]

Imagination

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga
Getting Started Guide

imagination
RVfpga Getting Started Guide university programme

Acknowledgements

@ ity e QJimagnation
AUTHORS CONTRIBUTORS ASSOCIATES Prof. Francisco Tirado Gage Elerding
Prof. Sarah Harris Robert Owen Prof. José Ignacio Gémez Prof. Roman Hermida Prof. Brian Cruickshank
Prof. Daniel Chaver Olof Kindgren Prof. Christian Tenllado Prof. Julio Villalba Deepen Parmar
Zubair Kakakhel Prof. Luis Pifiuel Prof. Daniel Leén Prof. Ataur Patwary Thong Doan
M. Hamza Liaqat Ivan Kravets Prof. Katzalin Olcoz Cathal McCabe Oliver Rew
Valerii Koval Prof. Alberto del Barrio Dan Hugo Niko Nikolay
ADVISER Ted Marena Prof. Fernando Castro Braden Harwood Guanyang He
Prof. David Patterson Prof. Roy Kravitz Prof. Manuel Prieto Prof. David Burnett Prof. Peng Liu

Sponsors and Supporters

Western Digital. Qo imagination E\PLlfASNEE P RISC
. s & E rant
ADIGILENT L . e
ai-ia 4 o.M,
Codosip |, ANDES (Z)PLATFORMIO.OFG

AUTHORS

- Prof. Sarah Harris (https://www.linkedin.com/in/sarah-harris-12720697/)

- Prof. Daniel Chaver (https://www.linkedin.com/in/daniel-chaver-a5056a156/)

- Zubair Kakakhel (https://www.linkedin.com/in/zubairlk/)

- M. Hamza Liaqat https://www.linkedin.com/in/muhammad-hamza-liagat-ab73a0195/)
ADVISER

- Prof. David Patterson (https://www.linkedin.com/in/dave-patterson-408225/)
CONTRIBUTORS

- Robert Owen (https://www.linkedin.com/in/robert-owen-4335931/)

- Olof Kindgren (https://www.linkedin.com/in/olofkindgren/)

- Prof. Luis Pifiuel ()

- Ivan Kravets (https://www.linkedin.com/in/ivankravets/)

- Valerii Koval (https://www.linkedin.com/in/valeros/)

- Ted Marena (https://www.linkedin.com/in/tedmarena/)

- Prof. Roy Kravitz (https://www.linkedin.com/in/roy-kravitz-4725963/)
ASSOCIATES

- Prof. José Ignacio Gomez (https://www.linkedin.com/in/jos%C3%A9-ignacio-gomez-182b981/)

- Prof. Christian Tenllado (https://www.linkedin.com/in/christian-tenllado-31578659/)

- Prof. Daniel Leon (www.linkedin.com/in/danileon-ufv)

- Prof. Katzalin Olcoz (https://www.linkedin.com/in/katzalin-olcoz-herrero-5724b0200/)

- Prof. Alberto del Barrio (https://www.linkedin.com/in/alberto-antonio-del-barrio-garc%C3%ADa-1a85586a/)

- Prof. Fernando Castro (https://www.linkedin.com/in/fernando-castro-5993103a/)

- Prof. Manuel Prieto (https://www.linkedin.com/in/manuel-prieto-matias-02470b8b/)

- Prof. Francisco Tirado (https://www.linkedin.com/in/francisco-tirado-fern%C3%Alndez-40a45570/)

- Prof. Roman Hermida (https://www.linkedin.com/in/roman-hermida-correa-a4175645/)

- Prof. Julio Villalba (https://www.linkedin.com/in/julio-villalba-moreno-97474824)

- Cathal McCabe (https://www.linkedin.com/in/cathalmccabe/)

- Dan Hugo (https://www.linkedin.com/in/danhugo/)

- Braden Harwood (https://www.linkedin.com/in/braden-harwood/)

- David Burnett (https://www.linkedin.com/in/david-burnett-3b03778/)

- Gage Elerding (https://www.linkedin.com/in/gage-elerding-052b16106/)

- Brian Cruickshank (https://www.linkedin.com/in/bcruiksh/)

- Deepen Parmar (https://www.linkedin.com/in/deepen-parmar/)

- Thong Doan (https://www.linkedin.com/in/thong-doan/)

- Oliver Rew (https://www.linkedin.com/in/oliver-rew/)

- Niko Nikolay (https://www.linkedin.com/in/roy-kravitz-4725963/)

- Guanyang He (https://www.linkedin.com/in/guanyang-he-5775bal09/)

- Prof. Ataur Patwary (https://www.linkedin.com/in/ataurpatwary/)

- Prof. Peng Liu (https://person.zju.edu.cn/liupeng)

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 2

https://www.linkedin.com/in/sarah-harris-12720697/
https://www.linkedin.com/in/daniel-chaver-a5056a156/
https://www.linkedin.com/in/zubairlk/
https://www.linkedin.com/in/muhammad-hamza-liaqat-ab73a0195/
https://www.linkedin.com/in/dave-patterson-408225/
https://www.linkedin.com/in/robert-owen-4335931/
https://www.linkedin.com/in/olofkindgren/
https://www.linkedin.com/in/ivankravets/
https://www.linkedin.com/in/valeros/
https://www.linkedin.com/in/tedmarena/
https://www.linkedin.com/in/roy-kravitz-4725963/
https://www.linkedin.com/in/jos%C3%A9-ignacio-gomez-182b981/
https://www.linkedin.com/in/christian-tenllado-31578659/
http://www.linkedin.com/in/danileon-ufv
https://www.linkedin.com/in/katzalin-olcoz-herrero-5724b0200/
https://www.linkedin.com/in/alberto-antonio-del-barrio-garc%C3%ADa-1a85586a/
https://www.linkedin.com/in/fernando-castro-5993103a/
https://www.linkedin.com/in/manuel-prieto-matias-02470b8b/
https://www.linkedin.com/in/francisco-tirado-fern%C3%A1ndez-40a45570/
https://www.linkedin.com/in/roman-hermida-correa-a4175645/
https://www.linkedin.com/in/julio-villalba-moreno-97474824
https://www.linkedin.com/in/cathalmccabe/
https://www.linkedin.com/in/danhugo/
https://www.linkedin.com/in/braden-harwood/
https://www.linkedin.com/in/david-burnett-3b03778/
https://www.linkedin.com/in/gage-elerding-052b16106/
https://www.linkedin.com/in/bcruiksh/
https://www.linkedin.com/in/deepen-parmar/
https://www.linkedin.com/in/thong-doan/
https://www.linkedin.com/in/oliver-rew/
https://www.linkedin.com/in/roy-kravitz-4725963/
https://www.linkedin.com/in/guanyang-he-5775ba109/
https://www.linkedin.com/in/ataurpatwary/
https://person.zju.edu.cn/liupeng

imagination
RVfpga Getting Started Guide university programme

Table of Contents

ACKNOWIEAGEIMENTS ...ttt 2
0. PREFRACE ...ttt 4
1. INTRODUGCTION ..ottt ettt e et et e e e et e e e eab e e e eaaaaaas 5
2. QUICK START GUIDE.... .ottt ettt e e e et e e 9
3. RISC-V ARCHITECTURE OVERVIEW ...t 18
4. RVFPGA SYSTEM OVERVIEW ..ottt 20
5. INSTALLING SOFTWARE TOOLSt ea e 37
6. RUNNING AND PROGRAMMING RVIPGaNEXYS.....cccoiieeieieeeieeeeeeeeeeeeeeeeeeeeeeeeeee e 43
7. SIMULATION IN VERILATOR ..ottt ettt eeaa e ees 73
8. SIMULATION INWHISPER ...t 79
O, APPENDICESttt ettt e aaae 81

Imagination
university programme

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 3

imagination
RVfpga Getting Started Guide university programme

0. PREFACE

This RVfpga course in Computer Architecture provides hands-on understanding of a
commercial RISC-V processor, RISC-V SoC, and the RISC-V ecosystem. The course
provides an understanding of the system from the underlying digital design and signals to
the instruction set architecture and processor to the programming environment, boot code,
and compiler. The fact that RVfpga users walk away with this top to bottom understanding of
the RISC-V system is remarkable. They not only have a working RISC-V SoC and
ecosystem, but they know how to use and expand the RISC-V processor and system for
future projects and research.

Professor David Patterson, who shared the ACM A.M. Turing Award with John Hennessy for
their contribution to RISC, says, “RISC-V is transforming processor design and
software/hardware co-design. RISC-V is an open architecture, which enables open-source
hardware implementations. This new option means that software development can occur
alongside hardware development, accelerating the design path. The RVfpga course
enhances the understanding of not only RISC-V processors but also the RISC-V ecosystem
and RISC-V SoCs. This course provides a deep understanding of an industrial-strength
processor architecture and system of increasing popularity, which will prove useful
throughout their academic and industry careers.”

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 4

imagination
RVfpga Getting Started Guide university programme

1. INTRODUCTION

RISC-V FPGA, also written RVfpga, is a package that includes instructions, tools, and labs
for targeting a commercial RISC-V processor to a field programmable gate array (FPGA)
and to a simulator, and then using and expanding it to learn about computer architecture,
digital design, embedded systems, and programming.

This RVfpga Getting Started Guide has the following sections, as described briefly below:
e Quick Start Guide (Section 2)
e Background and Overview
o RISC-V Architecture (Section 3)
o The RVfpga System (Section 4)
e Using the RVfpga System in Hardware
o Installing Software Tools (Section 5)
o Running and Programming the RVfpga System (Section 6)
e Simulating the RVfpga System
o Using Verilator, an HDL Simulator (Section 7)
o Using Whisper, Western Digital’s Instruction Set Simulator (Section 8)
e Appendices
Using the native RISC-V toolchain and OpenOCD (Appendix A)
Installing drivers in Windows to use PlatformlO (Appendix B)
Installing Verilator and GTKWave in Windows (Appendix C)
Installing Verilator and GTKWave in macOS (Appendix D)
Using Vivado to download the RVfpga System onto an FPGA (Appendix
E)
o Example: Using RVfpgain an industrial IoT application (Appendix F)

O O O O O

The Quick Start Guide (Section 2) describes the minimal software installation needed for
RVfpga and then shows how to download and execute a simple example program on the
RVfpga System. To understand RVfpga more fully, skip Section 2 and start with the
complete guide that starts in Section 3.

Section 3 gives a brief introduction to the RISC-V computer architecture. Section 4 describes
the RVfpga System (Section 4.A — 4.C) and the organization of the Verilog files that make up
the system (Section 4.D). The RVfpga System is based on the SweRVolf SoC
(https://github.com/chipsalliance/Cores-SweRVolf) which, in turn, uses Western Digital’s
(WD'’s) open-source RISC-V SweRV EH1 Core (https://github.com/chipsalliance/Cores-
SweRYV). Figure 1 and Table 1 illustrate the hierarchical organization of the RVfpga System,
from the SweRV EH1 Core up to RVfpgaNexys and RVfpgaSim.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 5

https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV

imagination
RVfpga Getting Started Guide vniversity programme

RVfpgaNexys

DDR2, CDC, BSCAN, Clock Generator
Target: Nexys A7 Board

The RVfpga System

SweRVolfX SoC

SweRV EH1
Core Complex

SweRV EH1
Core

ICCM, DCCM, IS, PIC, Bus Interface,
Debug Unit

Boot ROM, UART, System Controller, Interconnect,
SPI Controller

+
GPIO, PTC, additional SPI and 7-Segment Displays

RVfpgaSim

DDR2, CDC, BSCAN, Clock Generator
Target: Simulation

Figure 1. RVfpga System Hierarchy

Table 1. RVfpga System Hierarchy

Name
SweRV EH1 Core

Description
Open-source commercial RISC-V core developed be Western Digital
(https://github.com/chipsalliance/Cores-SweRV).

SweRV EH1 Core

SweRYV EH1 core with added memory (ICCM, DCCM, and instruction

(Extended SweRVolf)

Complex cache), programmable interrupt controller (PIC), bus interfaces, and
debug unit (https://github.com/chipsalliance/Cores-SweRV).
SweRVolfX The System on Chip that we use in the RVfpga course. It is an

extension of SweRVolf.

SweRVolf (https://github.com/chipsalliance/Cores-SweRVolf): An open-
source SoC built around the SweRV EH1 Core Complex. It adds a boot
ROM, UART interface, system controller, interconnect (AXI
Interconnect, Wishbone Interconnect, and AXI-to-Wishbone bridge),
and an SPI controller.

SweRVolIfX: It adds 4 new peripherals to SweRVolf: a GPIO, a PTC, an
additional SPI and a controller for the 8 digit 7-Segment Displays.

RVfpgaNexys

The SweRVolfX SoC targeted to the Nexys A7 board and its
peripherals. It adds a DDR2 interface, CDC (clock domain crossing)
unit, BSCAN logic (for the JTAG interface), and clock generator.
RVfpgaNexys is the same as SweRVolf Nexys
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter
is based on SweRVolf.

RVfpgaSim

The SweRVolfX SoC with a testbench wrapper and AXI memory
intended for simulation.

RVfpgaSim is the same as SweRVolf sim,
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter
is based on SweRVolf.

Imagination University Programme — RVfpga Getting Started Guide

Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 6

https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf

RVfpga Getting Started Guide

imagination
vniversity programme

The remaining sections show how to use the RVfpga System in both hardware
(RVfpgaNexys) and simulation (RVfpgaSim). Section 5 shows how to install the software
tools needed to use RVfpga. Section 6 shows how to use PlatformIO to both download
RVfpgaNexys onto the Nexys A7 FPGA board (Section 6.A) and download and run several
example programs on it (Section 6.B-6.H). Sections 7 and 8 show how to simulate
RVfpgaSim using Verilator (Section 7), an open-source HDL simulator, and how to use
Whisper (Section 8), Western Digital’s RISC-V Instruction Set Simulator (ISS).

Finally, the appendices show how to use RVfpga at the command prompt in Linux (Appendix
A), how to install needed drivers and software on Windows and macOS machines
(Appendices B-D), and how to use Vivado to download RVfpgaNexys onto an FPGA using
Vivado (Appendix E). The last appendix, Appendix F, shows how to use RVfpga in an
industrial 10T application (Appendix F).

Table 2 lists the software and hardware needed for RVfpga. This guide shows how to install
and use these tools and hardware on the Ubuntu 18.04 operating system (OS). Other
operating systems (such as Windows or macQS), follow similar (if not exactly the same)
steps. When instructions differ, we insert specific instructions for Windows and macOS
using this highlighting.

Note: if you do not have access to the Nexys A7 FPGA board, the labs can still be
completed in simulation using Whisper, Western Digital’s instruction set simulator (ISS), and
Verilator, an open-source HDL simulator. In this case, you do not need to install Vivado
(Section 5.A); you need only install VSCode/PlatformlO (as explained in Section 2.A) and
Verilator/GTKWave (as explained in Section 5.C).

Table 2. Required Software and Hardware for RVfpga

Software |
Name Website Cost
Vivado 2019.2 WebPACK https://www.xilinx.com/support/download/index. | free
html/content/xilinx/en/downloadNav/vivado-
design-tools/2019-2.html
VSCode https://code.visualstudio.com/Download free
PlatformlO https://platformio.org/ free
Installed within VSCode
Verilator (an HDL simulator) | https://github.com/verilator/verilator free
and GTKWave http://gtkwave.sourceforge.net/
Whisper (Western Digital’s https://github.com/chipsalliance/SweRV-ISS free
RISC-V Instruction Set Installed within PlatformlO
Simulator)
RISC-V Toolchain and https://github.com/riscv/riscv-gnu-toolchain free
OpenOCD https://github.com/riscv/riscv-openocd
Installed within PlatformlO
Name Website Cost
Nexys A7 FPGA Board* https://store.digilentinc.com/nexys-a7-fpga- $265
trainer-board-recommended-for-ece-curriculum/ | (academic
price:

$199
RISC-V Core and System-on-Chip (SoC)**

Imagination University Programme — RVfpga Getting Started Guide

Version 2.2 — 9th May 2022
© Copyright Imagination Technologies

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2019-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2019-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2019-2.html
https://code.visualstudio.com/Download
https://platformio.org/
https://github.com/verilator/verilator
http://gtkwave.sourceforge.net/
https://github.com/chipsalliance/SweRV-ISS
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-openocd
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/
https://store.digilentinc.com/nexys-a7-fpga-trainer-board-recommended-for-ece-curriculum/

imagination
RVfpga Getting Started Guide university programme

Name Website Cost

Western Digital’s https://github.com/chipsalliance/Cores-SweRV free

SweRV EH1 Core

SweRVolf https://github.com/chipsalliance/Cores- free
SweRVolf

* All of the steps described in this guide also work on Digilent's Nexys4 DDR FPGA board.
** Provided with the RVfpga download from Imagination Technologies

Expected Prior Knowledge:
Before completing this RVfpga course, which includes this RVfpga Getting Started Guide
and RVfpga Labs, it is expected that users have at least a fundamental understanding of the
following topics:
e Digital logic design
High-level programming (preferably C)
Assembly programming
Instruction set architecture
Processor microarchitecture
Memory systems

These topics are covered in the textbook Digital Design and Computer Architecture: RISC-V
Edition, Harris & Harris, © Morgan Kaufmann 2021. Other textbooks, including Computer
Organization and Design RISC-V Edition, Patterson & Hennessy, © Morgan Kaufmann
2017, cover some of these topics.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 8

https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf

imagination
RVfpga Getting Started Guide university programme

2. QUICK START GUIDE

This section shows how to install the minimal tools needed to use RVfpga and then shows

how to use PlatformlO to both download RVfpgaNexys onto the Nexys A7 FPGA board and
then run a program on RVfpgaNexys. You will need to purchase the FPGA board (see Table
2). These steps also work for the Nexys4-DDR FPGA board, an earlier version of the board.

A. Minimal installation: VSCode, PlatformlO and Nexys A7 board drivers
B. Download RVfpgaNexys onto FPGA and run programs on it

The instructions below are for an Ubuntu 18.04 system. They also work for Windows 10 and
macOS operating systems — when instructions differ from Ubuntu, we insert boxes with
specific instructions for Windows and macOS. If you are using Ubuntu, you can just ignore
those boxes. Paths are written as Linux paths using forward slashes (/), but Windows paths
are typically the same but with backward slashes (\).

A. Minimal installation: VSCode, PlatformlO and Nexys A7 board drivers
In this step, you will install the minimum software and drivers needed to use RVfpga. First,
you will install the programming environment, and then you will install the drivers for the
Nexys A7 FPGA board.

VSCode and PlatformIO Installation: You will use PlatformlO, an integrated development
environment (IDE) to download RVfpgaNexys onto the Nexys A7 board and also to
download and run programs on RVfpgaNexys. PlatformlO is built as an extension of
Microsoft’s Visual Studio Code (VSCode). PlatformlO is cross-platform and includes a built-
in debugger.

Follow these steps to install both VSCode and PlatformlO:
1. Install VSCode:
a. Download the installation file from the following link:
https://code.visualstudio.com/Download

b. Open aterminal, and install and execute VSCode:
cd ~/Downloads
sudo dpkg -i code*.deb
code

Windows / macOS: VSCode packages are also available for Windows (.exe file) and
macOS (.zip file) at https://code.visualstudio.com/Download. Follow the usual steps used for
installing and executing an application in these operating systems.

2. Install PlatformlO on top of VSCode:
a. Install python3 utilities by typing the following in a terminal:
sudo apt install -y python3-distutils python3-venv

Windows / macOS: this step (2.a) is not required in Windows. As for macOS, you can use
homebrew to install python3: brew install python3

b. If not yet open, start VSCode by selecting the Start button and typing “VSCode” in

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 9

https://code.visualstudio.com/Download
https://code.visualstudio.com/Download

imagination
RVfpga Getting Started Guide university programme

the search menu, then select VSCode, or type code in an Ubuntu terminal.

c. In VSCode, click on the Extensions icon located on the left side bar of VSCode
(see Figure 2).

B
Figure 2. VSCode’s Extensions icon

d. Type PlatformlO in the search box and install the PlatformlO IDE by clicking on the
install button next to it (see Figure 3).

File Edit Selection View Go Run Terminal Help

PlatformlQ IDE 1.100
Development environment for Embedde
Platformio Install

loT Utility o.3.0
Develop IoT project based on Platforml...
Install

on Studio: open-source,.
PlatformlO Install

Figure 3. PlatformI|O IDE Extension

e. The OUTPUT window on the bottom will inform you about the installation process.
Once finished, click “Reload Now” on the bottom right side window, and PlatformlO
will finish installing inside VSCode (see Figure 4).

OUTPUT TERMINAL DEBUGCONSOLE ~ PROBLEM PlatformlO Installation ~

Installing PlatformIO Core...
Please do not close this window and do not open other folders until this process is completed.
PlatformIO IDE installed successfully.

Please restart VSCode.

mIO IDE has been successfully installed! Please reload ¢ X

PlatformiO IDE (Extension) Reload Now

Figure 4. Reload Now after PlatformlO installs

Nexys A7 cable drivers installation: you need to manually install the drivers for the Nexys
A7 board.
o Open a terminal.
o Go into directory [RVfpgaPath]/RVfpga/driversLinux_NexysA7. (For simplicity, we
provide these drivers inside the RVfpga folder. When you install Vivado in Section 5

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 10

imagination
RVfpga Getting Started Guide university programme

of this guide, you can also find these drivers inside the downloaded package as
described in that section.)
o Run the installation script:
chmod 777 *
sudo ./install drivers
o Unplug the Nexys A7 board from your computer and restart the computer for the
changes to have effect.

Windows: follow the instructions provided in Appendix B for installing the drivers for the
Nexys A7 board.

