNexys onto the Nexys A7 FPGA board. Follow the
instructions for downloading RVfpgaNexys as described in the GSG and in Lab 1 – repeated
here for convenience.

Download RVfpgaNexys onto the Nexys A7 board by clicking on the PlatformIO icon in the

left menu ribbon , then expand Project Tasks → env:swervolf_nexys → Platform and
click on Upload Bitstream.

As an alternative you can download RVfpgaNexys using a PlatformIO terminal window

by clicking on the PlatformIO: New Terminal button () at the bottom menu of the
PlatformIO window, and then typing (or copying) the following into the PlatformIO terminal:

 pio run -t program_fpga

Step 4. Compile, download, and run RISC-V assembly program
Now that RVfpgaNexys is running on the board, you will compile your program, download it
onto RVfpgaNexys, and run/debug it. If VSCode is not already open, open it. Your last
project, Project1, should automatically open. If not, make sure the PlatformIO extension is
open and click on File → Open Folder and select (but don’t open) Project1, that you created
earlier in this lab.

Click on the Run button in the left menu ribbon and then click on the Start Debugging button
(see Figure 10).

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

Figure 10. Run program on RVfpgaNexys

The program will download onto RVfpgaNexys, which is running on the FPGA on the Nexys
A7 board. Now you can begin running and debugging the program (see Figure 11).

Figure 11. Program running on RVfpgaNexys

As described in the RVfpga Getting Started Guide and Lab 1, use the debugging toolbar and
Debugger options to run and manage the program. For example, you could set a breakpoint

at line 17 (by clicking just to the left of the line number) and then view register t1 as the

value of the switches is loaded into it. When you stop the debugging session by pressing the

Stop button (or Shift - F5), the debugging session ends, but the
program continues running on RVfpgaNexys.

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 13

4. Exercises

Now create your own RISC-V assembly programs by completing the same exercises as in
Lab 1, but this time in RISC-V assembly instead of C. The exercise descriptions are
repeated below for your convenience.

Remember that if you leave the Nexys A7 board connected to your computer and powered
on, you do not need to reload RVfpgaNexys onto the board between running different
programs. However, if you turn off the Nexys A7 board, you will need to reload RVfpgaNexys
onto the board using PlatformIO.

Remember as well that you can run these programs on simulation, using Verilator or
Whisper.

Exercise 1. Write a RISC-V assembly program that flashes the value of the switches onto
the LEDs. The value should pulse on and off slow enough that a person can view the
flashing. Name the program FlashSwitchesToLEDs.S.

Exercise 2. Write a RISC-V assembly program that displays the inverse value of the
switches on the LEDs. For example, if the switches are (in binary): 0101010101010101, then
the LEDs should display: 1010101010101010; if the switches are: 1111000011110000, then
the LEDs should display: 0000111100001111; and so on. Name the program
DisplayInverse.S.

Exercise 3. Write a RISC-V assembly program that scrolls increasing numbers of lit LEDs
back and forth until all of the LEDs are lit. Then the pattern should repeat. Name the
program ScrollLEDs.S.

The program should cause the following to occur:

1. First, one lit LED should scroll from right to left.

2. Once it reaches the left-most LED, two lit LEDs should scroll from left to right and then
right to left.

3. Once those two LEDs reach the left-most LED, three lit LEDs should scroll from left to
right then right to left.

4. Then four lit LEDs should scroll.

5. And so on, until all the LEDs are lit.

6. Then the pattern should repeat.

Exercise 4. Write a RISC-V assembly program that displays the unsigned 4-bit sum of the 4
least significant bits of the switches and the 4 most significant bits of the switches. Display
the result on the 4 least significant (right-most) bits of the LEDs. Name the program
4bitAdd.S. The fifth bit of the LEDs should light up when unsigned overflow occurs (that is
when the carry out is 1).

Exercise 5. Write a RISC-V assembly program that finds the greatest common divisor of two
numbers, a and b, according to the Euclidean algorithm. The values a and b should be
statically defined variables in the program. Name the program GCD.S. Here is some
additional information about the Euclidean algorithm:
https://www.khanacademy.org/computing/computer-
science/cryptography/modarithmetic/a/the-euclidean-algorithm. You can also simply google
“Euclidean algorithm”.

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm

Imagination University Programme – RVfpga Lab 2: RISC-V Assembly Language
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

Exercise 6. Write a RISC-V assembly program that computes the first 12 numbers in the
Fibonacci sequence, and stores the result in a finite vector (i.e. array), V, of length 12. This
infinite sequence of Fibonacci numbers is defined as:

V(0)=0, V(1)=1, V(i)=V(i-1)+V(i-2) (where i=0,1,2...)

In words, the Fibonacci number corresponding to element i is the sum of the two previous
Fibonacci numbers in the series. Table 6 shows the Fibonacci numbers for i = 0 to 8.

Table 6. Fibonacci series

i 0 1 2 3 4 5 6 7 8

V 0 1 1 2 3 5 8 13 21

The dimension of the vector, N, must be defined in the program as a constant. Name the
program Fibonacci.S.

Exercise 7. Given an N-element vector (i.e., array), A, generate another vector, B, such that
B only contains those elements of A that are even numbers greater than 0. For example:
suppose N = 12 and A = [0,1,2,7,-8,4,5,12,11,-2,6,3], then B would be: B = [2,4,12,6]. Name
the program EvenPositiveNumbers.S.

Exercise 8. Given two N-element vectors (i.e., arrays), A and B, create another vector, C,
defined as:

C(i) = |A[i] + B[N-i-1]|, i = 0,..,N-1.

Write a program in RISC-V assembly that computes the new vector. Use 12-element arrays
in your program. Name the program AddVectors.S.

Exercise 9. Implement the bubble sort algorithm in RISC-V assembly. This algorithm sorts
the components of a vector in ascending order by means of the following procedure:

1. Traverse the vector repeatedly until done.

2. Interchanging any pair of adjacent components if V(i) > V(i+1).

3. The algorithm stops when every pair of consecutive components is in order.

Use 12-element arrays to test your program. Name the program BubbleSort.S.

Exercise 10. Write a program in RISC-V assembly that computes the factorial of a given
non-negative number, n, by means of iterative multiplications. While you should test your
program for multiple values of n, your final submission should be for n = 7. n should be a
variable that is statically defined within the program. Name the program Factorial.S.