\ macOS: it is not necessary to install any additional drivers. |

B. Download RVfpgaNexys onto FPGA and run programs on RVfpgaNexys
Now you will download RVfpgaNexys, the RISC-V system targeted to an FPGA, to the
Nexys A7 FPGA board. Although we will not modify it in this Getting Started Guide, the
Verilog for the RVfpga System is available in [RVfpgaPath]/RVfpga/src. We will describe the
source code for the RVfpga system in Section 4 of this GSG and in more detail in RVfpga
Labs 6-20. You will also modify the RVfpga system in some of the exercises for those labs.

Run RVfpgaNexys on the Nexys A7 FPGA board by completing the following steps:
Step 1. Connect Nexys A7 FPGA board to computer and turn the board on
Step 2. Open PlatformlO and C program
Step 3. Download RVfpgaNexys to Nexys A7 board
Step 4. Download and run program on RVfpgaNexys

Step 1. Connect Nexys A7 FPGA board to computer and turn the board on

Connect the Nexys A7 board to your computer using the provided USB cable. Figure 5
shows the physical locations of the LEDs and switches on the Nexys A7 FPGA board as well
as the USB connector, on switch, pushbuttons, and 7-segment displays. Connect a cable
between the USB connector port on the Nexys A7 board and turn on the board.

'T—T7%
| !ﬂ L
i T Breten m oy
usB > (L7 ¥ T Lt_'_h_'_ij =
Connector o & Hi

Pushbuttons

7-Segment

LEDs Displays

Switches

Figure 5. Digilent’s Nexys A7 FPGA board’s 1/O interfaces

(figure of board from https://reference.digilentinc.com/)

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 11

imagination
RVfpga Getting Started Guide university programme

Step 2. Open PlatformlO and C program
Now open Visual Studio Code (VSCode) by typing VSCode in the Start Menu (see Figure 6)
or by typing code in a terminal.

Q vscodel

Visual Studio ...

Figure 6. Open VSCode

If the PlatformlO Home (PIO Home) window does not automatically open, click on the

PlatformlO icon in the left ribbon menu: . Then expand PIO Home and click on Open.
Now PIO Home will open to the Welcome window (see Figure 7).

File Edit Selection View Go Run Terminal Help
P! ICK ACCESS & PIO Home X
(@ Sl wE
@ Welcome to
Home
Quick Access

et

Figure 7. Open PIO Home

Now click on File — Open Folder from the top file menu and select:
[RVfpgaPath]\RVfpga\examples\LedsSwitches_C-Lang

Select the folder, but do not open it (see Figure 8). PlatformlO will now open this program,
LedsSwitches_C-Lang, that reads the switch values on the Nexys A7 board and writes their
value onto the LEDs on the board.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 12

imagination

RVfpga Getting Started Guide university programme

PLATFORMIO: QU

@ PIO Home X

Vv PIO Home
Open « OS(C) » RVfpga > examples Search examples
PIO Accoun

| Organize - New folder
nspect pj

Projects & m Desktop o [J Name Date modified

Libraries Documents

Boards
Platforms
Devices

v Debug
Start Debug

4 Downloads
J Music
« Pictures

Videos

AL_Operations

Blinky
DotProduct_C-Lang
HelloWorld_C-Lang
LedsSwitches
LedsSwitches_C-Lang

2020 10:45 PM
0:45 PM
0:45 PM
0:45 PM
0:45 PM

11/21/2020 10:45 PM

File folder
File folder

File folder

2308 (C)
Toggle Deb

Vv Updates
® Library Upd
Platform U
Update All
Vv Miscellaneous
PlatformlO Core CLI Boards
Clone Git Project

Folder: LedsSwitches_C-Lang

Select Folder

New Terminal

1lnarade Dlatfarmin Cara
X ®0AO0 @ #& LiveShare

Figure 8. Open LedsSwitches_C-Lang example

You can view the LedsSwitches_C-Lang program by expanding the src folder and double-
clicking on LedsSwitches_C-Lang.c (Figure 9). We discuss this program in detail later in this
Getting Started Guide. For this Quick Start Guide, we will simply download this program onto
RVfpgaNexys, which will be running on the Nexys A7 board.

File Edit Selection View Go Run Terminal Help LedsSwitches_C-Lang.c - LedsSwitches_C-Lang - Visual Studio Code

> OPEN EDITORS ¢ LedsSwitche

LedsSwitches_C-Lang.c X

v LEDSSWITCHES C-LANG
> .pio
> .vscode
> include
> lib
v src
LedsSwitches_C-Lang.c main ()

start.S
En_Value=0xFFFF, switches_value;

(, En_Value);

P platformio.ini while (1) {
= README.rst

switches_value = ()3
switches_value = switches_value >> 16;
(, switches_value);

}
> OUTLINE
X ®oAo @ v > @ ¢ % Live Share

Figure 9. LedsSwitches_C-Lang.c program

Ln1,Col1 Spaces:4 UTF-8 LF C Win2 & Q

Note that the first time that an RVfpga example is opened in PlatformlO, the Chips Alliance
platform gets automatically installed (you can view it inside PIO Home — Platforms, as

shown in Figure 10). This platform includes several tools that you will use later, such as the
pre-built RISC-V toolchain, OpenOCD for RISC-V, an RVfpgaNexys bitfile and RVfpgaSim,
JavaScript and Python scripts, and several examples. If, for any reason, the Chips Alliance

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 13

imagination
RVfpga Getting Started Guide university programme

platform did not get installed automatically, you could install it manually, as will be explained
in Section 6.A.

File Edit Selection View Go Run Terminal Help PIO Home - LedsSwitches_C-Lang - Visual Studio Code

PLATFORMIO 1 > PIO Home X

v PROJECT TASKS :
- ‘a0

> @] Default \

v @] e rvolf_nexys @
eneral B Installed
Build IR
Upload
Monitor @ Project can depend on a specific version of development platform or VCS (Git,

W

Upload and Monitor Projects Mercurial and Subversion).
Clean

¥ Platform Filter platforms by name...

“ QUICK ACCESS
~ PIO Home
Open
PIO Account

Boards
Platforms

Devices i O Uninstall

X ®@oA0 B v > W ¢ .’@Liveshare
Figure 10. Chips Alliance platform installed in PlatformlO

Step 3. Download RVfpgaNexys to Nexys A7 board

You are now ready to download RVfpgaNexys, the RISC-V SoC that includes a RISC-V
processor with support for peripherals. Open the platformio.ini (PlatformlO initialization file)
by double-clicking on it in the EXPLORER window, as shown in Figure 11. (If the Explorer

window is not already open, open it by clicking on E in the left ribbon menu.) Now, add the

path for the location of the bitfile that defines RVfpgaNexys by replacing the

board_Dbuild.bitstream_file path with your own path (see Figure 11):
board_build.bitstream_file = [RVfpgaPath])/RVfpga/src/rvfpganexys.bit

Save the platformio.ini file by pressing Ctrl-s.

Many commands exist for the Project Configuration File (platformio.ini); more information
about these options are available at: https://docs.platformio.org/en/latest/projectconf/.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 14

https://docs.platformio.org/en/latest/projectconf/

imagination
vniversity programme

RVfpga Getting Started Guide

File Edit Selection View Go Run Terminal Help
@ Ex n LedsSwitches_C-Lang.c ¥ platformio.ini X
“ OPEN EDITORS
Leds!
X @ platformio.ini
g PIO Home
“ LEDSSWITCHES_C-LANG

pio

= 115200

c/rvfpga

= /home/dchav rilatorSIM/Vrvfpgasim

Figure 11. Add path to RVfpgaNexys bitfile

Download RVfpgaNexys (as defined by this bitfile) onto the Nexys A7 board:
e Click on the PlatformlO icon . in the left menu ribbon (see Figure 12).

o2

Figure 12. PlatformIO icon

¢ In case the Project Tasks window is empty (Figure 13), you must refresh the Project

Tasks first by clicking on . This can take several minutes.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 15

imagination
vniversity programme

RVfpga Getting Started Guide

File Edit S ion View Go Run Terminal Help

v PROJECT TASKS

2@ A w

@ Welcome to

Home
Quick Access

Recent Projects

Figure 13. PROJECT TASKS window empty — Refresh

e Then expand Project Tasks — env:swervolf_nexys — Platform and click on Upload
Bitstream, as shown in Figure 14. After one or two seconds, the FPGA will be
programmed with the RVfpgaNexys SoC.

By default, the processor starts fetching instructions at address 0x80000000, where
the Boot ROM is placed in our SoC (see Table 6). The Boot ROM is initialized with a
program (boot_main.mem) that blinks the LEDs and the 7-Segment Displays four
times and then turns off all the LEDs, writes 0s to the 8 7-Segment Displays and
stays in an empty loop. You can find this program in folder:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/BootROM/sw. If you want to change and
recompile it, do it as explained in Appendix A — Section Ill (note that file
boot_main.mem is simply a copy of file boot_main.vh). In Lab 5, we will show how
the Boot ROM is initialized with this program when creating the bitstream.

Figure 14. Upload Bitstream

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 16

imagination
RVfpga Getting Started Guide university programme

Step 4. Download and run program on RVfpgaNexys
Now that RVfpgaNexys is downloaded and running on the Nexys A7 board, you will
download the program into the memory of RVfpgaNexys and run/debug the program. Click

on the “Run and Debug” button: , Which is available in the left side bar. Start the

debugger by clicking on the play button Eikallkte NG (make sure that the "PlO
Debug” option is selected). You can find this button near the top of the window (see Figure
15). The program will first compile and then debugging will start.

File Edit Selection View Go Run Terminal Help

RUN P> PIO Debug

v VARIABLES

Figure 15. Compile and download the program and start the debugger

To control your debugging session, you can use the debugging toolbar which appears near
the top of the editor (see Figure 16). We will describe and test all the options later in this
Getting Started Guide.

CONTINUE STEP-OVER STEP-INTO STEP-OUT RESTART STOP

Figure 16. Debugging tools

PlatformlO sets a temporary breakpoint at the beginning of the main function. So, click on

the Continue button II! to run the program. Now toggle the switches on the Nexys A7 FPGA
board and view as the corresponding LEDs light up.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 17

imagination
RVfpga Getting Started Guide university programme

3. RISC-V ARCHITECTURE OVERVIEW

RISC-V is an Instruction Set Architecture (ISA) that was created in 2011 in the Par Lab at
the University of California, Berkeley. The goal was for RISC-V to become a “Universal ISA”
for processors used for the entire range of applications, from small, constrained, low-
resource 10T devices to supercomputers. RISC-V architects established five principles for
the architecture to achieve this goal:

e It must be compatible with a wide range of software packages and programming
languages.

¢ Its implementation must be feasible in all technology options, from FPGAs to ASICs
(application specific integrated circuits) as well as emerging technologies.

e It must be efficient in the various microarchitecture scenarios, including those
implementing microcode or hardwired control, in-order or out-of-order pipelines,
various types of parallelism, etc.

e It must be able to be tailored to specific tasks to achieve the required maximum
performance without drawbacks imposed by the ISA itself.

e Its base instruction set must be stable and long-lasting, offering a common and solid
framework for developers.

RISC-V is an open standard, in fact, the specification is public domain, and it has been
managed since 2015 by the RISC-V Foundation, now called RISC-V International, a non-
profit organization promoting the development of hardware and software for RISC-V
architectures. In 2018, the RISC-V Foundation began an ongoing collaboration with the
Linux Foundation, and in March 2020 the RISC-V Foundation became RISC-V International
headquartered in Switzerland. This transition dissipated any concern the community might
have had about future openness of the standard. As of 2020, RISC-V International is
supported by more than 200 key players from research, academia, and industry, including
Microchip, NXP, Samsung, Qualcomm, Micron, Google, Alibaba, Hitachi, Nvidia, Huawei,
Western Digital, ETH Zurich, KU Leuven, UNLV, and UCM.

RISC-V is one of the few, and probably the only, globally relevant ISAs created in the past
10-20 years because of it being an open standard and modular, instead of incremental. Its
modularity makes it both flexible and sleek. Processors implement the base ISA and only
those extensions that are used. This modular approach differs from traditional ISAs, such as
x86 or ARM, that have incremental architectures, where previous ISAs are expanded and
each new processor must implement all instructions, even those that are tagged as
“obsolete”, to ensure compatibility with older software programs. As an example, x86, that
started with 80 instructions, has now over 1300, or 3600 if you consider all different opcodes
available in machine code. This large number of instructions and the requirement of
backward compatibility result in large, power-hungry processors that must support long
instructions, because most of the short opcodes, or small instructions, are already in use.

RISC-V has four base ISA options: two 32-bit versions (integer and embedded versions,
RV32l and RV32E) and 64- and 128-bit versions (RV64l and RV128l), as shown in Table 3.
The ISA modules marked Ratified have been ratified at this time. The modules marked
Frozen are not expected to change significantly before being put up for ratification. The
modules marked Draft are expected to change before ratification. The ability to build small
processors is a particularly key requirement for cost-, space-, and energy-constrained
devices. Instruction extensions can be added on top of these base ISAs to enable specific
tasks, for example floating point operations, multiplication and division, and vector
operations. These specialized hardware extensions are also included in the standard and
known by the compilers, so enabling the desired options in a compiler will allow for a
targeted binary code generation. Each of these extensions is identified by a letter that must

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 18

imagination
RVfpga Getting Started Guide university programme

be added to the core ISA to represent the hardware capabilities of the implementation, as
shown in Table 4. For example, RVM is the multiply/divide extension, RVF is the floating-
point extension, and so on.

Table 3. RISC-V base ISAs
(table from https://riscv.org/technical/specifications/)

Base Version Status
RVWMO | 2.0 Ratified
RV321 2.1 Ratified
RV641 2.1 Ratified

RV32E | 1.9 Draft

RVI28I | 1.7 Draft

Table 4. RISC-V standard ISA extensions
(table from https://riscv.org/technical/specifications/)

Extension | Version Status
Zifencei | 2.0 Ratified
Zicsr 2.0 Ratified
M 2.0 Ratified
A 2.0 Frozen
F 2.2 Ratified
D 2.2 Ratified
Q 2.2 Ratified
C 2.0 Ratified
Ztso 0.1 Frozen
Counters | 2.0 Draft
L 0.0 Draft
B 0.0 Draft
J 0.0 Draft
T 0.0 Draft
P 0.2 Draft
V 0.7 Draft
N 1.1 Draft
Zam 0.1 Draft

The letter G, that denotes “general”, is used to denote the inclusion of all MAFD extensions.
Note that a company or an individual may develop proprietary extensions using opcodes that
are guaranteed to be unused in the standard modules. This allows third-party
implementations to be developed in a faster time-to-market.

For example, a 64-bit RISC-V implementation, including all four general ISA extensions plus
Bit Manipulation and User Level Interrupts, is referred to as an RV64GBN ISA. All these
modules are covered in the unprivileged or user specification. RISC-V International also
covers a set of requirements and instructions for privileged operations required for running
general-purpose operating systems.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 19

https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/

imagination
RVfpga Getting Started Guide university programme

4. RVFPGA SYSTEM OVERVIEW

In this section we describe the entire RVfpga system from the core up to the FPGA board
interface. Figure 17 illustrates the typical hierarchical organization of an embedded system
starting with the processor core, then the SoC built around the core, and finally the system
and board interface.

SoC
Figure 17. Embedded System organization

Figure 1 and Table 1 show the hierarchical organization of our system, from the SweRV EH1
Core up to RVfpgaNexys and RVfpgaSim. In the following sections, we start by describing
the processor core (Western Digital’s SweRV EH1 Core), which executes the RISC-V
instructions; then, in Section B, we describe the SweRVolfX SoC, which integrates the
system’s hardware components (core, memory, and input/output), and the extensions
performed for using it within RVfpga; in Section C we describe the SweRVolfX SoC
implemented on the Nexys A7 FPGA board (RVfpgaNexys) and also describe the
SweRVolfX SoC used in simulation (RVfpgaSim). Finally, we explain the file structure of the
whole RVfpga System in Section D.

A. SweRV EH1 Core and SweRV EH1 Core Complex

Western Digital developed three RISC-V cores over the past few years: SweRV EH1 (the
core used in the RVfpga System), SweRV EH2, and SweRV EL2 (future versions of RVfpga
may include these cores). Each core has an Apache 2.0 license. The SweRV EH1 Core is a
32-bit, 2-way superscalar, 9-stage pipeline core. The SweRV Core EH2 builds on and
expands the EH1 Core to add dual threaded capability for additional performance. The
SweRYV Core EL2 is a smaller core with moderate performance. The RISC-V page at
https://www.westerndigital.com/company/innovations/risc-v outlines the three available
cores, whose main features are given in Table 5.

Table 5. Main features of the three WD RISC-V Cores

(table from https://www.westerndigital.com/company/innovations/risc-v)

Core Name RISC-V Type Pipeline Stages Threads Size @ TSMC CoreMarks/Mhz
SweRV Core EH1 RV32IMC 9- dual issue Single Jimm @ 28nm 4.9
SweRV Core EH2 RV32IMC 9- dual issue Dual .067 @ 16nm 6.3
SweRV Core EL2 RV32IMC 4- single issue Single .023 @ 16nm 3.6

Out of the three cores, the SweRV EH1 Core (provided with the RVfpga package and also
available from https://github.com/chipsalliance/Cores-SweRV) is preferred for its high
performance/MHz and its simple thread structure. Moreover, Chips Alliance, a group
committed to providing open-source hardware, provides a complete and verified SoC, called
SweRVolf (provided with the RVfpga package and also available from

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 20

https://www.westerndigital.com/company/innovations/risc-v
https://www.westerndigital.com/company/innovations/risc-v
https://github.com/chipsalliance/Cores-SweRV

imagination
RVfpga Getting Started Guide university programme

https://github.com/chipsalliance/Cores-SweRVolf). The RVfpga System uses an extension of
the SweRVolf SoC that, in turn, uses Western Digital’'s SweRV EH1 Core version 1.8.

The SweRV EH1 Core is a machine-mode (M-mode) only, 32-bit CPU core which supports
RISC-V’s integer (I), compressed instruction (C), and integer multiplication and division (M)
extensions. The Programmer’s Reference Manual (https://github.com/chipsalliance/Cores-
SweRV/blob/master/docs/RISC-V_SweRV_EH1 PRM.pdf) describes in detail all aspects of
the core, from its structure to timing information and memory maps. SweRV EHL1 is a
superscalar core, with a dual-issue 9-stage pipeline (see Figure 18) that supports four
arithmetic logic units (ALUs), labelled EX1 to EX4 in two pipelines, 10 and I1. Both ways of
the pipeline support ALU operations. One way of the pipeline supports loads/stores and the
other way has a 3-cycle latency multiplier. The processor also has one out-of-pipeline 34-
cycle latency divider. Four stall points exist in the pipeline: ‘Fetch 1°, ‘Align’, ‘Decode’, and
‘Commit’. The ‘Fetch 1’ stage includes a Gshare branch predictor. In the ‘Align’ stage,
instructions are retrieved from three fetch buffers. In the ‘Decode’ stage, up to two
instructions from four instruction buffers are decoded. In the ‘Commit’ stage, up to two
instructions per cycle are committed. Finally, in the ‘Writeback’ stage, the architectural
registers are updated.

Stage

1 i tont

:

4 Stall Point
Load/Store Pipe 10 Pipe 11 Pipe Multiply Pipe Divider

s bc1 A Adder M1

6 [oc2 | | ex2e | | &x2e | | w2 | 304‘?;;&

Pipe
7 Lo E3 I ERRFEA
g EX4 EX4 Stall Point

r r

Figure 18. SweRV EH1 core microarchitecture
(figure from https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1 PRM.pdf)

Figure 19 shows a comparison of different current cores and processors. The SweRV EH1
Core performance per MHz is impressively high at 4.9 CM/MHz (CoreMark per MHz): it is
twice as fast as the ARM Cortex A8 and its performance even surpasses the ARM Cortex
A15 performance.

CoreMark for SweRV is 4.9 CM/MHz

O = NoWwh WO
'
P

Intel Xeon ARM BOOM-4wBOOM-2w ARM MIPS74K ARM Rocket ARM
ES(vy) Cortex Cortex A9 Cortex A8 (RV64G) Cortex AS
A15

Figure 19. Benchmark comparison per thread and MHz
(figure from https://content.riscv.org/wp-content/uploads/2019/12/12.11-14.20a3-Bandic-
WD_SweRV_Cores Roadmap v4SCR.pdf)

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 21

https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.11-14.20a3-Bandic-WD_SweRV_Cores_Roadmap_v4SCR.pdf
https://content.riscv.org/wp-content/uploads/2019/12/12.11-14.20a3-Bandic-WD_SweRV_Cores_Roadmap_v4SCR.pdf

imagination
RVfpga Getting Started Guide university programme

Western Digital also provides an extension to the SweRV EH1 Core called the SweRV EH1
Core Complex (see Figure 20), which adds the following elements to the EH1 Core
described above and coloured in blue in the figure:

¢ Two dedicated memories, one for instructions (ICCM) and the other for data (DCCM),
which are tightly coupled to the core. These memories provide low-latency access
and SECDED ECC (single-error correction and double-error detection error
correcting codes) protection. Each of the memaories can be configured as 4, 8, 16, 32,
48, 64, 128, 256, or 512KB.

e An optional 4-way set-associative instruction cache with parity or ECC protection.

¢ An optional Programmable Interrupt Controller (PIC), that supports up to 255 external
interrupts.

o Four system bus interfaces for instruction fetch (IFU Bus Master), data accesses
(LSU Bus Master), debug accesses (Debug Bus Master), and external DMA
accesses (DMA Slave Port) to closely coupled memories (configurable as 64-bit AX14
or AHB-Lite buses).

e Core Debug Unit compliant with the RISC-V Debug specification.

SweRV EH1 Core Complex

DCCM

ICCM

SweRV EH1 Core — RV32IMC

I-Cache

PIC

LSU Bus IFU Bus
Master Master

Debug & amaRlrYe

Debug Bus
\VESE

DMA Slave
ort

~i HRREH

64-bit AXI4 64-bit AXI4 64-bit AXI4 64-bit AXI4
or or or or
AHB-Lite AHB-Lite AHB-Lite AHB-Lite

Figure 20. SweRV EH1 Core Complex
(figure from https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1 PRM.pdf)

B. SweRVolfX SoC

The System on Chip (SoC) used in this RVfpga package, called SweRVolfX and illustrated in
Figure 21, is based on SweRVolf version 0.7.3 (https://github.com/chipsalliance/Cores-
SweRVolf/releases/tag/v0.7.3), which is built on top of the SweRV EH1 Core Complex. In
addition to the SweRV EH1 Core Complex (see Figure 20), the SweRVolf SoC also includes
a Boot ROM, a UART, a System Controller and an SPI controller (Figure 21 shows these
elements in white). Given that the SweRV EH1 Core uses an AXI bus and the peripherals
use a Wishbone bus, the SoC also has an AXI-Wishbone Bridge.

In RVfpga we extend the SweRVolf SoC with some more functionality, such as another SPI
controller (SPI2), a GPIO (General Purpose Input/Output) controller, a PTC
(PWM/Timer/Counter) module and a controller for interfacing with 8-digit 7-Segment
Displays. Figure 21 shows these new peripherals in red, except for the 7-Segment Displays

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 22

https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
https://github.com/chipsalliance/Cores-SweRVolf/releases/tag/v0.7
https://github.com/chipsalliance/Cores-SweRVolf/releases/tag/v0.7

imagination
RVfpga Getting Started Guide university programme

controller, which is included in the System Controller. We call this System on Chip
SweRVolfX (the X stands for eXtended).

SweRV EH1 Core Complex

SweRV EH1 Core - RV32IMC

DEC Lsu

Master ll astel

AXI Interconnect]

@ %RAM Memory

[AXI-Wishbone Bridge]

I—b- JTAG

[Wishbone Interconnect]

g

Boot-ROM System-Ctrl SPI1 SPI12 PTC GPIO UART

Figure 21. SweRVolfX (SweRVolf eXtended with 4 new peripherals) System on Chip

Table 6 shows the memory-mapped addresses of the peripherals connected to the core via
the Wishbone interconnect.

Table 6. Memory-mapped addresses of Extended SweRVolfX SoC peripherals

System Address
Boot ROM 0x80000000 - 0x80000FFF
System Controller 0x80001000 - 0x8000103F
SPI1 0x80001040 - 0x8000107F
SPI2 0x80001100 - 0x8000113F
PTC 0x80001200 - 0x8000123F
GPIO 0x80001400 - 0x8000143F
UART 0x80002000 - 0x80002FFF

i. Input/Output
The SweRVolfX SoC uses two kinds of hardware controllers for communicating with the
peripherals: custom controllers written in Verilog and open-source controllers from
OpenCores [https://opencores.org/], an online community for the development of
gateware IP (Intellectual Properties) cores in the spirit of free and open source
collaboration. The SweRVolfX SoC that we use in this course includes the 1/O interfaces
listed below, which we will use, explain in detail and even extend in RVfpga Labs 6-20.

e System Controller: the system controller contains common system functionality
such as keeping register with the SoC version information, RAM initialization status
and the RISC-V machine timer. At https://github.com/chipsalliance/Cores-SweRVolf
you can find the complete memory map. We have modified this module as follows:

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 23

https://opencores.org/
https://github.com/chipsalliance/Cores-SweRVolf

imagination
RVfpga Getting Started Guide university programme

o We have included a new controller for communicating with the 8-digit 7-
Segment Displays available on the Nexys A7 board, called
SevSegDisplays_Controller, and we have included two new registers for
this controller mapped in addresses 0x80001038 and 0x8000103C.

o We have added two 1-bit registers for handling interrupts from the GPIO and
the PTC, mapped in address 0x80001018.

o We have removed the simple GPIO registers provided by SweRVolf and
mapped in addresses 0x80001010-0x80001017. Note that we have added a
more complete GPIO controller as described below.

e SPI: two open-source SPI controllers (obtained from
https://opencores.org/projects/simple spi and named SPI1 and SPI2) are
implemented in SweRVolfX. Their exposed registers (SPI_SPCR, SPI_SPSR,
SPI_SPDR, SPI_SPER, SPI_SPSS) are mapped between addresses 0x80001040
and 0x8000107F (for SPI1) and between addresses 0x80001100 and 0x8000113F
(for SPI2).

e PTC: We use the timer module from https://opencores.org/projects/ptc. Its registers
are mapped in the address range 0x80001200 to 0x800012FF.

o GPIO: We use the GPIO controller from https://opencores.org/projects/gpio. It
includes 32 I/O ports mapped in the address range 0x80001400 to 0x800014FF.
Each pin is connected with a tristate buffer, so it can be configured as input or output.

o UART: an open-source UART controller (obtained from
https://opencores.org/projects/uart16550) is available in SweRVolfX. Its exposed
registers are mapped between addresses 0x80002000 and 0x80002FFF.

ii. Memory
The SweRVolfX SoC includes a Boot ROM memory and the necessary hardware to
enable the user to include RAM and SPI Flash memories.

¢ Boot ROM: a Boot ROM contains a first-stage bootloader. After system reset, the
SweRVolfX SoC will start fetching the initial instructions from this area, which
occupies addresses 0x80000000 to 0x80000FFF.

¢ RAM: the SweRVoIfX SoC does not include a memory controller, but it reserves the
first 128MiB of its memory map (0x00000000-0x07FFFFFF) and exposes the AXI
bus, so that the user can access RAM memory by using a memory controller.

e SPI Flash: an SPI Flash memory can also be included using the SPI1 controller
described in the previous section (address range: 0x80001040-0x8000107F).

iii. Interconnection
The SweRV EH1 Core uses an AXI4 bus to connect the core and memory. The bus
could also be configured as an AHB-Lite bus, but we will not use that option in these
materials. All of the peripherals (I/O devices) are connected to a Wishbone bus, an open
source bus that is heavily used in OpenCore CPU’s and peripherals. The system
includes an AXI to Wishbone Bridge (as shown in Figure 21) to connect the core to the
peripherals.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 24

https://opencores.org/projects/simple_spi
https://opencores.org/projects/ptcb
https://opencores.org/projects/gpio
https://opencores.org/projects/uart16550

imagination
RVfpga Getting Started Guide university programme

In this section, we briefly describe the operation of an AXI4 bus and a Wishbone bus. If
you are interested in extending your knowledge about the specification of these buses,
you can use the references provided below.

The AXI4 Bus

The SweRV EH1 Core Complex uses an AXI4 Interconnect for communicating with the
outside world (see Figure 20). The Advanced eXtensible Interface (AXI) is a common
bus used by many processors and it is part of the ARM Advanced Microcontroller Bus
Architecture on-chip interconnect specification.

In the following subsections, we briefly explain some of the main aspects of the AXI4
interconnect. You can find the whole AXI specification in the following document:
https://static.docs.arm.com/ihi0022/e/IHI0O022E_amba_axi_and_ace protocol spec.pdf

e AXI Bus Main Features

The main features of the AXI bus technology are as follows:

It is suitable for both high-bandwidth and low-latency designs

It provides high-frequency operation without using complex bridges

It can meet the interface requirements of a wide range of components

It is suitable for memory controllers with high initial access latency

It provides flexibility in the implementation of interconnect architectures

It is backward compatible with existing AHB and APB interfaces

It provides separate address/control and data phases

It includes support for unaligned data transfers (using byte strobes)

It allows burst-based transactions with only the start address issued

It provides separate read and write data channels, which can allow low-cost

DMA

» |t allows address information to be issued ahead of the actual data transfer

= |t provides support for issuing multiple outstanding addresses and out-of-order
transaction completion

= |t allows easy addition of register stages to provide timing closure

e AXI Architecture
The AXI protocol defines the following independent transaction channels:
= Read address
Read data
Write address
Write data
Write response

Figure 22 shows how a read transaction uses the read address and read data
channels. First the address and control bits are sent from the master device, then the
slave device responds with the data on the read data channel.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 25

https://static.docs.arm.com/ihi0022/e/IHI0022E_amba_axi_and_ace_protocol_spec.pdf

imagination
RVfpga Getting Started Guide university programme

Read address channel

Address
and control

—_—
Master Slave

interface interface
Read data channel

Read Read Read Read
data data data data

-~ — 4

Figure 22. Channel architecture of reads
(figure from https://static.docs.arm.com/ihi0022/e/IHI0O022E_amba_axi_and_ace_protocol_spec.pdf)

Figure 23 shows how a write transaction uses the write address, write data, and write
response channels. Similar to a read, the master device sends the address and
control bits. Then the master device sends the data on the write data channel and the
slave device sends a response.

Write address channel

Address
and control
—_—
Write data channel
Master Write Write Write Write Slave
interface data data data data interface

v
v
v
v

Write response channel

Write
response

-——

Figure 23. Channel architecture of writes
(figure from https://static.docs.arm.com/ihi0022/e/IHI0022E _amba_axi_and_ace protocol_spec.pdf)

The AXI address channel carries addresses and control information that describes
the nature of the data to be transferred. The data is transferred between the master
and slave using either:
» Aread data channel to transfer data from the slave to the master (Figure
22).
* A write data channel to transfer data from the master to the slave (Figure
23). In a write transaction, the slave uses the write response channel to
signal the completion of the transfer to the master (Figure 23).

e AXI Signals

Table 7. shows the main signals used in the AXI bus and a brief description of each
of them. The signals are organized in five groups, which correspond to the five
channels described in the previous section:

* Write address channel signals, whose names start with AW

* Write data channel signals, whose names start with W

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 26

https://static.docs.arm.com/ihi0022/e/IHI0022E_amba_axi_and_ace_protocol_spec.pdf
https://static.docs.arm.com/ihi0022/e/IHI0022E_amba_axi_and_ace_protocol_spec.pdf

imagination
RVfpga Getting Started Guide university programme

* Write response channel signals, whose names start with B
* Read address channel signals, whose names start with AR
* Read data channel signals, whose names start with R

Table 7. AXI Signals
(table from https://static.docs.arm.com/ihi0022/e/IHI0022E _amba_axi_and _ace_protocol_spec.pdf)

Source: Input/
Signal master/ Output Description

slave utp
Aclk Global Input {ilobal clock

signal.

AResetn Global Input Global reset signal
AWID[3:0] Master Input Write address 1D.
AWADDR[31:0] | Master Input Write address.
AWLEN[3:0] Master Input Write burst length.
AWSIZE[2:0] Master Input Write burst size.
AWBURST[1:0] Master Input Write burst type.
AWLOCK]1:0] Master Input Write lock type.
AWCACHE[3:0] | Master Input Write cache type.

AWPROT[2:0] | Master | Input Write protection

type.
WDATA[31:0] Master Input Write data.
ARID[3:0] Master Input Read address ID.
ARADDR[31:0] Master Input Read address.
ARLEN[3:0] Master | Input Read Burst length.
ARSIZE[2:0] Master Input Read Burst size.
ARLOCK][1:0] Master Input Read Lock type.
ARCACHE([3:0] Master | Input Read Cache type.
ARPROT[2:0] | Master | Input fi;‘zd Protection
RDATA[31:0] Master | Input Read data.
WLAST Master | Input Write last.
RLAST Slave Output Read last.
AWVALID Master | Output | " ritcaddress
valid.
AWREADY Stave | Output | “writeaddress
ready.
WVALID Master | Output Write valid.
RAVLID Slave Output Read valid.
WREADY Slave Qutput Write ready.
BID[3:0] Slave | Output ?f}”‘e Response
RID[3:0] Slave Output Read response 1D.
BRESP[1:0] Slave Qutput Write response.
RRESP[1:0] Slave Output Read response.
BVALID Slave Output wr.'tc response
valid.

The Wishbone bus

The SweRVolfX peripherals use the Wishbone System-on-Chip (SoC) Interconnection
Architecture for Portable IP Cores (https://opencores.org/howto/wishbone). The main
purpose of this bus is to foster design reuse by alleviating System-on-Chip integration
problems. Previously, IP cores used non-standard interconnection schemes that made
them difficult to integrate. These non-standard interconnects required the creation of
custom glue logic to connect each of the cores together. By adopting a standard
interconnection scheme such as the Wishbone bus, cores can be integrated more
quickly and easily by the end user.

e Wishbone main features
The main features of this Wishbone bus technology are as follows:
= |t supports structured design methodologies used by large project teams.
= [tincludes a full set of popular data transfer bus protocols including:
I. READ/WRITE cycles
. BLOCK transfer cycles

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 27

https://static.docs.arm.com/ihi0022/e/IHI0022E_amba_axi_and_ace_protocol_spec.pdf
https://opencores.org/howto/wishbone

imagination
RVfpga Getting Started Guide university programme

iii. READ/MODIFY/WRITE cycles
= |t provides modular data bus widths and operand sizes up to 64-bits.
= |t supports both BIG ENDIAN and LITTLE ENDIAN data ordering.
= |t supports various core interconnection methods including point-to-point,
shared bus, crossbar switch, and switched fabric interconnections.
= [tincludes handshaking protocols that allow each IP core to throttle its data
transfer speed.
= |t supports single clock data transfers.
= |t supports normal cycle termination, retry termination, and termination due to
error.
= [tincludes modular address widths.
= |t provides a partial address decoding scheme for slaves. This facilitates high
speed address decoding, uses less redundant logic, and supports variable
address sizing and interconnection methods.
= |t provides user-defined tags. These are useful for applying information to an
address or data bus or a bus cycle. User-defined tags are especially helpful
when modifying a bus cycle to identify information such as:
I Data transfers
. Parity or error correction bits
iii. Interrupt vectors
iv. Cache control operations
= ltincludes a Master/Slave architecture for flexible system designs.
= |t has multiprocessing (multi-MASTER) capabilities. This allows for a wide
variety of SoC configurations
= |tincludes an arbitration methodology that can be defined by the end user
(priority arbiter, round-robin arbiter, etc.)

e Wishbone Architecture and Signals

Figure 24 illustrates the standard connection between a master (in our case, the
SweRV EH1 Core) and a slave (in our case, a peripheral such as the GPIO, the
SPI...) through a Wishbone bus. The Wishbone bus is much simpler than the AX14
bus and, as shown in Table 8, it uses fewer signals.

STER
SLAVE

M

DAT I() i—>< DAT I()
AT 0() DAT_O()

[SHBONE MA
|
|
WISHBONE

TAGN 0 1 USER

raen 1 b DEFINED

Figure 24. Wishbone Architecture
(figure from https://opencores.org/howto/wishbone)

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 28

https://opencores.org/howto/wishbone

RVfpga Getting Started Guide

imagination
vniversity programme

Table 8. Wishbone Signals
(table from https://opencores.org/howto/wishbone)

Signal Description

Signal name description name

CLK_O It coordinates all activities for e ‘é’:i‘ﬁ'ﬁﬁ;ﬁ;gﬁsms T%Eﬂf‘ﬂfed ft;':e:;i"g 7:99, .
the internal logic within the o e e ek e
WISHBONE interconnect. DAT_I() The data input array [DAT_I()] is used to pass binary data. The array
The INTERCON module boundaries are determined by the port size, with a maximum port
connects the [CLK_O] output size of 64-bits (e.g. [DAT_I(63..0)]).
to the [CLK |] input on DAT_O() The data output array [DAT_O()] is used to pass binary data. The

¥ array boundaries are determined by the port size, with a maximum
MASTER and SLAVE port size of 64-bits (e.q. [DAT_I(63..0)]).

RST_O It forces all WISHBONE RST_I() The reset input [RST._I] forces the WISHBONE interface to restart
interfaces to restart. Al TGD_I() Data tag type [TGD_I()] is used on MASTER and SLAVE interfaces.
intemal self-starting state It contains information that is associated with the data input aray
machines are forced into an [DAT_I()], and is qualified by
initial state. The INTERCON signal [STE..
connects the [RST_O] output TGD_O(Data tag type [TGD_O()] is used on MASTER and SLAVE
to the [RST_I] input on) interfaces. It contains information that is associated with the data
MASTER and SLAVE output array [DAT_O()], and is qualified by signal [STB_O]

Signal Description Signal name Description
name P b
5 ACK_ The acknowledge output [ACK_O], when
ACK. The acknlljwl.edge input [ACK_I], wl'fen H asserted, indicates the termination of a normal
asserted, indicates the normal termination bus cycle
of a bus cycle s
CYC.) The cycle input [CYC_I], when asserted,
CYyCc_0 Th? cycle output [9YC70]. whe_n .asseried‘ indicates that a valid bus cycle is in progress
:‘g‘gf:: IR LA TR STALL O The pipeline stall signal [STALL_O] indicates
that the slave can not accept additional
STALL_I The pipeline stall input [STALL_[] indicates transactions in its queue
that cument slave is not able to accept the ERR O The error output [ERR_O] indicates an abnormal
transfer in the transaction queue cycle termination

ERR_I The eror input [ERR_I] indicates an RTY_O The retry output [RTY_O] indicates that the

abnormal cycle termination indicates that the interface is not ready to

RTY_I The retry input [RTY_I] indicates that the accept or send data, and that the cycle should

interface is not ready to accept or send be retried
data, and that the cycle should be retried STB_I The strobe input [STB_L], when asserted,
STB O The strobe output [STB_O] indicates a indicates that the SLAVE is selected: A SLAVE
valid data transfer cycle shall res_pond to ot.her WISHBONE signals only
" SR when this [STB [l is asserted
WE_ O The write enable output [WE_O)] indicates WE_I The write enable input [WE_I] indicates whether

whether the current local bus cycle is a
READ or WRITE cycle

C.
Simulation

the current local bus cycle is a READ or
WRITE cycle

SweRVolfX SoC on the Nexys A7 FPGA Board and in

The SweRVolfX SoC (Figure 21) can run either (1) on the Nexys A7 (or Nexys4 DDR) FPGA
board, which configuration is referred to as RVfpgaNexys in this course, or (2) in simulation,
which is referred to as RVfpgaSim in this course.

i. RVfpgaNexys

RVfpgaNexys is the SweRVolfX SoC targeted to the Digilent Nexys A7 FPGA board
(Figure 25). RVfpgaNexys is the same as SweRVolf Nexys
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is based on

SweRVolf. The main elements used by RVfpgaNexys are illustrated in Figure 25:

e Hardware programmed onto the FPGA:
» SweRVolfX SoC (illustrated in Figure 21)

> Lite DRAM controller

» Clock Generator: the Nexys A7 board includes a single 100 MHz crystal
oscillator that is used by the Lite DRAM controller. The frequency of this
clock is scaled down to 50 MHz to use in the SweRVolfX SoC.

» Clock Domain Crossing module: connection of 2 clock domains:
SweRVolfX SoC and Lite DRAM.

» BSCAN logic for the JTAG: you can find more information about this

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

29

https://opencores.org/howto/wishbone
https://github.com/chipsalliance/Cores-SweRVolf

imagination
RVfpga Getting Started Guide university programme

module at https://github.com/chipsalliance/Cores-SweRVolf/issues/29.

e Memory/Peripherals used in RVfpgaNexys from the Nexys A7 (or Nexys4 DDR)
FPGA board:
» DDR2 memory (accessed through the Lite DRAM controller mentioned
above)
USB connection
SPI Flash memory
SPI Accelerometer
16 LEDs and 16 Switches
8-digit 7-Segment Displays

VVVYVYYVY

L1 100 MHz
Clock | |
Generator

[50 MHz

A4

SweRVolfX SoC

bscan TAP
s
[AXI Interconnect J = v
$ T RAM Memory Lite DRAM
[AXI-Wishbone Bridge] controller =

[Wishbone Interconnect }

Boot-ROM_| [system-ctrl | [spix][spi2 | [Timer][Gpio | [uarT [{oss mt
f

U
—

i @

Figure 25. RvfpgaNexys

The Nexys A7 board (Figure 26) is a recommended trainer board for electrical and
computer engineering curricula. This board costs $265 (or a discounted price of $198.75
with academic pricing — sign up for a Digilent account with a .edu email address).
Digilent provides an extensive reference manual of the Nexys A7 board at:
https://reference.digilentinc.com/ _media/reference/programmable-logic/nexys-a7/nexys-
a7_rm.pdf. This board may be powered from a 5V wall wart (not provided with the board)
or from a PC via the microUSB connector on the board. A Microchip PIC24
microcontroller manages the loading process onto the FPGA, making this board a user-
friendly option. The board is programmable using Xilinx’s Vivado Design Suite or
OpenOCD. The desired configuration can be downloaded to the FPGA using one of four
different sources: a FAT32 formatted MicroSD card, a FAT32 formatted USB pendrive,
the internal flash memory, or a JTAG interface.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 30

https://github.com/chipsalliance/Cores-SweRVolf/issues/29
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-a7/nexys-a7_rm.pdf
https://reference.digilentinc.com/_media/reference/programmable-logic/nexys-a7/nexys-a7_rm.pdf

imagination
vniversity programme

RVfpga Getting Started Guide

Figure 26. Digilent’s Nexys A7 FPGA board
(figure from https://reference.digilentinc.com/)

The Nexys A7-100T FPGA board includes the following interfaces and devices:
128 MiB DDR RAM

128 Mibit SPI Flash Memory

8-digit 7-Segment Displays

16 Switches

16 LEDs

Sensors and connectors, including a microphone, audio jack, VGA 25 port, USB
host port, RGB-LEDs, 12C temperature sensor, SPI accelerometer, among other.
e Xilinx Artix-7 FPGA, which has the following features:

15.850 Logic slices of four 6-input LUTs and 8 flip-flops.

4.860 Kibits of total block RAM

6 clock management tiles (CMTS)

170 1/O pins

450 MHz internal clock frequency

VVYVYYYVY

ii. RVfpgaSim
The SweRVolfX SoC (Figure 21) can also include a Verilog wrapper to enable
simulation. RVfpgaSim is the SweRVolfX SoC wrapped in a testbench to be used by
HDL simulators. RVfpgaSim is the same as SweRVolf sim
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is based on
SweRVolf.

Although many open-source HDL simulators exist, we use Verilator
(https://www.veripool.org/wiki/verilator). This open and free HDL simulator accepts
synthesizable Verilog or SystemVerilog and it claims to be the fastest Verilog/SystemVerilog
simulator. It is widely used in industry and academia; it provides out-of-the-box support from
ARM and RISC-V vendor IPs; and it is guided by Chips Alliance and the Linux Foundation.

D. File Structure

In the previous sections we have shown the high-level organization of the system that we
use in these materials, from the SweRV EH1 Core Complex (Figure 20), to the SweRVolfX
SoC (Figure 21) and, finally, to RVfpgaNexys (Figure 25) and RVfpgaSim implementations.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 31

https://reference.digilentinc.com/
https://github.com/chipsalliance/Cores-SweRVolf
https://www.veripool.org/wiki/verilator

imagination
RVfpga Getting Started Guide university programme

In this section, we describe the file structure of the whole system. While reading these
explanations, open the files and view them on your PC. The files are available at
[RVfpgaPath]/RVfpgal/src.

i. SweRV EH1 Core Complex
Figure 27 shows the file structure of the SweRV EH1 Core Complex (Figure 20). The
core is organized into three main blocks: a SweRV wrapper (highlighted in grey) that
includes the SweRV EH1 Core (highlighted in green) and some other elements (such as
the Interrupt Controller or the Debug Unit), and the Data/Instruction memories and
Instruction Cache (highlighted in red).

SweRV EH1 Core Complex
(swerv_wrapper_dmi.sv)

SweRV EH1 Core Isu/

Isu_dccm
_mem.sv
o,
mem.sv
lib dbg/dbg.sv
ifu/
oic/ dma/ ifu_ic_me

m.sv

pic_ctrl.sv || dma_ctrl.sv

SWerv.sv

Figure 27. SweRV EH1 Core Complex

The Verilog files for the SweRV EH1 Core Complex are available in this folder:
[RVfpgaPath] /RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex

Find that directory on your PC to view the files as we refer to them in this section.

The top file for the SweRV EH1 Core Complex is in the file: swerv_wrapper.sv; the
top module is called swerv_wrapper, and it instantiates two modules that
correspond to the two blocks highlighted in grey and red in Figure 27:

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 32

imagination
RVfpga Getting Started Guide university programme

¢ mem (implemented inside mem.sv): this module instantiates the modules for the
implementation of the DCCM (Isu_dccm_mem, implemented in file
Isu/lsu_dccm_mem.sv), the ICCM (ifu_iccm_mem, implemented in file
ifu/ifu_iccm_mem.sv) and the Instruction Cache (ifu_ic_mem, implemented in file
ifu/ifu_ic_mem.sv).

¢ swerv (implemented inside swerv.sv): this module instantiates the units that
comprise the core.

The SweRV EH1 Core (highlighted in green in Figure 27) consists of the following

four units:

o Folder ifu (Instruction Fetch Unit): this folder includes the Verilog files (top
module available inside ifu.sv) for the Icache (instruction cache), Fetch,
Branch Predictor and Aligner.

o Folder dec (Decode Unit): this folder includes the Verilog files (top module
available inside dec.sv) for the Instruction Decoding, the Dependency
Scoreboard, and the Register File.

o Folder exu (Execution Unit): this folder includes the Verilog files (top module
available inside exu.sv) for the arithmetic/logical units available in the core:
two pipelined ALUs, one pipelined Multiplier and one out-of-pipeline Divider.

o Folder Isu (Load Store Unit): this folder includes the Verilog files (top module
available inside Isu.sv) for the pipelined Load/Store Unit.

Other units included in this module are:

o Folder dbg (Debug Unit): this folder includes the Verilog files (top module
available inside dbg.sv) of the Debug Unit, which is responsible to put the rest
of the core in quiescent mode, send the commands/address, send write data
and receive read data, and then resume the core to do the normal mode.

o Folder lib: this folder includes the Verilog files for the AXl and AHB-Lite
Buses.

o Folder pic: this folder includes file pic_ctrl.sv, which implements the
Programmable Interrupt Controller in module pic_ctrl.

o Folder dma: this folder includes file dma_ctrl.sv, which implements the Direct
Memory Access in module dma_ctrl.

ii. SweRVolfX SoC
Figure 28 shows the file structure for the SweRVolfX SoC shown in Figure 21. The SoC
is organized as the modules that correspond to the blocks shown in Figure 21.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 33

imagination
RVfpga Getting Started Guide university programme

SweRVolfX SoC
(swervolf_core.v)

SweRVEh1CoreComplex/
swerv_wrapper_dmi.sv

l

Interconnect/
Axilnterconnect/ axi intercon
axi_intercon.sv

swerv_wrapper_dmi

Interconnect/)
AxiToWb/ axi2wb
axi2wb.v
- wb_intercon
Interconnect/
Wishbonelnterconnect/
wb_intercon.v ¢
Peripherals/ BootROM Peripherals/ Peripherals/ Peripherals/ Peripherals/
SystemController o0 uart spi gpio ptc
swervolf_syscon wb_mem_wrapper uart_top simple_spi gpio_top ptc_top

Figure 28. SweRVolfX SoC

The files for the SweRVolfX SoC are in:
[RVEfpgaPath] /RVfpga/src/SweRVolfSoC

Find that directory on your PC to view the files as we refer to them in this section.

The top module for the SweRVolIfX SoC is available at:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/swervolf _core.v. Open that file, and notice
that it includes the modules contained within the SweRVolfX SoC (Figure 21),
specifically:

e axi_intercon (available inside Interconnect/Axilnterconnect/axi_intercon.v): this
module is included through another file at line 100 (" include
"axi intercon.vh"). It connects the SweRV EH1 Core Complex with the AXI-to-
Wishbone Bridge.

e axi2wb (available inside Interconnect/AxiToWb/axi2wb.v): this module, which is
instantiated in line 153 of swervolf_core.v, is the AXI-to-Wishbone Bridge that allows
communication between the AXI based EH1 Core and the Wishbone-based
peripherals.

e wb_intercon (available inside Interconnect/Wishbonelnterconnect/wb_intercon.v):
this module is included through another file at line 145 (" include
"wb_intercon.vh"). It connects the AXI-to-Wishbone Bridge with the different
peripherals through a multiplexer that we will analyse and modify later.

e wb_mem_wrapper (available inside BootROM/wb_mem_wrapper.v): the wrapper for
the Boot Memory described above is instantiated at line 197 of swervolf_core.v. It

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 34

imagination
RVfpga Getting Started Guide university programme

instantiates the dpram64 module (available inside BootROM/dpram64.v), which is a
basic RAM module.

¢ swervolf_syscon (available inside Peripherals/SystemController/swervolf_syscon.v):
this module, which is instantiated at line 215 of swervolf _core.v, defines the System
Controller.

e simple_spi: SPI controller obtained from OpenCores and available inside
Peripherals/spi/simple_spi_top.v. It is instantiated at lines 246 (spi) and 387 (spi2) of
swervolf_core.v.

e uart_top: UART controller obtained from OpenCores and available inside
Peripherals/uart/uart_top.v. It is instantiated at line 272 of swervolf_core.v.

e gpio_top: GPIO controller obtained from OpenCores and available inside
Peripherals/gpio/gpio_top.v. It is instantiated at line 338 of swervolf_core.v.

e ptc_top: PTC controller obtained from OpenCores and available inside
Peripherals/ptc/ptc_top.v. It is instantiated at line 361 of swervolf_core.v.

e swerv_wrapper_dmi (available inside
SweRVEh1CoreComplex/swerv_wrapper_dmi.v): instantiation (line 407 of
swervolf_core.v) of Western Digital's SweRV EH1 Core Complex, described in the
previous section (Figure 27).

iii. Wrappers for on-board execution and simulation

SIMULATION:

RVfpgaSim is a simulation target that wraps the SweRVolfX SoC (Figure 21) in a
testbench that is used by HDL simulators. It is available at
[RVfpgaPath]/RVfpga/src/rvfpgasim.v.

ON BOARD EXECUTION:

RVfpgaNexys (available at: [RVfpgaPath])/RVfpga/src/rvfpganexys.v) wraps the
SweRVolfX SoC (Figure 21) in a wrapper that targets it to the Nexys A7 FPGA board
and its peripherals (see Figure 25). This module instantiates, in addition to some other
modules (such as a clock generator module, clk_gen_nexys, a clock domain crossing
module, axi_cdc_intf, or a BSCAN module for the JTAG port, bscan_tap), the two main
SoC structures:

e swervolf_core: instantiation of the SweRVolfX SoC described in the previous
subsection (Figure 28). This also requires a constraints file called rvfpganexys.xdc
(available at [RVfpgaPath]/RVfpga/src/), which defines the connections between the
SoC and the board.

e litedram_top: wrapper for LiteDRAM DDR2 Controller, which connects the
SweRVolfX SoC with the DDR2 Memory, and which is implemented in file
[RVfpgaPath])/RVfpga/src/LiteDRAM/litedram_top.v. This also requires a constraints
file called litedram.xdc (available inside [RVfpgaPath]/RVfpga/src/LiteDRAM), which
defines the connections between the Memory Controller and the on-board DDR2
Memory.

As a summary, Figure 29 shows the hierarchy for the whole RVfpgaNexys
implementation on the Nexys A7 FPGA board.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 35

bscan_tap |,
e —

rvfpga.xdc

litedram.xdc

i

'

Al

‘ clk_gen_nexys |¢—’

N
14

h 4

rvfpganexys ————f itearam_top |

'

A 4

h 4

h 4

swervolf_core

25 3 3 3

|

— T : wb_mem . h — = ¥ *
[wb_intercon | [axi_intercon | [axi2wb | ADRET swerv_wrapper_dmi| [uart_top |[simple_spi | [swervolf_syscon | [gpio_top | [ptc_top |
-~ '
_.{ mem | y swerv |
Isu_c;ccm ifu_ic_ ifu_fccm_ J H b < < 3 3 i
_mem mem mem [ifu] [dec] [exu] [Isu] [dbg] [lib | [pic_ctrl | [dma_ctrl]

Figure 29. Modules Hierarchy for the Nexys A7 FPGA board implementation

Imagination University Programme — RVfpga Getting Started Guide

Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

5. INSTALLING SOFTWARE TOOLS

The instructions below are for an Ubuntu 18.04 OS, but other Linux operating systems,
as well as Windows or macOS, follow similar (if not exactly the same) steps. In some cases,
we insert boxes with specific instructions for those different OSs. If you are using Ubuntu,
you can just ignore those boxes.

The instructions show you how to install the following tools:

A. Vivado: required for resynthesizing the System on Chip. This is something that you
will mainly do in Labs 6-20, where different features will be included to the baseline
SoC.

B. VSCode (Visual Studio Code) and PlatformlO: these are the main tools used in
the GSG and in the Labs. They are used for programming the FPGA and for
running/debugging programs on it.

C. Verilator and GTKWave: required for simulating the SoC and analysing the
different signals. Again, you will mainly use these tools in Labs 6-20.

Note that, for most things that you will do in this GSG and in the Labs, installing VSCode and
PlatformlO would be enough. However, we recommend you to install the other tools now as
well (Vivado, Verilator and GTKWave), so that no more installations are required later.

This process can take several hours (or more, depending on your download speed), but
most of the time is spent waiting while the programs are downloaded and installed.

A. Install Vivado

Vivado is a Xilinx tool for viewing, modifying, and synthesizing the Verilog code for RISC-V
FPGA. You will use it extensively in later labs. The installation instructions are available at
https://reference.digilentinc.com/vivado/installing-vivado/start and are summarized below.

Windows: the webpage referenced above
(https://reference.digilentinc.com/vivado/installing-vivado/start) also includes detailed
instructions for installing Vivado in Windows. Below we insert boxes when specific
instructions are required for Windows.

macOS: Vivado is not supported in macOS; thus, you need a Linux/Windows Virtual
Machine for running Vivado in this OS.

1. Navigate to https://reference.digilentinc.com/vivado/installing-vivado/start

2. You will be guided to the Xilinx download page:
https://www.xilinx.com/support/download.html

3. It is recommended that you install the “Self Extracting Web Installer”. At the time of writing
this document, it is at this link on the download page: Xilinx Unified Installer 2019.2: Linux
Self Extracting Web Installer

WINDOWS: At the time of writing this document, the “Self Extracting Web Installer” for
Windows is at this link on the download page: Xilinx Unified Installer 2019.2: Windows Self
Extracting Web Installer

4. You will be asked to log in to your Xilinx account before you can download the installer. If
you don’t already have an account, you will need to create one.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

https://reference.digilentinc.com/vivado/installing-vivado/start
https://reference.digilentinc.com/vivado/installing-vivado/start
https://reference.digilentinc.com/vivado/installing-vivado/start
https://www.xilinx.com/support/download.html
https://www.xilinx.com/member/forms/download/xef.html?filename=Xilinx_Unified_2019.2_1106_2127_Lin64.bin
https://www.xilinx.com/member/forms/download/xef.html?filename=Xilinx_Unified_2019.2_1106_2127_Lin64.bin
https://www.xilinx.com/member/forms/download/xef.html?filename=Xilinx_Unified_2019.2_1106_2127_Win64.exe
https://www.xilinx.com/member/forms/download/xef.html?filename=Xilinx_Unified_2019.2_1106_2127_Win64.exe

imagination
university programme

5. Execute the binary file. Open a terminal and make it root (type “sudo su”). Then drag the
binary file (Xilinx_Unified_2019.2_1106_2127_Lin64.bin) into the terminal. If it prompts you
to make the file executable and run it, select OK.

e Troubleshooting: If the terminal says permission denied, type the following in the
terminal (in the same directory as the binary file):
> sudo chmod +x ./Xilinx Unified 2019.2 1106 2127 Lin64.bin
>sudo ./Xilinx Unified 2019.2 1106 2127 Lin64.bin

WINDOWS: In Windows you can simply execute the .exe file that you downloaded in steps 3
and 4 by double-clicking on it.

6. The Vivado installer will walk you through the installation process. Important notes:
e Select Vivado (not Vitis) as the Product to install.
e Select Vivado HL Webpack (not Vivado HL System Edition); Webpack is free.
e Otherwise, defaults should be selected.

Hint: If you changed the installation directory of Vivado, you will need to modify the path
appropriately in the following steps.

WINDOWS: Steps 7 and 8, are not necessary in Windows. You can simply ignore these two
steps and go directly to step 9.

7. After Vivado has installed, you need to set up the environment. Open a terminal and type:
source /tools/Xilinx/Vivado/2019.2/settings64.sh

Add that line (source /tools/Xilinx/Vivado/2019.2/settings64.sh) toyour
~/ .bashrc file so that it runs each time you launch a terminal.

8. Test Vivado by typing the following in a terminal:
vivado

Troubleshooting:
o If your system cannot find that executable, you'll need to add the following to your
path:

/tools/Xilinx/DocNav
/tools/Xilinx/Vivado/2019.2/bin

¢ If you get an error such as “application-specific initalization failed...”, type the
following at a terminal:

sudo 1n -s /1ib/x86 64-linux-gnu/libtinfo.so.6 /1lib/x86 64-
linux-gnu/libtinfo.so0.5

9. You will need to manually install the cable drivers for the Nexys A7 FPGA board.
Type the following at a terminal window:
cd
/tools/Xilinx/Vivado/2019.2/data/xicom/cable drivers/1in64/ins
tall script/install drivers/

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 38

imagination
university programme

sudo ./install drivers

WINDOWS: Vivado installation in Windows automatically installs drivers for the Nexys A7
board which are not compatible with PlatformlO. Thus, if you are using Windows, you must
update the drivers as explained in Appendix B. You must do this even if you already
did it in the Quick Start Guide section because the drivers were overwritten by the
Vivado installation.

10. You will also need to manually install the Digilent Board Files.
e Download the archive of the vivado-boards from the Github repository and extract it.
e Open the folder extracted from the archive and navigate to its new/board_files
directory. Select all folders within this directory and copy them.
¢ Open the folder that Vivado was installed into (/tools/Xilinx/Vivado by default). Under
this folder, navigate to its <version>/data/boards/board_files directory, then paste the
board files into this directory.
e You can also use the terminal, by going into the new/board_files directory and typing:
sudo cp -r *
/tools/Xilinx/Vivado/2019.2/data/boards/board files

WINDOWS: copy/paste the downloaded folders as explained in Step 10. In Windows, you
can find Vivado’s board_files folder at: C:\Xilinx\Vivado\2019.2\data\boards\board_files

B. Install VSCode and PlatformIO

Now you will install VSCode and PlatformlO. If you already did this in the Quick Start
Guide — Section 1 —you do not need to repeat the process here again and you can
directly go to Section C.

PlatformlO is an integrated development environment (IDE) for embedded systems that is
built on top of Microsoft’s Visual Studio (VS) Code. It allows you to program the RISC-V
processor (that is located on the FPGA) using C or assembly. PlatformlO is cross-platform
and includes a built-in debugger.

Follow these steps to install both VSCode and PlatformlO:

LINUX command-line: although using VSCode+PlatformlO is the recommended method,
Appendix A provides instructions for anyone who is interested in installing and using the
native RISC-V toolchain and OpenOCD in Linux and use them in place of PlatformlO. If you
are going to use PlatformlO, just ignore Appendix A.

1. Install VSCode:
Follow these steps to install VSCode:
a. Download the .deb file from the following link:
https://code.visualstudio.com/Download

b. Open a terminal, and install and execute VSCode by typing the following in the
terminal:
cd ~/Downloads

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 39

https://github.com/Digilent/vivado-boards/archive/master.zip?_ga=2.158467251.828100773.1587959567-2022567073.1577108610
https://code.visualstudio.com/Download

imagination
university programme

sudo dpkg -i code*.deb
code

Windows / macOS: VSCode packages are also available for Windows (.exe file) and
macOS (.zip file) at https://code.visualstudio.com/Download. Follow the common steps used
for installing and executing an application in these operating systems.

2. Install PlatformlO on top of VSCode:
Follow these steps to install PlatformlO:
a. Install python3 utilities by typing the following in a terminal:
sudo apt install -y python3-distutils python3-venv

Windows / macOS: this step (2.a) is not required in Windows. As for macOS, you can use
homebrew to install python3: brew install python3

b. If not yet open, start VSCode by selecting the Start button and typing “VSCode” in
the search menu, then select VSCode, or by typing code in a terminal.

O
c. InVSCode, click on the Extensions icon located on the left side bar of VSCode
(see Figure 30).

i

Figure 30. VSCode’s Extensions icon

d. Type PlatformlO in the search box and install the PlatformIO IDE by clicking on the
install button next to it (see Figure 31).

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 40

https://code.visualstudio.com/Download

imagination
university programme

EXT
platformio
PlatFormlO IDE 2.0.1 @1IM % 5

Professional development environ,..
PlatFormlO Install

loT Utility
Develop loT t
Jun Han Install

Aceinna 0.1.2
Aceinna Mavigation Studio: .
PlatformlO Install

Figure 31. PlatformIO IDE Extension

e. The OUTPUT window on the bottom will inform you about the installation process.
Once finished, click “Reload Now” on the bottom right side window, and PlatformlO
will be installed inside VSCode (see Figure 32).

Platform|O Installation

VSCode

Reload Now

Figure 32. Reload Now after PlatformlO installs

C. Install Verilator and GTKWave in Ubuntu 18.04

The instructions in this section are valid for Linux systems only.

\ Windows: use Appendix C instead of the instructions provided in this section. |

\ macOS: use Appendix D instead of the instructions provided in this section. |

Follow the next steps to install Verilator (instructions are available at:
https://www.veripool.org/projects/verilator/wiki/Installing but are also summarized below) and
GTKWave in your Ubuntu 18.04 Linux system. This process takes a long time.
» sudo apt-get install git make autoconf g++ flex bison 1ibfl2 libfl-
dev
sudo apt-get install -y gtkwave
git clone https://git.veripool.org/git/verilator
cd verilator
git pull
git checkout v4.106
autoconf
./configure
make (alternatively you can use make -3j$ (nproc) to make it go faster)
sudo make install

VVVVVYVYVY

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 41

https://www.veripool.org/projects/verilator/wiki/Installing

imagination
university programme

» export PATH=$PATH:/usr/local/bin (change the path in your system)

To add /usr/local/bin permanently to your path, add the last line to your ~/.bashrc file.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 42

imagination
university programme

In this section, we show how to run seven simple programs on RVfpgaNexys (see Figure
25).

6. RUNNING AND PROGRAMMING RVfpgaNexys

LINUX /Windows / macOS: All the instructions described in this section should work for the
three operating systems, assuming that all the required tools and drivers were installed
correctly as explained in Section 5. In some cases, you may need to modify some minor
details, such as the slash, used in Linux, for a backslash, used in Windows.

We demonstrate how to use RVfpgaNexys by showing how to run the seven example
programs listed in Table 9. The first three programs are written in RISC-V assembly
language and the last four programs are written in C. Directions for running each of the
programs on RVfpgaNexys are described below.

Table 9. RVipgaNexys Example Programs

Program Name Description Language

AL_Operations exercises arithmetic RISC-V assembly
and logical operations

Blinky blinks an LED on the | RISC-V assembly
Nexys A7 board

LedsSwitches reads switch values RISC-V assembly

on Nexys A7 board
and writes that value
to the LEDs
LedsSwitches_C-Lang | reads switch values C
on Nexys A7 board
and writes that value
to the LEDs
HelloWorld_C-Lang prints a short C
message to a shell
through the serial port

VectorSorting_C-Lang | sorts a vector from C
largest to smallest
DotProduct_C-Lang computes the dot C

product of two vectors

Note that, before being able to execute any of these seven examples, you must program
the FPGA with RVfpgaNexys, as explained in the following section.

A. Program the FPGA with RVfpgaNexys

In this section, we explain the recommended method for programming the FPGA with
RVfpgaNexys, which uses PlatformlO. Follow the next steps for programming the FPGA with
RVfpgaNexys:

(If you are interested in using Vivado for programming the FPGA, you can follow the
instructions provided at Appendix E of this guide instead of the following instructions below.
However, the method described there is only possible for Linux and Windows systems (not
macOS) — and, overall, the method of using Vivado to download RVfpgaNexys onto the
FPGA is not recommended. Instead, it is recommended that you follow the instructions
below and ignore Appendix E.)

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 43

imagination
university programme

Connect the Nexys A7 board to your computer.

Turn on the Nexys A7 board using the switch at the top left.

Open VSCode and PlatformlO if it is not already open.

On the top menu bar, click on File — Open Folder (see Figure 33) and browse into
directory [RVfpgaPath]/RVfpga/examples/

aoow

File Edit Selection View Go Debug Terminal Help
New File Chri+N

New window ctrlsshiften

ctrlvo

en Folder... [Ctrl+K Ctrl+0]
‘Gpen Workspace.
Open

Add Folder to Workspace.
Save Workspace As

Save As.. Ctrlsshiftss

Auto Save
Preferences

Close Editol Ctrlsw Y

Close Window Chrlvw

Exit arlsQ

Figure 33. Open Folder

e. Select the PlatformlO project that you are going to use. In this section, as an example,
we use AL_Operations, the first example mentioned in Table 9, that you will debug in the
next section, but you could follow the same steps with any other example. Thus, select
directory AL_Operations (do not open it, but just select it — see Figure 34) and click OK
at the top of the window. PlatformlO will now open the example.

Welcome - Visual Studio Code

Cancel Open Folder

Recent 1 fXdchaver RVfpga | examples C:

Home Name Size Modified =
Downloads & Blinky Yesterday

@ DotProduct_C-Lang Yesterday
VM_sharedFolder & Helloworld Yesterday

RVFpga s Helloworld_C-Lang Yesterday
& LedsSwitches Yesterday
[Ledsswitches_C-Lang Yesterday
I VectorSorting_C-Lang Yesterday
sl

RVFpgaLabs

Other Locations

Figure 34. Open AL_Operations folder

f. Open file platformio.ini, by clicking on platformio.ini in the left sidebar (see Figure 35).
Establish the path to the RVfpgaNexys bitstream in your system by editing the following
line (see Figure 35). Note that a pre-synthesized bitstream of RVfpgaNexys is provided
in the RVfpga folder at: [RVfpgaPath]/RVfpga/src/rvipganexys.bit.

board build.bitstream file = [RVfpgaPath]/RVfpga/src/rvipganexys.bit

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 44

imagination
university programme

File Edit Selection View Go Run Terminal Help

& platformic.ini X @ F

= 115200

= /home/dc

Figure 35. Platformio initialization file: platformio.ini

There are many different commands that you can use in the Project Configuration File
(platformio.ini), and for which you can find information at:
https://docs.platformio.org/en/latest/projectconf/.

g. Click on the PlatformlO icon . in the left menu ribbon (see Figure 36).

0

Figure 36. PlatformIO icon

In case the Project Tasks window is empty (Figure 37), you must refresh the Project
Tasks first by clicking on . This can take several minutes.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 45

https://docs.platformio.org/en/latest/projectconf/

imagination
university programme

File Edit Selection View Go Run Terminal Help
PROJECT TASKS

(@)

@ Welcome to
Home

B

O

Libraries

QUICK ACCESS

Board
oo
88

Siatiorms
Fll
Device

)) PlatformlO labs

er23 W PlatformlO er19 W PlatformiO ber 16

Recent Projects

Figure 37. PROJECT TASKS window empty — Refresh

Then expand Project Tasks — env:swervolf_nexys — Platform and click on Upload
Bitstream, as shown in Figure 38. After one or two seconds, the FPGA will be
programmed with RVfpgaNexys.

> Remote Development

Figure 38. Upload Bitstream

By default, the processor starts fetching instructions at address 0x80000000, where the
Boot ROM is placed in our SoC (see Table 6). The Boot ROM is initialized with a
program (boot_main.mem) that blinks the LEDs and the 7-Segment Displays four times
and then turns off all the LEDs, writes Os to the 8 7-Segment Displays and stays in an
empty loop. You can find this program in folder:
[RVfpgaPath])/RVfpga/src/SweRVolfSoC/BootROM/sw.

Pressing the CPU Reset button on the Nexys A7 board (Figure 26) makes this program
to execute again.

If you want to change and recompile this program, do it as explained in Appendix A —

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 46

imagination
university programme

Section Il (note that file boot_main.mem is simply a copy of file boot_main.vh). In Lab 5,
we will show how the Boot ROM is initialized with this program when creating the
bitstream.

h. As an alternative to the previous step (step g), you can download RVfpgaNexys from a

PlatformlO terminal window as shown in Figure 39. Click on the k= button (PlatformlIO:

New Terminal button) at the bottom of the PlatformlO window for opening a new terminal

window, and then type (or copy) the following command into the PlatformIO terminal:
pio run -t program fpga

1 main
main:

3, 0xe

REPEAT:

TERMINAL 1: Platformio cLi

QUICK ACCESS

Note that the first time that an example is opened in PlatformlO, the Chips Alliance platform
gets automatically installed (you can view it inside the PIO Home, as shown in Figure 40).
This platform includes several tools that you will use later, such as the pre-built RISC-V
toolchain, OpenOCD for RISC-V, an RVipgaNexys bitfile and RVfpgaSim, JavaScript and
Python scripts, and several examples.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 47

imagination
university programme

& PIOHome X
@i O

B Installed Embeddet 3 Desktor

© Project can depend on a f development platform or V it, Mercurial and S

Filter platforms by name...

T Uninstall

Figure 40. Chips Alliance platform installed in PlatformlO
If, for any reason, the Chips Alliance platform did not install automatically, you can install it
manually following the next steps (normally, you can simply skip this procedure and continue
with Section B):

- View the Quick Access menu by clicking on the button, located in the left side bar

isee Fiaure 41). Then, in the PIO Home, click on the d button and then on the
tab (Figure 41). Look for Chipsalliance (the platform that we use in

RVfpga) and open it by clicking on the button (Figure 41).

File Edit sele

H|@ O

&P Embedded [=Ric

Platforms f you enjor g PlatformiO, please star our projects on GitH

Figure 41. Selecting the CHIPS Alliance Platform

- After clicking on the _ button, you will see the details of the Chips Alliance

Lol

& Install
platform (as in Figure 42). Install it by clicking on the = button (Figure 42).

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 48

imagination
university programme

T PIO Home X
¥ Followus | (@ ©

alled & Embedded 0 Deskte

CHIPS Alliance

The CHIPS Alliance develops high-quality, open source hardware designs

Installation

L Install

Resources

platform
chipsalliance

Name % ¥ Frameworks

(v

Figure 42. Installing the CHIPS Alliance Platform

- Once installation com

iletes, a summary of the tools that have been installed is shown,

as in Figure 43. Click to close that window.

Figure 43. Successful installation of CHIPS Alliance Platform

B. AL_Operations program

The first example program, AL_Operations.s (see Figure 44), is an assembly program that
performs three arithmetic-logic instructions (addition, subtraction, and logical and) on the
same register, t3 (also called x28), within an infinite loop.

1 .globl main

2 main:

3

4 # Register t3 is also called register 28 (x28)
5 1i t3, 0x0 # t3 =0

6

7 REPEAT:

8 addi t3, t3, 6 # t3 = t3 + 6

9 addi t3, t3, -1 # t3 =t3 -1
10 andi t3, t3, 3 # t3 = t3 AND 3
11 beq zero, zero, REPEAT # Repeat the loop

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 49

imagination
university programme

12 nop
13
14 .end

Figure 44. AL_Operations program: AL_Operations.S

Follow these steps to run and debug this code on the Nexys A7 FPGA board using
PlatformlO:

1. Program the FPGA as explained in the previous section. Note that you already have the
AL_Operations project opened in PlatformlO.

2. Open the assembly program, AL_Operations.S, by clicking on the Explorer icon in the

left menu ribbon , expanding src under AL_OPERATIONS in the left sidebar and
clicking on AL_Operations.S (see Figure 45).

File Edit Selection View Go Run Terminal Help

l-l_:'j EXPLORER & platformio.in AL_Operations.S X

> OPEN EDITORS s AL_Of

~ AL_OPERATIONS

v pio main:
~ build

t3, 0x0

REPEAT:
» commandLine t3, t3, 6
2 include i3, t3, -1
5 lib t3, t3, 3
o o zZero, zero, REPEAT

AL_Operations.S

» teskt

README.rst

Figure 45. View assembly file AL_Operations.S
3. VSCode and PlatformlO provide different ways of compiling, cleaning and debugging the
program. In the bottom iart of VSCode, iou can find some buttons that provide useful
functionalities: @ v > @9 . For example, can be used to build the
project, or m can be used to clean it. In the left side bar (see Figure 30), the “Run”

button can be used to compile the program and then open the debugger.

4. Click on the “Run” button . Start the debugger by clicking on the play button
RUN > PIO Debug

(make sure that the "PIO Debug” option is selected). You

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022
© Copyright Imagination Technologies 50

imagination
university programme

can find this button near the top of the window (see Figure 46). The program will first
compile and then debugging will start. PlatformlO sets a temporary breakpoint at the
beginning of the main function, so the execution will stop there.

File Edit Selection View Go Run Terminal Help

RUN [> PIO Debug

' VARIABLES

Figure 46. Start debugger

5. To control your debugging session, you can use the debugging toolbar that appears near
the top of the editor (see Figure 47). Below are the options:
Continue executes the program until the next breakpoint.
Breakpoints can be added by clicking to the left of the line number in the editor.
Step Over executes the current line and then stop.
Step Into executes the current line and if the current line includes a function call, it will
jump into that function and stop.
e Step Out executes all of the code in the function you are in and then stops once that
function returns.
o Restart restarts the debugging session from the beginning of the program.
e Stop stops the debugging session and returns to normal editing mode.
o Pause pauses execution. When the program is running, the Continue button is
replaced by the Pause button.

CONTINUE STEP-OVER STEP-INTO STEP-OUT RESTART STOP

Figure 47. Debugging tools

6. On the left sidebar, you can view the Debugger options. The following options are

available:

e Variables: lists local, global, and static variables present in your program along with
their values.

e Call Stack: shows you the current function being run, the calling function (if any),
and the location of the current instruction in memory.

e Breakpoints: show any set breakpoints and highlight their line number. Breakpoints
can be managed in this section. Breakpoints can also be temporarily deactivated
without removing them by toggling the checkbox.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 51

imagination
university programme

o Peripherals: shows the status of the registers of the memory-mapped peripherals of
the device (we will cover these in more detail in the RVfpga Labs).

e Registers: lists the current values present in each of the registers of the processor.
Memory: displays the contents of a specific address of memory.

o Disassembly: shows the assembly code for a specific function — for higher-level
code such as C, this allows you to view the assembly for debugging the instructions
one-by-one.

7. Expand the Registers option in the Debugger Side Bar and continue the execution step-
b ¥l T O O . .
by-step . You will observe that register x28 (also called t3,
as shown in the REGISTERS section) stores the results of the three arithmetic-logic
operations: addition, subtraction, and logical AND. See Figure 48.

File Edit Selection View Go Run Terminal Help

P PIODebug -~ 2} & & platformio.in AL_Operations.5 X

main:

t3, ¢

REPEAT:
t3, t3, 6
t3, t3,
t3, t3,
zero, zero, REPEAT

Figure 48. Viewing register contents

8. Before calling the main function, a start-up file, provided by Western Digital at
~/.platformio/packages/framework-wd-riscv-sdk/board/nexys_a7_ehl/startup.S, is
executed. This file configures the core: Instruction Cache set-up, registers initialization

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 52

imagination
university programme

(such as sp or gp), etc. When debugging is launched, this file opens in the main window
(see Figure 48), and you can inspect it there.

Windows: The .platformio folder is located inside your user folder (C:\Users\<USER>). Note
that you may need to enable the system for viewing hidden files/folders.

macOS: Like in Linux, the .platformio folder is located inside your home folder
(~/.platformio).

9. We should also highlight that, in the same directory (~/.platformio/packages/framework-
wd-riscv-sdk/board/nexys_a7_ehl/), file link.lds is provided, which constitutes the linker
script that we will use in all our projects. This file determines the placement of the
assembly sections (text, data, bss...) in memory.

10. Finally, stop debugging (which will make the Boot ROM

program to execute again) and go back to the Explorer window by clicking on m
which you can find in the top of the left-most side bar. On the top menu bar, click on File
— Close Folder.

C. Blinky program

The second example program, blinky.S, is an assembly program that makes the Nexys A7
board’s right-most LED blink (see Figure 49). The program repeatedly inverts the value
connected to the right-most LED with a delay between each inversion.

1 #define GPIO_LEDs 0x80001404

2 #define GPIO INOUT 0x80001408

3

4 f#define DELAY 0x100000 /* Define the DELAY */
5

6 .globl main

7 main:

8

9 11 x28, OxXFFFF

10 11 a0, GPIO INOUT

11 sw x28, 0(a0) # Write the Enable Register
12

13 1i tl, DELAY # Set timer value to control blink speed
14

15 1i t0, 0

16

17 bll:

18 1i ao, GPIO LEDs

19 sb t0, 0(a0) # Write to LEDs

20 xori t0, tO, 1 # invert LED

21 and t2, zero, zero # Reset timer

22

23 timel: # Delay loop

24 addi t2, t2, 1

25 bne tl1, t2, timel

26 3 bll

Figure 49. blinky.S

Follow the next steps to run and debug this code on RVfpgaNexys, the RISC-V SoC loaded
onto the FPGA board:

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 53

imagination
university programme

1. RVfpgaNexys is already programmed on the FPGA board if you executed the first
example (AL_Operations), so you should not need to program it again. However, if you
do need to reprogram RVfpgaNexys onto the board again, do it as explained in Section
A, using the Blinky example instead of the AL_Operations example.

2. On the top bar, click on File — Open Folder, and browse into directory
[RVfpgaPath])/RVfpga/examples/

Cancel Open Folder

@ Recent 4 fXdchaver = RVfpga | examples (o]

@t Home Name Size Modified ~
Downloads sl
s DotProduct C-Lang Yesterday
VM_sharedFolder [Helloworld Yesterday
RVFpga & Helloworld_C-Lang Yesterday
[LedsSwitches Yesterday
[LedsSwitches_C-Lang Yesterday
[VectorSorting_C-Lang Yesterday
& AL_Operations 21 ock

RVfpgaLabs

Other Locations

Figure 50. Blinky program folder
3. Select directory Blinky and click OK (Figure 50).

4. Open the assembly code of the example, file blinky.S, in the editor, by clicking on it
(Figure 51).

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022
© Copyright Imagination Technologies 54

imagination
university programme

File Edit Selection View Go Run Terminal Help
@ EXPLORER & platformio.in Blinkys X & PIOHome

> OPEN EDITORS

main
main:

1 0 INOUT
x28, 8(a0)

& platformio.ini DELAY
= README.rst

GPIO LEDs
Q)

timel:
| N R |
t1, t2, timel
bll

Figure 51. blinky.S in PlatformlO

5. Click on to run and debug the program; then start debugging by clicking on the
RUN P PIO Debug

play button . PlatformlO sets a temporary breakpoint at the
beginning of the main function. So, click on the Continue button Iﬂ to run the program.

6. On the board, you will see the right-most LED start to blink.

. L [O 0O
7. Pause the execution by clicking on the pause button . The

execution will stop somewhere inside the infinite loop (probably, inside the timel delay
loop).

8. Establish a breakpoint by clicking to the left of line number 18. A red dot will appear and
the breakpoint will be added to the BREAKPOINTS tab (see Figure 52).

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 55

imagination
university programme

File Edit Selection View Go Run Terminal Help

@ E ER 5 platformio.in Blinkys X & PIO Home

» OPEMN EDITORS
~ BLINKY

main
v SIC main:
Blinky.5

» GPIO_INOUT
x28, 0(a0)

tl, DELAY

2, timel

Figure 52. Setting a breakpoint in blinky.S

9. Then, continue execution by clicking on the Continue button

= ¥ T O : , . .
. Execution will continue and it will stop after the store

word (sw) instruction, which writes 1 (or 0) to the right-most LED.

10. Continue execution several times; you will see that the value driven to the right-most
LED changes each time.

~) T

11. Stop debugging and go back to the Explorer window by

clicking on . Close the program by selecting File — Close Folder.

D. LedsSwitches program
The third assembly example communicates with the LEDs and the switches available on the
board (see Figure 53).

#define GPIO_ SWs 0x80001400
#define GPIO_LEDs 0x80001404
#define GPIO INOUT 0x80001408

.globl main
main:

O J oy U Ww N

1i x28, OXFFFF
1i %29, GPIO INOUT
sw x28, 0(x29) # Write the Enable Register

== o
N = O

next:

13 1i al, GPIO SWs # Read the Switches
14 lw t0, 0(al)

15

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 56

imagination
university programme

16 1i ao0, GPIO LEDs

17 srl t0, t0, 16

18 sw t0, 0(a0) # Write the LEDs
19

20 beqg zero, zero, next

21 .end

Figure 53. LedsSwitches.S

Follow the next steps for running and debugging this code on the FPGA board:

1. RVfpgaNexys is already programmed on the FPGA board if you executed the previous
examples, so you should not need to program it again. However, if you do need to
reprogram RVfpgaNexys onto the board again, do it as explained in Section A, using the
LedsSwitches example instead of the AL_Operations example.

2. On the top bar, click on File — Open Folder, and browse to directory
[RVfpgaPath])/RVfpga/examples/. Select directory LedsSwitches and click OK.

3. The program LedsSwitches.S has an infinite loop where the switches are read and then
their state is shown on the LEDs (Figure 54).

File Edit Selection View Go Run Terminal Help

@ EXPLORER & platformio.in LedsSwitches.S X

> OPEN EDITORS
~ LEDSSWITCHES

main
main:

& p 0.ini
= README.rskt

t
o,

Zero, Zero, next

Figure 54. LedsSwitches.S in PlatformlO

4. After launching the debugger as explained for prior programs, the program starts to run.
PlatformlO sets a temporary breakpoint at the beginning of the main function. So, click

on the Continue button Iﬂ to run the program.

5. Toggle the switches on the bottom of the Nexys A7 board. You will immediately see on
the board that the LEDs show the new value of the switches. You can pause the
execution, run step-by-step and inspect the registers as explained above. When you are
finished, close the project by clicking on File — Close Folder.

6. Sometimes, it can be very useful to inspect the values stored in memory. For that
purpose, PlatformlO provides a Memory Display.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 57

imagination
university programme

a. Pause the execution and step until the beginning of the next loop. Expand the
Memory Display on the left part of the window (see Figure 55) and click on
Enter address...

File Edit Selection View Go Run Terminal Help

[PIODebug ~ &% Fa & platformio.in LedsSwitches.5 X
» VARIABLES
> WATCH
» CALL STACK PAUSED OM STEP
~ BREAKPOINTS
» PERIPHERALS
? REGISTERS
~ MEMORY

main
main:

Enter addr

G

al, GPIO_SWs
te, e(al)
a@, GPIO LEDs
to,

ta, ¢

Zero, Zero, next

Figure 55. Memory Display

b. The initial memory address will be requested (see Figure 56). Insert the initial
address where the Switches are mapped, in our case 0x80001400.

File Edit Selection View Go Run Terminal Help
b PIODebug ~ ¢ 1 platformio.in LedsSwitches.S X
> WARIABLES nemaory a (onfirm or 'Escape’ to cancel)
» WATCH
» CALL STACK PAUSED ON STEP
~ BREAKPOINTS
» PERIPHERALS
» REGISTERS

main
main:
~ MEMORY
Enter address... Delete)XFFFF
GPIO INOUT

, GPID SWs
(al)

ae, GPIO LEDs
t .
te,

zero, zero, next

Figure 56. Initial memory address to show

c. Then, the number of bytes that you want to inspect is requested (see Figure
57), so insert a value of Oxc (we want to inspect three 4-byte 1/O registers,

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 58

imagination
university programme
thus we need 12 bytes).

File Edit Selection View Go Run Terminal Help
P PIODebug 2 $ platf LedsSwitches.s X
> VARIABLES src 5.5 /tes to read? (Press 'Enter’ ko confirm or 'Escape’ to cancel)
> WATCH
> CALL STACK PAUSED ON STEP
~~ BREAKPOINTS

> PERIPHERALS main

» REGISTERS
~ MEMORY
Enter address... xFFFF

GPIO INOUT

main:

0])
, GPIO SWs
@, 6(al)

a®, GPIO LEDs

zero, next

Figure 57. Number of bytes to show

d. The Memory Display will open to the right, showing the 12 bytes that we have
requested (see Figure 58). The value that we have in the 16 switches is
0x123C (see bytes at addresses 0x80001402 and 0x80001403). Taking into
account that RISC-V architecture is little endian, the value shown in the figure
is coherent with that. The 16 LEDs (stored at addresses 0x80001404 and
0x80001405) show the same value.

File Edit Selection View Go Run Terminal Help
B PIO Debug @& 2 9 T Y 1T 9 = Memory [0x80001400+0xc].dbgmem X
VARIABLES src S |
aren tine 3C 12 3C 12 3C 12 00 00 FF FF 00 00
CALL STACK
- BREAKPOINTS
PERIPHERALS
REGISTERS

main

al, GPIO SWs
0, 6(al)

, GPIO_LEDs

Figure 58. Memory addresses 0x80001400-0x8000140B

e. Change the values of the switches on the board, for example to 0x5555, and
execute one more iteration of the loop step-by-step. The value of the switches
in memory should change immediately after executing the first instruction
(Figure 59, top), and the value of the LEDs should change accordingly after
executing the sw instruction (Figure 59, bottom).

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 59

imagination
university programme

File Edit Selection View Go Run Terminal Help

P PIO Debug & @ platform LedsSwitches.S X
VARIABLES
) WATCH 3c 12|55 55/3C 12 @0 00 FF FF 00 08
CALLSTACK
v BREAKPOINTS
) PERIPHERALS

main

REGISTERS main:

N~
e MEMORY

al, GPIO0 SWs
te, o(al)

GPIO LEDS

File Edit Selection View Go Run Terminal Help
P PlODebug v ¢ $ fi LedsSwitches.S X
VARIABLES src
S ETTEn ¢ 55 55|60 80 FF FF 00 0@
CALL STACK
v BREAKPOINTS
> PERIPHERALS o

REGISTERS main:

o3~ meorr
0x80001400+0xC FFF
INOUT

GPIO LEDS

Figure 59. Change of the Switches and LEDs

f. You can also view other memory locations, such as the RAM addresses that
store the machine instructions of your program. Open another memory range
starting at OxO (initial address assigned to the RAM memory) and occupying
0x100 bytes (Figure 60). You will see the instructions from the LedsSwitches
program stored in the address range 0x90-0xC4, right after the startup
program (Startup.S).

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 60

imagination
university programme

= Memory [0x0+0x100].dbgmem *

10
42
46

Lo ©h
= un

|

W M

o m

o Bild =] W

= BJ
(=]

Figure 60.

20
Bl 43
B1 ¢
g1 ¢
g1 4
97
17 -
63
B1 ¢
01
CE
]]

Memory addresses 0x0 to 0x100

g. You can view the machine code for the program’s instructions by opening the

disassembly of the

program available at:

[RVfpgaPath]/RVipga/examples/LedsSwitches/.pio/build/swervolf_nexys/firm
ware.dis (see Figure 61). Compare the two figures and try to identify the
instructions of the program.

.text:

; -1 # ffff < sp+@xcebf=>

' 1032 # 80001408 <OVERLAY END OF OVERLAYS+0xab001408>
t3,0(t4)

lui al,oxse0el
addi 1,1024 # 80001400 <OVERLAY_ END_OF _OVERLAYS+8xa0001400>

lw

80001404 <OVERLAY END OF OVERLAYS5+8xa@001404>

Figure 61. Disassembly version of the LedsSwitches program

E. LedsSwitches_C-Lang program

Program LedsSwitches_C-Lang.c (Figure 62) does the same as the LedsSwitches.s
program shown previously (Figure 53) but it is written in C instead of assembly.

Imagination University Programme — RVfpga Getting Started Guide

Version 2.2 — 9th May 2022
© Copyright Imagination Technologies

61

imagination
university programme

1 #define GPIO_ SWs 0x80001400

2 #define GPIO LEDs 0x80001404

3 #define GPIO INOUT 0x80001408

4

5 #define READ GPIO(dir) (*(volatile unsigned *)dir)
6 #define WRITE GPIO(dir, value) { (*(volatile unsigned *)dir) = (value); }
7

8 int main (void)

9 |

10 int En Value=0xFFFF, switches value;

11

12 WRITE GPIO(GPIO INOUT, En Value);

13

14 while (1) {

15 switches value = READ GPIO(GPIO SWs) ;
16 switches value = switches value >> 16;
17 WRITE GPIO(GPIO LEDs, switches value);
18 }

19

20 return (0) ;

21 }

Figure 62. LedsSwitches_C-Lang.c

Follow the next steps for running and debugging this program on the FPGA board:

1. RVfpgaNexys is already programmed on the FPGA board if you executed the previous
examples, so you should not need to program it again. However, if you do need to
reprogram RVfpgaNexys onto the board again, do it as explained in Section A, using the
LedsSwitches_C-Lang example instead of the AL_Operations example.

2. On the top menu bar, click on File — Open Folder, and browse into directory
[RVfpgaPath])/RVfpga/examples/. Select directory LedsSwitches_C-Lang and click OK.

3. Before calling the debugger, set a breakpoint at line 15 in the C Code.

4. Then, start debugging. The program will start executing and will stop at the breakpoint
(Figure 63).

File Edit Selection View Go Run Terminal Help

[> PIO Debug

~ VARIABLES

~ Local

» Global

» Static

t main (void)
int En Value=0xFFFF, switches value;

T, En Value);

returni{e);

Figure 63. Execution stopped at the breakpoint

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 62

imagination
university programme

5. Make the program continue execution several times, but
change the switches in between each click. The LEDs should display the value of the
switches.

bl <z ¢ T

6. You can view the execution of the program in C as above or you can view the execution
of the assembly program generated by the compiler, by clicking on Switch to assembly
highlighted in Figure 64.

File Edit Selection View Go Run Terminal

RUN [PIO Debug & o2

> VARIABLES
> WATCH
> CALLSTACK
> BREAKPOINTS
> PERIPHERALS
> REGISTERS
> MEMORY
v DISASSEMBLY
mble function

to assembly

Figure 64. Switch to assembly

7. The program in assembly (Figure 65) first reads the value in the Switches with a load
instruction (1w a5, 1024 (a4)) and then writes it to the LEDs with a store instruction (sw
a5,1028 (a4)). Execute it step by step, change the switches and verify that the LEDs
change to reflect the new switch values.

File Edit Selection View Go Run Terminal Help
> PIO Debug

~ VARIABLES

~ Local

> Global

> Static

Figure 65. Assembly progra

F. HelloWorld_C-Lang program

The second C example prints a short message to your shell through the serial port. To view
this message, you could use any terminal emulator such as gtkterm, minicom, etc.; however,
PlatformlO provides its own serial monitor, so here we show how to use this monitor.

For configuring PlatformIO serial monitor some parameters must be configured; specifically,
the data rate (in bits per second, or bauds) for serial data transmission must be established,
which we can do by using the monitor_speed parameter in file platformio.ini (note that this
file is part of your PlatformlO projects). See Figure 66.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022
© Copyright Imagination Technologies 63

imagination
university programme

File Edit Selection View Go Run Terminal Help
@ JRER g P e ¥ platformio.ini X

 OPEN EDITORS
@ PIOHome

[env:swervolf nexys]

= 115200
& o.ini
= README.rst

= /home, ver/RVfpga/src/rvfpgar

= /home/dchaver/RV /verilatorsIM/Vrvfpgasim

Figure 66. Serial monitor configuration

In addition, you need to add yourself to the dialout, tty and uucp groups by typing the
following commands in a terminal:

sudo usermod -a -G dialout S$USER

sudo usermod -a -G tty SUSER

sudo usermod -a -G uucp S$USER

After the three commands, restart your computer so that the changes in groups can take
effect.

Windows/macOS: Windows and macOS users do not need to complete the above step.

Furthermore, this program uses the Processor Support Package (PSP) and Board Support
Package (BSP) provided by WD within its Firmware Package
(https://github.com/chipsalliance/riscv-fw-infrastructure/). These libraries are included in the
project using a specific command in platformio.ini (framework = wd-riscv-sdk), as
shown in Figure 66, and by including the proper files at the beginning of the C program, as
shown in Figure 67. You can find the complete libraries in your system in the following paths:

- PSP:~/.platformio/packages/framework-wd-riscv-sdk/psp/

- BSP:~/.platformio/packages/framework-wd-riscv-
sdk/board/nexys a7 ehl/bsp/

These libraries provide many functions and macros that allow you do many things such as
using interrupts, printing a string, reading/writing individual registers... In this example, we
will use the print fNexys function for printing a message on the serial monitor. In
subsequent examples and in the labs we will show how to use other functions and macros
for different purposes.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 64

https://github.com/chipsalliance/riscv-fw-infrastructure/

imagination
university programme

File Edit Selection View Go Run Terminal Help

@ EXPLORER

> OPEN EDITORS
v HELLOWORLD_C-LANG

Figure 67. Include .h files in HelloWorld_C-Lang.c

Follow the next steps for running and debugging this code on the FPGA board:

1.

RVfpgaNexys is already programmed on the FPGA board if you executed the previous
examples, so you should not need to program it again. However, if you do need to
reprogram RVfpgaNexys onto the board again, do it as explained in Section A, using the
HelloWworld_C-Lang example instead of the AL_Operations example.

Open VSCode. PlatformlO should automatically open within VSCode when you open
VSCode. On the top bar, click on File — Open Folder, and browse to directory
[RVfpgaPath])/RVfpga/examples/. Select the HelloWorld _C-Lang folder and click OK.

The program HelloWorld_C-Lang.C (Figure 68) initializes the UART (function uartinit)
and then sends the string through the serial port, using function printfNexys (you can
find the implementation of these functions in file ~/.platformio/packages/framework-wd-
riscv-sdk/board/nexys_a7_ehl/bsp/bsp_printf.c). It then delays some time before going
back to the beginning of the loop.

PRE_COMPILED M

");

Figure 68. HelloWorld_C-Lang.C main function

Launch the debugger in PlatformlO. When the program starts to run, open the serial
monitor, by clicking on the plug button available on the bottom of VS Code (Figure 69).

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 65

imagination
university programme

> OUTLINE
> NPM SCRIPTS
@®OAD @ v > @ 9 [

Figure 69. Open serial terminal

5. The serial monitor repeatedly prints the message “HELLO WORLD !!II”, as shown in
Figure 70.

File Edit Selection View Go Run Terminal Help
RUN D PIO Debug v @ & platform e Helloworld_CLang.c

VARIABLES

t main(void)

ti;

uartInit();
while(1){

printflexys("hello world\n");

for (i=e;i<10000000;i++){};

s TPUT EBUG LE TERMINAL
> Executing task: platformio device monitor <

debug, default, direct, hexlify, log2file, nocontrol, printable, send on enter, time

y CErl+H ---

- CALL STACK

d

Figure 70. Execution of the program

G. VectorSorting_C-Lang program

Finally, we show another C program that sorts the elements of a vector, A, from largest to
smallest and places the sorted values in a second vector, B. Vector A values are replaced
with zeroes. Figure 71 shows the program.

#define N 8

int A[N]={7,3,25,4,75,2,1,1};
int B[N];

int main (void)

{

W J oy U Ww N

int max, ind, i, j;

[e]
(@}

for (3=0; Jj<N; J++){
max=0;
for (i=0; i<N; i++) {
if (A[1i]>max) {
max=A[i];
ind=1;

R el
O W N e

=
o
—

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 66

imagination
university programme

17
18
19
20
21
22
23 }

}
B[Jjl=A[ind];
Alind]=0;

}

while (1) ;

Figure 71. VectorSorting_C-Lang.c

Follow the next steps for running and debugging this program on the FPGA board:

1. RVfpgaNexys is already programmed on the FPGA board if you executed the previous
examples, so you should not need to program it again. However, if you do need to
reprogram RVfpgaNexys onto the board again, do it as explained in Section A, using the
VectorSorting_C-Lang example instead of the AL_Operations example.

On the top menu bar, click on File — Open Folder, and browse into directory

[RVfpgaPath]/RVfpga/examples/. Select the VectorSorting_C-Lang folder and click OK.

3. Place a breakpoint at line 10 and start debugging. The execution will stop at the
beginning of the for loop (Figure 72). Expand the VARIABLES section in the Debugger
Side Bar and analyse the values of the A and B arrays (highlighted in red in Figure 72).

File Edit Selection View Go Run Terminal Help

RUN > PIO Debug & & Vectorsorting.c X

~ VARIABLES
fine N 8

A[N]={7,3,25,4,75,2,1,1}
BIN];

main ()

max, ind, i, j;

Figure 72. Exeution stopped at the beginning of the program

4. Now place another breakpoint at line 18 and continue execution by clicking on n (see
Figure 73). Open the Memory Display (as explained for the LedsSwitches program,
Figure 55) and show 0x50 bytes starting from address 0x2148 (see Figure 73), which is
the address where vector A is stored in memory for this program. You can view the initial
values of vectors A (in the range 0x2148-0x2167) and B (in the range 0x2178-0x2197).

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 67

imagination
university programme

File Edit Selection View Go Run Terminal Help

P PIO Debug
“ VARIABLES
19 00 00 60 04 00
00 01 60
CL)
00

> CALL STACK
~ BREAKPOINTS

~ MEMORY
ox21

Figu 73. Memory Display for ays A and B - Initial state.

Note that you can easily find out the address where vectors A and B are stored in memory
by switching to assembly, as explained in Figure 64, and analysing any of the instructions
that access these vectors (Figure 74). As you see in the figure, in most cases the comments
provide this information; however, you could also step up to those instructions and see the
value that is stored in the register.

File Edit Selection View Go Run Terminal Help
P PIODebug ~ {5 &

~ VARIABLES

~ Local

N el . . Ty " a4 a4 328 #
& » Global -) 4,a4,328 #

> Static

<main+4>

(0])0Bcd: 32 97
Figure 74. Address where A and B are stored in memory.

Click twice on the Step Over button (H), and you will see the first component of B
stored in memory and the corresponding value in A set to O (see Figure 75).

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 68

imagination
university programme

= Memory [0x2148+0x50].dbgmem X

19 @0 O
@1 o
00 08 0
ee

[0}

Figure 75. Memory Display for arrays A and B — Store the first component of B and
reset corresponding component in A.

5. Remove all breakpoints, continue execution and pause it after several seconds — at
which point the program will have finished executing. Again, analyse the values stored in
the A and B arrays. As shown in Figure 76, vector B holds the values from the original
vector A sorted from largest to smallest and vector A holds all zeroes (you can see this
both at the variables list on the left and at the memory console on the right).

File Edit Selection View Go Run Terminal Help

P PIODebug

~ VARIABLES

v Local

> Static

Figure 76. Execution stopped at the end of the program

H. DotProduct_C-Lang program

The last example program, DotProduct_C-Lang.c (Figure 77), computes the dot product of
two vectors. The program has two functions: main and dotproduct. The first function invokes
the second one with three input arguments: vector size, and the initial addresses of two
vectors. Then, the dotproduct function computes the dot product of the two vectors and
returns the result.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 69

imagination
university programme

1 #define DIM 3

2

3 double dot;

4

5 double dotproduct (int n, double a[], double b[]) {
6 volatile int i;

7 double sum=0;

8

9 for (i=0; i<n; i++) {

10 sum += al[i]*b[i];

11 }

12 return sum;

13 }

14

15 void main (void) {

16 double x[DIM] = {3.1, 4.3, 5.9}; // %X is an array of size 3 (DIM)
17 double y[DIM] = {1.4, 2.2, 3.7}; // same as x
18

19 dot = dotproduct (DIM, x, VY);

20

21 return;

22 '}

Figure 77. DotProduct_C-Lang.c

In this example we operate with real numbers (note that the data type for the variables x, y
and dot, is double). However, the SweRV EH1 processor does not include floating-point
support. Thus, the example uses floating point emulation through the software floating point
library provided by gcc (https://gcc.gnu.org/onlinedocs/gccint/Soft-float-library-routines.html).
This library is used whenever -msoft-float is included to disable generation of floating
point instructions.

Follow the next steps for running and debugging this code on the FPGA board:

1. RVfpgaNexys is already programmed on the FPGA board if you executed the previous
examples, so you should not need to program it again. However, if you do need to
reprogram RVfpgaNexys onto the board again, do it as explained in Section A, using the
DotProduct_C-Lang example instead of the AL_Operations example.

2. On the top menu bar, click on File — Open Folder, and browse into directory
[RVfpgaPath]/RVfpga/examples/. Select directory DotProduct_C-Lang and click OK.

3. Before calling the debugger, set a breakpoint at line 10 and another one at line 19 (see
Figure 78).

4. Then, start debugging. The program will start executing; stop it at the first breakpoint
(see Figure 78).

5. On the Debugger sidebar, expand the Variables section (see Figure 78). The two vectors
contain the initial values assigned in main. The dot variable is initialized to 0.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 70

https://gcc.gnu.org/onlinedocs/gccint/Soft-float-library-routines.html

imagination
university programme

File Edit Selection View Go Run Terminal Help
P PIODebug & PIO Home DotProduct_C-Lang.c X

~~ VARIABLES

~ Local

dotproduct(n,
i;
sum=e;

al1]*b[1];

~ Global

> Static

Figure 78. DotProduct_C-Lang program: values of the variables at the first breakpoint

| IS

6. Make the program continue execution = . The program stops at

the second breakpoint (line 10).

7. Switch to assembly (as you did in Figure 64). You can see the floating point emulation
routines and analyse them in detail by stepping into them (see Figure 79).

= dotproduct.dbgasm X

0
0
0
0
]
0
0
0
0
2]
0
]
0
0
0
0
0
0
2 :
[} 2 muldf3>

0

0

0

0

0

]

0

0

0

2 3e ¢

0 c oduct+26>
0

]

0

0

0

0

0

0

]

(2} I0e6

Figure 79. DotProduct_C-Lang program: assembly code at the second breakpoint

8. Switch back to C and delete the two breakpoints. Continue execution and pause it. You
will see that the value of variable dot will change to the dot product of the two vectors
(Figure 80).

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 71

File Edit Selection View Go Run Terminal Help

P PIODebug - F' PIO Hon DotProduct_C-Lang.c startup.5 X

 VARIABLES

~ Local

~ Global

d #0S csrr a®, mhartid
» Static al, 1
#0S 1: bgeu a@, al, 1b

ad, @
al, @

main
#[05]: no need for

2b

imagination
university programme

Figure 80. DotProduct_C-Lang program: result of the dot product

9. Once you are finished exploring this program, close the project by clicking on File —

Close Folder.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

72

imagination
university programme

In this section, you will run the first program used in the previous section (AL_Operations) on
RVfpgaSim using Verilator. Verilator is a hardware description language (HDL) Simulator
that simulates the Verilog that defines the SoC (available at [RVfpgaPath]/RVfpga/src). This
way of running the SoC allows you to analyse the internal signals of the system, which is
especially useful for future labs and exercises where we add internal operations or new
hardware to the SoC.

7. SIMULATION IN VERILATOR

Here we show how to use Verilator to view the cycle-by-cycle instructions and register
values of the AL_Operations, the first simple assembly program that you executed and
debugged in Section 6 (Figure 44). You will generate the simulation trace using PlatformlO
and then add the clock, instructions for both ways of the super-scalar processor, and register
x28 (i.e., register t£3) signals to the simulation waveform, and view with GTKWave the
instruction and register signals change as the program executes.

GENERATE THE SIMULATION BINARY, Vrvfpgasim:

Directory [RVfpgaPath])/RVfpga/verilatorSIM contains the Makefile and the script
(swervolf_0.7.vc) for generating the simulator binary for RVfpgaSim. The script contains
information for Verilator to know, among other things, where to find the sources for the SoC,
which in our case are available at [RVfpgaPath]/RVfpga/src. We next show how you can
generate the binary for RVfpgaSim, that later will be used for creating the simulation trace of
program AL-Operations running on RVfpgaSim.

1. In aterminal window, generate the simulator binary by executing the following
commands:

cd [RVfpgaPath] /RVfpga/verilatorSIM
make clean
make

File Vrvfpgasim (the RVfpgaSim simulation binary), should be generated inside
directory [RVfpgaPath])/RVfpga/verilatorSIM.

Windows: if you are using Windows, you must do these same steps inside the Cygwin
terminal (refer to Appendix C for the detailed instructions). Note that the C: Windows folder
can be found inside Cygwin at: /cygdrive/c. All the other instructions from this section are the
same as those described for Linux.

macOS: Refer to Appendix D for the detailed instructions.

GENERATE THE SIMULATION TRACE FROM PLATFORMIO, USING Vrvfpgasim:

Once the simulator binary (Vrvfpgasim) has been generated, you will use it inside PlatformlO
for generating the simulation trace (trace.vcd) of program AL_Operations.

2. Open VSCode and then PlatformIO in your computer.

3. On the top bar, click on File—Open Folder... (Figure 81), and browse into directory
[RVfpgaPath])/RVfpga/examples/

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 73

imagination
university programme

File Edit Selection View Go Debug Terminal Help

New File Ctrl+N
New Window Ctrl+Shift+N
Open File... ctrl+0

Open Folder... [Ctrl+K Ctrl+0] |
Open Workspace...

Open Recent 4

Add Folder to Workspace...

Save Workspace As...

Save As... Ctrl+shift+s

Auto Save

Preferences 4

Close Editor Cri+w 4.
Close Window Cri+w

Exit cerl+Q

Figure 81. Open the AL_Operations.S example

4. Select directory AL_Operations (do not open it, but just select it) and click OK. The
example will open in PlatformlO.

5. Open file platformio.ini. Establish the path to the RVfpgaSim simulation binary generated
in the first step (Vrvfpgasim) by editing the following line (see Figure 82).

board debug.verilator.binary =
[RVEfpgaPath] /RVfpga/verilatorSIM/Vrvipgasim

File Edit Selection View Go Run Terminal Help

E ER

~ OPEN EDITORS

AL_Operations.5 src
~ AL_OPERATIONS

/home/dcha

Figure 82. PlatformIO initialization file: platformio.ini

Windows: in Windows, the RVfpgaSim simulation executable is called vrvfpgasim.exe.
Thus:

board debug.verilator.binary = [RVfpgaPath]\RVfpga\verilatorSIM\Vrvfpgasim.exe

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 74

imagination
university programme

6. Run the simulation by clicking on the PlatformIO icon in the left menu ribbon . then
expand Project Tasks — env:swervolf_nexys — Platform and click on Generate Trace,
as shown in Figure 83.

File Edit Selection View Go Run Terminal Help
& platformio.ini X @ PIOHome

PROJECT TASKS

= /home/dchaver/RV /verilatorSIM/Vrvfpgasim

TERMINAL

© Upload

— > Executing task: platformio run --target generate_trace --environment swervolf nexys <
{ Monitor

© Upload and Monitor

© Upload Bitstream erilator, whisper) External (olimex-arm-usb-ocd, olimex-a

Generate Trace

© Start Verilator - i s 9-alpf
- =T nce 1.10€
-

emote Development

Terminal will be reused by tasks, press any key to close it.

Figure 83. Generating trace from Verilator

As an alternative, you can generate the trace from a PlatformlO terminal window. For

that purpose, click on the =l button (PlatformlO: New Terminal button) at the bottom of
the PlatformlO window for opening a new terminal window, and then type (or copy) the
following command into the PlatformlO terminal: pio run --target

generate trace

7. A few seconds after the previous step, file trace.vcd should have been generated inside
[RVfpgaPath]/RVfpga/examples/AL_Operations/.pio/build/swervolf _nexys, and you can
open it with GTKWave.

gtkwave [RVfpgaPath]/RVfpga/examples/AL Operations/.pio/build/swervolf nexys/trace.vcd

WINDOWS: folder gtkwave64 that you downloaded, includes an application called
gtkwave.exe inside the bin folder. Launch GTKWave by double clicking on that application.
On the top part of the application, click on File — Open New Tab, and open the trace.vcd file
generated in folder
[RVfpgaPath])/RVipga/examples/AL_Operations/.pio/build/swervolf_nexys.

ANALYSE THE SIMULATION TRACE IN GTKWAVE:

8. Now you will add clock, instruction, and register signals. On the top left pane of
GTKWave, expand the hierarchy of the SoC so that you can add signals to the graph.
Expand the hierarchy into TOP — rvfpgasim — swervolf — swerv_eh1 — swerv, and
click on module ifu (it will highlight as shown in the Figure 84), select signal clk (which is

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 75

imagination
university programme

the clock used for the core) and drag it into the white Signals pane or the black Waves
pane on the right.

File Edit Search Time Markers View Help

HNERE B eaksl P Fombse To:| 185200 ns C Marker:- | Cursor: 7ns
V¥ ssT Signals Waves
gpio26 - Time
gpio27 clk
gpio28
gpio29
gpio30
gpio31
gpio_module
spi
spi2
swerv_eh1
mem
B soa SWerv
active_cg
dbg
dec
dma_ctrl
exu
free_cg

4 ns

L e e e

Isu
pic_ctrl_inst

syscon

timer_ptc

uart16550_0

wb_intercon0

[

Type Signals

wire IDWIDTH[31:0]
wire TAGWIDTH[31:0]
wire active_clk

wire clk

wire clk_override

Figure 84. Add signal clk to the graph

9. Zoom in several times so that you can view the clock signal change (Figure 85).

File Edit Search Time Markers View Help
a0 E j_‘ Bl === & 2» From|Osec To: 416 us (® Marker: - | Cursor: 1ns

Figure 85. Zoom in

10. Now add the signals that show the instructions that execute in each way of the two-way
superscalar RISC-V core. In the same module (ifu) look for signals ifu_iO_instr[31:0] and
ifu_il _instr[31:0] (Figure 86), and drag them into the black Waves pane. The prefix ifu
indicates the instruction fetch unit, i0 indicates superscalar way 0 and il indicates
superscalar way 1; instr[31:0] indicates the 32-bit instruction.

Type Signals
wire ifu_i0_inskr[31:0]

wire ifu_i1_inskr[31:0]
wire ifu_pmu_instr_aligned[1:0]

Append Insert Replace

Figure 86. Add signals ifu_i0O_instr[31:0] and ifu_il_instr[31:0] to the timing waveform

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 76

imagination
university programme

11. Now add the signal that holds the value of register t3 (i.e., register number 28, x28).
Expand the hierarchy under swerv into dec — arf — gpr_banks(0) — gpr(28) and click
on module gprff (it will highlight as shown in the following figure), select signal dout[31:0]
(which shows the contents of register x28, used in the AL_Operations.S example) and
drag it into the black Waves pane (Figure 87).

B sWerv
I-=sactive_cg

B ..z dbg

s dec

B osarf

= bankid_ff
.2z gpr_banks(0)
=gpr(1)
= gpr(2)
= gpr(3)
= gpr(4)
= gpr(s)
= gpr(6)
= gpr(7)
= gpr(8)
= gpr(9)
= gpr(10)
= gpr(11)
= gpr(12)
= gpr{13)
=gpr(14)
= gpr{15)
= gpr{16)
= gpr{17)
= gpr(18)
= gpr{19)
= gpr{20)
= gpr{21)
a gpr{22)
= gpr(23)
= gpri{24)
= gpr(25)
= gpr{26)
= gpr(27)
= gpr{28)

= gpr{29)
= gpr(30)

Type Signals
wire WIDTH[31:0]
wire clk

wire din[31:0]

Figure 87. Add signal dout[31:0] to the graph

12. Another way of showing signals in GTKWave is to use a .tcl file. File test.tcl is provided
at [RVfpgaPath]/RVfpga/examples/AL_Operations. Open that file and analyse it. In each
line, you will see the path and the name of each signal that we want to show in the
graph.

rvifpgasim.clk

rvfpgasim.swervolf.swerv_ehl.swerv.ifu.ifu i0_instr

st rvfpgasim.swervolf.swerv_ehl.swerv.ifu.ifu_il_instr

st rvfpgasim.swervolf.swerv ehl.swerv.dec.arf.gpr banks(0).gpr(28) .gprff.dout

For using the .tcl file on GTKWave, you can simply click on File — Read Tcl Script File
and select the [RVfpgaPath]/RVfpga/examples/AL_Operations/test.tcl file.

13. Figure 88 shows the AL_Operations.S program and its equivalent machine instructions.

RISC-V assembly # comment (t3 = x28) # machine code
1i t3, 0x0 #t3 =0 # 0x00000E13

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 77

imagination
university programme

REPEAT:
addi t3, t3, 6 # £t3 =t3 + 6 # 0x006EOE13
addi t3, t3, -1 #t3=1t3 -1 # OxXFFFEOE13
andi t3, t3, 3 # t3 = t3 AND 3 # O0x003E7E13
beq zero, zero, REPEAT # Repeat the loop # OxFEOOOCE3
nop # nop # 0x00000013

Figure 88. AL_Operations.S with equivalent machine code

Now view the signhals change as the program executes. We expect the instructions and t3
(register x28) to become the values shown in Figure 89 as the program runs:

1i t3, 0x0 # t3 =0 # 0x00000E13
REPEAT: addi t3, t3, 6 #t3 =0+ 6 =26 # 0x006EOE13
addi t3, t3, -1 # t3 =5 # OxFFFEOE13
andi t3, t3, 3 # t3=58&3=1 # 0x003E7E13
beqg zero, zero, REPEAT # Repeat the loop # OxFEOOOCE3
nop # nop # 0x00000013
REPEAT: addi t3, t3, 6 #t3 =1+ 6 =717 # 0x006EOE13
addi t3, t3, -1 #t3=7-1=6 # OxFFFEOE13
andi t3, t3, 3 # t3 =6 6& 3 =2 # O0x003E7E13
beq zero, zero, REPEAT # Repeat the loop # OxXFEOOOCE3

Figure 89. Instruction flow and values of register £3 (x28) during AL_Operations
execution

14. Zoom in around 10100 ps, where you will analyse the execution of the three arithmetic-
logic instructions of the first and second iterations of the loop (Figure 90). The first two
instructions (11 t3, 0x0=0x00000E13 and addi t3, t3, 6 =0x006EQOE13)are
fetched first, one in each way of the superscalar RISC-V processor as shown on signals
ifu_i0_instr[31:0] and ifu_il_instr[31:0]. The next two instructions (addi t3, t3, -1=
OxFFFEOE13 and andi t3, t3, 3 =0x003E7E13) are fetched in the next cycle. The
last two instructions are fetched (beq =zero, zero, REPEAT = 0xFE0OO0OCE3 and
nop = 0x00000013) in the next cycle.

Because of the SweRV core’s 9-stage pipelined processor and dependencies, the
effects of the instructions are seen eight or more cycles after the instructions are fetched.
Eight cycles after the first and second instructions are fetched, x28 (t3) becomes 0
(which it was already) because of the first instruction: 1i t3, 0x0 (0x00000E13). One
cycle later, x28 is updated to 0x6 because of the next instruction: addi t3, t3, 6
(0x006E0E13). Next, x28 updates to 5 because of the next instruction: addi t3, t3,
-1 (OxFFFEOE13). Finally, x28 updates to 1 because of the next instruction: andi t3,
t3, 3 (0x003E7E13). Then the next two instructions are fetched: beq zero, =zero,
REPEAT (0xFEOOOCE3)and nop (0x00000013), the branch is taken and the loop
repeats. This is as predicted in Figure 89. Using a similar reasoning, you can analyse the
second iteration, which is also highlighted in Figure 90 and predicted in Figure 89.

Signals-
Time
clk=
ifu_ie_instr[31:0] =
ifu il instr[31:0]
dout[31:€]

Figure 90. Execution of the three Arithmetic-Logic instructions from the example

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 78

imagination
university programme

Whisper (https://github.com/chipsalliance/SweRV-ISS) is a RISC-V instruction set simulator
(ISS) developed by Western Digital for the verification of the SweRV micro-controller. It
allows the user to run RISC-V code without requiring underlying RISC-V hardware. Using
Whisper, you can test, run, and debug C or assembly programs using PlatformlO without
requiring the Nexys A7 FPGA board.

8. SIMULATION IN WHISPER

Windows: All the instructions described in this section should work for Windows (we’d like to
thank Jean-Frangois Monestier, who was the first to port Whisper to Windows: https://jean-
francois.monestier.me/porting-western-digital-swerv-iss-to-windows/). Note that a pop-up
window may ask you to allow Whisper through the Windows firewall.

\ macOS: All the instructions described in this section also work for macOS. |

Whisper can be executed both using the command line or using an IDE (integrated
development environment) such as Eclipse or PlatformlO. In this section we demonstrate
one example to show how to simulate a program with Whisper in Platform|O. You can then
use the same steps as the ones described here to simulate other programs.

We start by using the Whisper ISS to simulate AL_Operations, the first simple assembly
program that you executed and debugged in Section 6 (see Figure 44). Follow the next
steps for running and debugging this code on Whisper:

1. Open VSCode (and PlatformlO). On the top menu bar, click on File — Open Folder and
browse into directory [RVfpgaPath]/RVfpga/examples/, select (but do not open) directory
AL_Operations and then click OK.

2. Click on File — Open File and double-click on
[RVfpgaPath]/RVfpga/examples/AL_Operations/platformio.ini, and set whisper as the
debug tool by uncommenting line 17 (see Figure 91). Save the file (press Ctrl-s).

File Edit Selection View Go Run Terminal Help

@ R & platformioini X @ PIO Home
~ OPEN EDITORS ¥ platformio.ini
X @ platformio.ini
@ PIO Home
AL_Operations.S src
~ AL_OPERATIONS

[env:swervolf nexy

= 115200
= whisper
= /home/dchaver/RVfpga/src/rvfpganexys.bit

= /home/dchaver/RVfpga/verilatorSIM/Vrvfpgasim

Figure 91. Uncomment line 17.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 79

https://github.com/chipsalliance/SweRV-ISS
https://jean-francois.monestier.me/porting-western-digital-swerv-iss-to-windows/
https://jean-francois.monestier.me/porting-western-digital-swerv-iss-to-windows/

imagination
university programme

RUN [> PIO Debug

3. Launch the debugger as usual, by clicking on and then on

4. You can now debug the program exactly as you did in Section 6.B, but this time the
program is running in simulation on Whisper instead of on the Nexys A7 FPGA board.

5. If a program uses the printfNexys function in Whisper, such as the HelloWorld_C-Lang
example (Section 6.F), you should not open the PlatformlO serial monitor, as messages
are shown in the DEBUG console instead (see Figure 92).

File Edit Selection View Go Run Terminal Help
b P10 Debug & g Helloworid_C-Lang.c X

VARIABLES

WATCH

printfNexys(

CALL STACK

BREAKPOINTS
PERIPHERALS
REGISTERS

MEMORY
1

DISASSEMBLY

®0A1 HPIODebug(Helloworld Clang) @ v > ® ¢ @@

Figure 92. Execution of the HelloWorld_C-Lang example in Whisper

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 80

imagination
university programme

The following appendices show how to use the native RISC-V toolchain and OpenOCD
(instead of PlatformlQ) in Linux, how to install in Windows the drivers to download the
bitstream using PlatformlO, how to install Verilator and GTKWave on Windows and Mac OS
machines, and how to program RVfpgaNexys using Vivado. Table 10 lists all of the
appendices available in this RVfpga Getting Started Guide.

9. APPENDICES

Table 10. List of Appendices
Appendix Description Operating System

A Using the Native RISC-V Toolchain and OpenOCD for | Linux
RVfpga in Ubuntu 18.04
B Installing drivers in Windows to use PlatformlO Windows
C Installing Verilator and GTKWave in Windows Windows
D Installing Verilator and GTKWave in macOS macOS
E Using Vivado to download RVfpgaNexys onto an FPGA | Windows and Linux
F Using RVfpga in an industrial 10T application All

Appendix A should be used by those who want to natively compile and run/debug programs
using the native gcc/gdb tools and OpenOCD. However, it is recommended that RVfpga
users use PlatformlO instead, as described in this Getting Started Guide.

Windows users must follow instructions in Appendices B and C. Instructions in
Appendix B show how to download drivers so that Windows systems can use PlatformlIO to
both download programs and download RVfpgaNexys onto the Nexys A7 FPGA board.
Appendix C shows how to install Verilator and GTKWave so that Windows users can
simulate the RVfpgaSim.

macOS users must follow instructions in Appendix D in order to simulate the RVfpgaSim
using Verilator and GTKWave.

It is recommended to use PlatformlO to download the RVfpgaNexys system (as
defined by the bitfile, rvfpganexys.bit) onto the Nexys A7 FPGA board. This bitfile
(rvfpganexys.bit) can be generated by Vivado or PlatformlO. It is also possible to use Vivado
to download the RVfpgaNexys system onto the Nexys A7 FPGA board, as described in
Appendix E. However, using Vivado to download RVfpgaNexys onto the board is not
recommended — especially for Windows users, as it would require continually swapping
drivers.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 81

imagination
university programme

Appendix A: Using the Native RISC-V Toolchain and OpenOCD

in Ubuntu 18.04

Although we recommend the use of PlatformlO, in this section we show how to install, run,
and use the native RISC-V toolchain and use OpenOCD to download RVfpgaNexys onto the
Nexys A7 FPGA board and gdb to run and debug programs on RVfpgaNexys. The toolchain
consists of a gnu compiler, debugger, assembler, etc. We show how to install the RISC-V
toolchain and OpenOCD on an Ubuntu 18.04 operating system (OS), but this process should
also work for other Linux distributions as well. These instructions assume a fresh Ubuntu
system.

The following steps are not needed if you are using PlatformlO, as described earlier in this
guide. Using PlatformlO, Vivado, and Verilator or Whisper is the recommended method for
running, debugging, and simulating RISC-V programs, but the following instructions are
provided for anyone who is interested in using the native RISC-V toolchain and OpenOCD in
place of PlatformlO and the Vivado Hardware Manager.

. Native installation on a Linux Ubuntu OS

In this section we describe how to install natively in your Ubuntu 18.04 machine the RISC-V
toolchain, OpenOCD and Whisper. These tools only substitute PlatformlO; installing Vivado
and Verilator is still required as explained in Section 5 of this GSG.

RISC-V Toolchain

Here we show how to install the complete RISC-V Toolchain — i.e., gnu compiler, debugger,
etc. — on your computer. Installation instructions are provided by RISC-V International at:
https://github.com/riscv/riscv-gnu-toolchain. These instructions are summarized below.

NOTE: Installing the RISC-V toolchain and OpenOCD could take several hours — mostly
waiting while the toolchain downloads, compiles, and installs

At a terminal, type the following (the process can take more than an hour, but most of the
time is spent waiting while the programs are downloaded and installed):
e sudo apt-get install git autoconf automake autotools-dev curl libmpc-
dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo
gperf libtool patchutils bc zliblg-dev libexpat-dev

e git clone --recursive https://github.com/riscv/riscv-gnu-toolchain

e cd riscv-gnu-toolchain/

e ./configure --prefix=/opt/riscv --with-arch=rv32imc

e sudo make (If possible use sudo make -j$ (nproc) as it significantly decreases
compile time)

e export PATH=$PATH:/opt/riscv/bin (change the path in your system)

OpenOCD
OpenOCD is an open on-chip debugger that allows users to program and debug embedded

target devices. Follow the next steps to install RISC-V OpenOCD onto your computer:
e sudo apt-get install libusb-1.*
e sudo apt-get install pkg-config
e git clone https://github.com/riscv/riscv-openocd.git
e cd riscv-openocd/
./bootstrap
e ./configure --prefix=/opt/riscv --program-prefix=riscv- --enable-ftdi

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 82

https://github.com/riscv/riscv-gnu-toolchain

imagination
university programme

--enable-jtag vpi
e make
e sudo make install

Whisper

Follow the next steps to install Whisper onto your computer (instructions are available at:
https://github.com/chipsalliance/SweRV-ISS but are also summarized below):
apt-cache policy libboost-all-dev

sudo apt-get install libboost-all-dev

cd [RVfpgaPath]

git clone https://github.com/chipsalliance/SweRV-ISS

cd SweRV-ISS

make BOOST DIR=/usr/include/boost

export PATH=$PATH: [RVfpgaPath]/SweRV-ISS/build-Linux (replace
[RVfpgaPath] as required).

YV VVVVVY

Il. Executing a program on RVfpgaNexys using the Nexys A7 FPGA board
using OpenOCD

Step A. Download RVfpgaNexys (Figure 25) into the Nexys A7

1. Go into the project directory that contains the bitfile for RVfpgaNexys:
cd [RVfpgaPath]/RVfpga/src

2. Download RVfpgaNexys into the board using OpenOCD:
riscv-openocd -c "set BITFILE rvfpganexys.bit" -f
OtherSources/ConfigFiles/swervolf nexys program.cfg

Step B. Execute LedsSwitches, the program that reads the Switches and prints their
state on the LEDs

3. Gointo the LedsSwitches/commandLine directory:
cd [RVfpgaPath] /RVfpga/examples/LedsSwitches/commandLine

In that directory you will find the Makefile for compiling the sources, the link script, a
python script, and the LedsSwitches.S program.

4. Build the .elf file:
make clean
make LedsSwitches.elf

5. Connect OpenOCD to the SoC:
riscv-openocd -f
./../../src/OtherSources/ConfigFiles/swervolf nexys debug.cfg

Once OpenOCD starts running, you will see several messages including one that
says:
Info : Listening on port 4444 for telnet connections

6. Open a new terminal, and go into the program directory (cd
[RVfpgaPath] /RVfpga/examples/LedsSwitches/commandLine) and run the
following command:

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 83

https://github.com/chipsalliance/SweRV-ISS

imagination
university programme

telnet localhost 4444

Then, inside the telnet connection, type:
load image LedsSwitches.elf
reg pc O
resume

These three commands (1) load the LedsSwitches.elf program onto RVfpgaNexys,
(2) set the program counter (PC) to 0 (the address location of the program’s first
instruction), and (3) resume execution.

The program will start to run on RVfpgaNexys, the RISC-V SweRVolfX SoC that was
already downloaded onto the Nexys A7 FPGA board in Step 2. The program makes
the LEDs show the state of the switches. As you toggle the switches, the LEDs
should immediately change to reflect the value of the switches.

Step C. Debug the AL Operations CommandLine program that executes simple
arithmetic-logic operations

Now we show how to debug another program (AL_Operations_CommandLine) using
OpenOCD and gdb.

7. Keep the OpenOCD connection open (see Step 5).

8. In the other terminal where telnet is running (from Step 6), exit the telnet connection
by typing:

exit

9. Change to the project directory that contains AL_Operations/commandLine:
cd ../../AL Operations/commandLine

In that directory you will find the Makefile for compiling the sources, the link script, a
python script, and the AL_Operations.S program.

10. Build the .elf file:
make clean
make AL Operations.elf

11. Then, in this terminal, start gdb by typing:

riscv32-unknown-elf-gdb AL Operations.elf

12. Inside the gdb console, type:
target remote localhost:3333
load

This will connect to OpenOCD and load the AL_Operations.elf program into memory.

13. You should now be able to debug the program. Type the following sequence and
analyse the outputs:

i disas 0,20

This shows the assembly code from address 0 to 20 (not including address
20). See Figure 93.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 84

imagination
university programme

(gdb) disas 0,20

Dump of assembler code from Ox0 to 0x14:

=> < start+0>: i 3,0
REPEAT+0>: addi t3,t3,6

EAT+4>: addi £t3.t3. -1
REPEAT+8>: andi t3.t3.3
<REPEAT+12>: beqz zero,0x4 <REPEAT>
End of assembler dump.
Figure 93. View the assembly program

ii. ir t3

This displays the contents of register t 3. Alternately, you could type the
longer version: info reg t3. See Figure 94.

(gdb) 1 r t3
= 0x0 0
Figure 94. Print the value contained in register t3

iii. i r pc
This displays the contents of the program counter (pc). See Figure 95.

(gdb) 1 r pc
DC Ox0 <
Figure 95. Print the value contained in register PC, that points to the first instruction

iv. stepi
ir t3
stepi
ir t3
stepi
ir t3
stepi
ir t3

stepi causes the program to execute one instruction. 1 r t3 then displays
the contents of register t3. See Figure 96.

Figure 96. Execute several instructions one by one and view the t3 register

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 85

imagination
university programme

Once you are finished debugging and exploring the program and registers using gdb, exit
gdb by typing quit in the gdb terminal and exit OpenOCD by typing ~C in the OpenOCD
terminal.

lll. Simulating a program on RVfpgaSim using Verilator
1. Open aterminal in Ubuntu

2. In aterminal window, generate the simulator binary by executing the following
commands:

cd [RVfpgaPath]/RVfpga/verilatorSIM
make clean
make

File Vrvfpgasim (the RVfpgaSim simulation binary), should be generated inside
directory [RVfpgaPath])/RVfpga/verilatorSIM.

3. Gointo the folder that contains the example program:
cd [RVfpgaPath]/RVfpga/examples/AL Operations/commandLine

4. Create the hexadecimal program for simulation.
make clean
make AL Operations.elf
make AL Operations.bin
make AL Operations.vh

5. Execute the simulator.
./../../verilatorSIM/Vrvipgasim
+ram init file=AL Operations.vh +vcd=1

After a few seconds, stop the simulation by entering ~C in the terminal. File trace.vcd

should have been generated, and you can open it with GTkwave.
gtkwave trace.vcd

6. Follow the instructions provided in steps 8 to 12 of Section 7 for adding signals to the
graph and analysing them.

IV. Simulating a program on Whisper

1. Open aterminal in Ubuntu

2. Go into the folder that contains the example program:
cd [RVfpgaPath] /RVfpga/examples/AL Operations/commandLine

3. Create the disassembly program.
make AL Operations.dis

4. Open AL_Operations.dis in an editor. This is what you should see:

< _start>:
0: 00000el13 1i t3,0

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 86

<REPEAT>:
4: 006e0el3
8: fffelel3
c: 003e7el3
10: fe000ae3
14: 00000013

5. Execute the simulator in interactive mode.

addi t3,t3,6
addi t3,t3,-1
andi t3,t3,3
beqgz zero,4 <REPEAT>

nop

whisper --interactive AL Operations.elf

6. Debug the program.

whisper> step
#1 0 00000000

whisper> peek r
0x00000000

whisper> step
#2 0 00000004

whisper> peek r
0x00000006

whisper> step
#3 0 00000008

whisper> peek r
0x00000005

whisper> step
#4 0 0000000c

whisper> peek r
0x00000001

00000el13

x28

006e0el3

x28

fffelel3

x28

003e7el3

x28

1lc

lc

1lc

1lc

00000000

00000006

00000005

00000001

addi

addi

addi

andi

x28,

x28,

x28,

x28,

imagination
university programme

x0, 0x0

x28, 0x6

%28, -0x1

%28, 0x3

Once you are finished debugging and exploring the program and registers using whisper,
exit by typing quit in the terminal.

Imagination University Programme — RVfpga Getting Started Guide

Version 2.2 — 9th May 2022
© Copyright Imagination Technologies

87

imagination
university programme

Appendix B: Installing drivers in Windows to use PlatformIO

To download the Zadig executable, browse to the following website (see Figure 97):

https://zadig.akeo.ie/

B Inbox (1 B RISC-V () Docume: Downloz B Notepad -l = O X
C ® (O Whttps://zadig.akeo.ie e yINnDO & =

Driver WinUSB (v6.1.7600.16385) @) WinUSB (v6.1.7600.16385) = More Information
WinUSB (ibusb-1.0)

USBID 04D8 FAXE lbusb-win32
> Reinstall WCID Driver |¥ libusbK
WCID= /' WINUSB WinUSB (Microsoft)

|4 devices found.

Zadig is a Windows application that installs generic USB drivers, such as WinUSB, libusb-

It can be especially useful for cases where:

* you want to access a device using a libusb-based application
» you want to upgrade a generic USB driver
« you want to access a device using WinUSB

Note: "libusb-based” above means an application that uses either libusb, libusb-win32 or libusbK.

Download

Updated 2020.03.28:

» Zadig 2.5 (4.9 MB)

e Other versions
System Requirements:
Windows 7 or later.

Windows XP and Windows Vista are NO LONGER SUPPORTED.

Usage

Figure 97. Install Nexys A7 board driver used by PlatformlO

Click on Zadig 2.5 and save the executable. Then run it (zadig-2.5.exe), which is located
where you downloaded it. You can also type zadig into the Start menu to find it. You will
probably be asked if you want to allow Zadig to make changes to your computer and if you
will let it check for updates. Click Yes both times.

Connect the Nexys A7 Board to your computer and switch it on. In Zadig, click on Options —
List All Devices (see Figure 98).

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 88

https://zadig.akeo.ie/

imagination
university programme

K&l Zadig - X
Device Options Help

List All Devices

Ignore Hubs or Composite Parents || |Edit

~ Create a Catalog File

" g - - More Inf t
Driver »# Sign Catalog & Install Autogenerated Certificate - ‘.)re =
WinUSB (ibusb)
USB Tl Advanced Mode ibysb-win32
. libusbK
— Log Verbosity 2 WinUSB (Microsoft)

0 devices found.

Figure 98. List all devices in Zadig

If you click on the drop-down menu, you will see Digilent USB Device (Interface 0) and
Digilent USB Device (Interface 1) listed. You will install new drivers for only Digilent USB
Device (Interface 0) (see Figure 99).

2 Zadig - X

Device QOptions Help

Digilent USB Device (Interface 0) v ([Edit

Digilent USB Device (Interface 1)

Intel(R) Wireless Bluetooth(R) gtion
Integrated Webcam (Interface 0)

Goodix Fingerprint Device (Interface 0)

Lenovo Optical USB Mouse

, Replace Driver ﬁ TBusbK
WCID = B] WinUSB (Microsoft)

6 devices found.

Figure 99. Install WinUSB driver for Digilent USB Device (Interface 0)

You will now replace the FTDI driver with the WinUSB driver, as shown in Figure 100. Click
on Replace Driver (or Install Driver) for Digilent USB Device (Interface 0). You are installing
the driver for the Nexys A7 board or, if you previously installed Vivado, you are replacing the
FTDI driver used by Vivado with the WinUSB driver used by PlatformlO.

I Zadig - X
Device Options Help

Digilent USB Device (Interface 0) v | [CJEdit

More Information

WinUSE (ibusb)
USB ID |0403 " 6010 “ ool libusb-win32

Driver | FTDIBUS (v2.12.28.0)

E} | WinUSB (v6.1.7600. 16385)

-
-

= Replace Driver v libusbK
WD E WinUSB (Microsoft)

6 devices found.

Figure 100. Replace driver for Nexys A7 board

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 89

imagination
university programme

After some time, typically several minutes, Zadig will indicate the driver was installed
correctly. Click Close and then close the Zadig window.

Next time you use PlatformlO you do not need to re-install the driver. However, note that
this driver is not compatible with Vivado in Windows. So you can no longer use Vivado
to download bitfiles to the FPGA board. If you wanted to use Vivado to download bitfiles (not
recommended) you would need to revert the driver back to the original driver installed with
Vivado, as described in Appendix E.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 90

imagination
university programme

Appendix C: Installing Verilator and GTKWave in Windows

In this section, we explain how to install Verilator and GTKWave in Windows 10. In
Windows, you must use Cygwin to install Verilator, so we first explain how to install this
programming/runtime environment.

Cyqgwin installation:

As described on its webpage (https://www.cygwin.com), Cygwin consists of GNU and Open
Source tools which provide functionality on Windows similar to that of a Linux distribution.
Follow the next steps to install Cygwin on Windows 10.

1. Navigate to the installation webpage (https://cygwin.com/install.html) and download the
installation file, called setup-x86_64.exe (Figure 101).

€ Cygwin Installation x |+

< O @ 8 htps//cygwin.com/install.htm

Cygwin

Get that Linux feeling - on Windows

Installing and Updating Cygwin Packages

Installing and Updating Cygwin for 64-bit versions of Windows

Rugl setup-x86_64 exefany time you want to update or install a Cygwin package for 64-bit windows.
Installing and Updating Cygwin for 32-bit versions of Windows

Run setup-x86_ exe any time you want to update or install a Cygwin package for 32-bit windows. Ths
Signing key transition

The key used to sign setup binaries has been updated. During the transition period. signatures are me

See this mail for more details.

General installation notes

Figure 101. Cygwin installation webpage

2. Execute the setup file in your machine by double-clicking on it (Figure 102). Click Next
several times, maintaining the default options. The installer will ask you to Choose a
Download Site (Figure 103), you can choose any one of them.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 91

https://www.cygwin.com/
https://cygwin.com/install.html

imagination
university programme

E cygwin Setup — O *
Cygwin Net Release Setup Program

This setup program is used for the initial installation of the
Cygwin environment as well as all subsequent updates. The
pages that follow will guide you through the installation.

Flease note that we only install a base set of packages by
default. Cygwin provides a large number of packages
spanning a wide variety of purposes.

You can always run this program at any time in the future to
add, remove, or upgrade packages as necessary.

Setup version 2.905 (64 bit)
Copyright 2000-2020
hitps://cyqwin.com/

< Back Next > Cancel

Figure 102. Cygwin installation window

E Cygwin Setup - Choose Download Site(s) - O *

Choose A Dewnload Site
Choose a site from this list, or add your own sites to the list

Awvailable Download Sites:

http://mirmors. 163.com -~
https://mirmors. 163 com
https://mimars.aliyun.com
Win.mirmor.constant.com
http://cygwin mimors hoobly com
http://mimors koehn.com
https://mirmors koehn com
hitp://mirmors metapeer.com
https://www singleboersen com
http -/ /mimor team-cymmn com
ftp://mimors xmission com
hittp -/ /mimors xmission.com
https://mirmors xmission.co W

U N PO

User URL: | Add

< Back

Figure 103. Choose Download Site

Cancel

3. After several steps, you will reach the Select Packages window (Figure 104). Select the

Full view, as shown in Figure 104.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

92

imagination

university programme

Select Packages
Select packages to install

E Cygwin Setup - Select Packages

View |Category -

Search Clear

(O Keep (@) Best (O Sme [Test

Cumert New

Sc? Categories

Size Description

<

Default

Hide obsolete packages

Figure 104. Select Packages window

< Back Next = Cancel

4. The complete list of packages that you can install will appear (Figure 105). In the Search
box, select the specific packages that you want to install.

E Cygwin Setup - Select Packages

Select Packages
Select packages to install
View | Ful ~ | N Search I:I Clear (OHKeep (@ Best
Package Curent New Src? Categories Size Description
2048l Skip v|| | Games 10k 2048 game for terminal
2048-cli-debuginfo Skip hd : Debug 2% Debug info for 2048l
2048t Skip +|] Games 1371k 2048 game for G/KDE
2048-qt-debuginfo Skip - : Debug 2,257 Debug info for 2048qt
4i2-debuginfo Skip - : Debug 3.976k Debuginfo for 42
AtomicParsley Skip hd : Audio 109 Command-ine program to read and set MPEG-4 tags comp
AtomicParsley-debuginfa Skip hd : Debug 287k Debug info for AtomicParsley
Clnit Skip ~| [] Libs. Math 103 Clnit is a Unit testing framework for C
CUnit-debugirfo Skip - : Debug 76k Debug info for CUnit
ELFIO Skip - : Devel, Libs. Syste... 694k ELFfile reader and producer implemented as a C++ library
GConf2 Skip hd : GNOME 30% GNOME corfiguration database system
GConf2-debugirfo Skip ~| [] Debug 7% Debug info for GConf2
GeolP Skip - : Net 3k GeolP Clibrary
GeolP-database Skip - : Net 24604k GeolP Lite free) databases
GeolP-debuginfo Skip hd : Debug 118k Debug info for GeolP
GraphicsMagick Skip hd : Graphics 887 GraphicsMagick library
GraphicsMagick-debuginfo Skip ~| [] Debug 4095% Debug info for GraphicsMagick
Image Magick Skip - : Graphics 10Z Image processing suite {Utilities)
Image Magick-debuginfo Skip hd : Debug 6,902 Debug info for ImageMagick
ImageMagick-doc Skip hd : Graphics 5367 Image processing suite {documentation)
ORBit2 Skip ~| [] cnhowe 84 CORBA 24 Object Request Broker library
ORBit2-debuginfa Skip - : Debug 802 Debug info for ORBit2
OpenCalarld Skip - : Graphics 946k Color management for computer animation
OpenCalorlO-debuginfo Skip hd : Debug 4,647 Debug info for OpenColorlO
OpenColorlQ-doc Skip +| [] Graphics 748k Color management for computer animation
OpenSP Skip - : Text 4k SGML parser utilities
OpenSP-debuginfo Skip - : Debug 4,42% Debug info for OpenSP
R Skip hd : Math, Science 42,273 R Statistical computing language
R-debugirfa Skip hd : Debug 67368k Debug info for R
R_autorebase Skip ~|] math 1k Incremental autorebase for R modules
SDLdebuginfo Skip - : Debug 512 Debuginfo for SDL
SDL2-debuginfa Skip - : Debug 1.458k Debug info for SDL2
5DL2_image-debugirfo Skip hd : Debug 253k Debuginfo for SDLZ_image
JiE R e _ o B I .
Hide obsolete packages
< Back Next > Cancel

To be able to compile Verilator and generate a new simulator binary, you need to install the
following packages:

Figure 105. Select Packages window — Full view

Imagination University Programme — RVfpga Getting Started Guide

Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

93

- git

- make

- autoconf

- gcc-core

- gcc-g++

- flex

- bison

- perl

- libargp-devel

imagination
university programme

Include at least these packages in your Cygwin installation. Select them one-by-one
following the steps below (we only show the detailed steps for the first package in the list,

git; the process is the same fo

r the other packages):

- Look forthe git package in the Search box (Figure 106).

E Cygwin Setup - Select Pac

Select Packages

Select packages to install

kages

View | Full ~ Search Clear

Package

Curmrent New

cgit

cgit-debuginfo
engauge-digitizer
engauge-digitizer-debuginfo
geany-plugins-git-changebar
girepository-Ggit 1.0

git-archive-all

Skip
Skip
Skip
Skip
Skip
Skip

I -

Sklp

4 4 4 4 |4 4 4 4

Flgure 106. Look for the git package

- Select the most up-to-date version in the dropdown menu and tick the box (Figure

107).

ey g G g
girepository-Ggit 1.0

git-archive-all

o - L

22801 B & | Devel
P “TLT Devel

iy v
EB(GOh]ex:t mtarfacaln IlhgrtZ

16,758k | Distributed version control system

14k Git archive with submodules support

Figure 107. Select the most up—to—date version and tick the box

- Do the same for the remaining packages in the above list. In most cases, you can
use the most up-to-date version, but for packages gcc-core and gcc-g++ you
should use version 10.2.0, since the most up-to-date version, which at the moment of
writing this document was 11.2.0, presents some conflicts with Verilator.

5. Once you have selected the nine packages, click Next in the subsequent windows to
include these packages in your Cygwin installation (the installation process, see Figure
108, may take several minutes) and finalize the installation by clicking Finish (Figure

109).

Imagination University Programme — RVfpga Getting Started Guide

Version 2.2 — 9th May 2022
© Copyright Imagination Technologies

94

imagination
university programme

E 58% - Cygwin Setup - O X
Progress =
This page displays the progress of the download or installation. =
Downloading...

info-6.7-1 tarxz from hitp://cygwin mimor constant.com/x86_64...
78 % (385/490k) 117.3kB/s

Pogess:

Total I
Diske: ']

< Back Next =
Figure 108. Cygwin setup

E Cygwin Setup - Installation Status and Create lcons = O X
Create Icons =
Tell setup if you want it to create a few icons for convenient access to the =

Cygwin environment.

Create icon on Desktop
Add icon to Start Menu

Installation Status
Installation Complete

< Back Cancel
Figure 109. Finish the installation

6. If you need to add a package to your Cygwin installation, repeat steps 2-5 for that
package.

Verilator installation:

Follow the next steps to install Verilator on Windows 10.

1. Open the Cygwin terminal (Figure 110), available on your Windows Desktop or from the
Start menu.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 95

imagination
university programme

Figure 110. Cygwin terminal

2. Build and install Verilator by following these steps. This may take some time (even
hours), depending on the speed of your computer:

git clone https://git.veripool.org/git/verilator
cd verilator

git pull

git checkout v4.106

autocont

./configure

make

VVVVYVYVY

make install

Note that Verilator v4.106 can also be installed by downloading it directly from GitHub:
https://github.com/verilator/verilator/releases/tag/v4.106. In this case, the four initial steps
would simply be avoided.

GTKWave installation:

GTKWave can be downloaded as a precompiled package from
https://sourceforge.net/projects/gtkwave/files/. Look for the most recent Windows package
(at the time this document was written, it was called gtkwave-3.3.100-bin-win64), and
download and unzip (uncompress) it. You can find an executable file called gtkwave inside
folder bin, which you can execute and use in your Windows machine.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022
© Copyright Imagination Technologies 96

https://github.com/verilator/verilator/releases/tag/v4.106
https://sourceforge.net/projects/gtkwave/files/

imagination
university programme

Appendix D: Installing Verilator and GTKWave in macOS

In this section, we explain how to install Verilator and GTKWave in a macOS. The
instructions are tested with macOS Catalina 10.15.6 but are expected to work in other
versions of the OS. Homebrew (https://brew.sh/) package manager is used for the
installation. Similar steps may be found for MacPorts, the other widely used package
manager in macOS (https://www.macports.org/).

gcc installation:

In order to build a new simulator using Verilator, a compiler toolchain needs to be installed in
the system. There are many ways to install a valid compiler toolchain. We cite two of them
below:
1. Install the XCode Command Line Tools. Note that this will install LLVM, but a gcc
command will be anyhow available after installation. To do so, type the following
command in a Terminal window:

= xcode-select -install

2. Install gcc using Homebrew. Use the following recipe:

o Dbrew install gcc@9

Verilator installation:

Installing Verilator with Homebrew is as simple as typing the following command in an open
Terminal:

» brew install verilator

gtkwave installation:

Once again, we will use Homebrew to install gtkwave. But this time we need to use cask
because it is a GUI macOS application. Type the following commands in an open Terminal:

» Dbrew tap homebrew/cask
» Dbrew cask install xquartz
» brew cask install gtkwave

After the installation, an icon for gtkwave.app should appear in the Application folder. In

order to use it from the command line, you may need to install Perl’'s Switch module:

» cpan install Switch

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 97

https://brew.sh/

imagination
university programme

Appendix E: Using Vivado to Download RVfpgaNexys onto an

Follow the next steps for programming the FPGA with RVfpgaNexys using Vivado:

WINDOWS: Before following the next steps, in Windows you need to revert the drivers back
to the ones used by Vivado as explained at the end of this Appendix (Appendix E).

Connect the Nexys A7 board to your computer.

Turn on the Nexys A7 board using the switch at the top left.

Open Vivado 2019.2.

Open the Hardware Manager available in Vivado and highlighted in Figure 111.

Vivado 2019.2

Ele Flow Tools Window Help = Q- Quick Access

VIVADO?

HLx Editiens

apow

Quick Start

Create Project >
Open Project >
Open Example Project >

Tasks

Manage IP >
en Hardware Manager 1
Xilinx Tcl Store > N
b,

Learning Center

Documentation and Tutorials >
Quick Take Videos >
Release Notes Guide > Fr

Figure 111. Open Hardware Manager

e. The Hardware Manager opens and informs you that no hardware target is open. Open
the target by clicking on Open target — Auto connect (Figure 112).

File Edit Tools Reports ~ Window Layout Wiew Help

=, %
HARDWARE MANAGER - unconnected
@ Mo hardware target is upsn.

Hardware ? 00X

=

Figure 112. Open target

f. Select Program device as shown in Figure 113. You will now load RVfpgaNexys onto the
FPGA. In the new window, select the Bitstream file from
[RVfpgaPath])/RVipga/src/rvfpganexys.bit. Click Program.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022
© Copyright Imagination Technologies 98

imagination
university programme

Ele Edit Flow Tools Repgrts Window Lsyout View Help Quick Access

= - =}

% Z X Dashboard +

HARDWARE MANAGER - localhostflins_tcf/Digilent/21 029 24D2FAFA

v PROJECT MANAGER
£+ settings
Add Sources
Language Templates

¥ Ip Catalog

v IP INTEGRATOR

Create Block Design

v SIMULATION

Run Simulation

v RTLANALVSIS

> Open Elaborated Design

v SYNTHESIS
» Run Synthesis

> Open Synthesized Design

~ IMPLEMENTATION
» Run Implementation

> Open Implemented Design

@ There are no debug cores] Program device [Refresh device

Hardware ?_00OX
Q /¢ L
Name status
v ¥ localhost (1 Connected
~ B¢ xilinx_tcfiDigilent/2102924D21 Open
v xc7al00t_0 (1) Programmec
XADC (System Monitor.

Program Device (<]

Select 3 bitstream programming file and download it to your hardware device. You
can optionally select a debug probes file that corresponds to the debug cores P
Q 5 contained in the bitstream programming file.

Hardware Device Properties ?2_00X
I Bitstream file: dchaveriRvfpaarpraject_Liproject_Lrunsfimpl_Lindpgasit o[-
£ xcTal00t_0
Debug probes file:

Name: xc78100t 0) Enable end of startup check

Part: ®c7al00t

ID code: 13631093

Status: Programmed

Programming file: t_Liproject_1.runsfimpl_1/rvfe

Figure 113. Program device

g. After a few seconds, the FPGA will be programmed with RVfpgaNexys, the SweRVolfX
SoC targeted to an FPGA (see Figure 25).

h. Finally, close the Hardware Manager by clicking on the X button on the top right of the
Hardware Manager pane in Vivado (Figure 114), so that Vivado releases the board.

Figure 114. Close the Hardware Manager

How to revert the drivers back to the ones used by Vivado in

Windows

Unfortunately, in Windows, the drivers for the Nexys A7 FPGA board differ for Vivado and
PlatformlO. It is strongly recommended that you use PlatformlO to program the FPGA,
as explained in Section 5.A of this GSG. However, if you want to use Vivado to download
bitfiles, you must revert the drivers that you installed in Appendix B to the Vivado (FTDI)
drivers for the Nexys A7 FPGA board. To do so, open the Device Manager by clicking on the
Start menu, typing device manager in the search box, and clicking on Device Manager (see

Figure 115).

Imagination University Programme — RVfpga Getting Started Guide

Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 99

imagination
university programme

All Apps Documents Web
Best match
T2 o : 5=
Settings .

Device Manager

W Device security > Contral panel
W Device performance & health >
@ Device specifications > 7 Open
% Device encryption settings >
5§ Bluetooth and other devices settings >
©h Printers & scanners >
A Find My Device >

Search work and web
L device - See work and web results >
Documents - This PC (4+)

Apps (4)

| P device] |
Figure 115. Open Device Manager

Next, expand Universal Serial Bus Devices, right-click on Digilent USB Device, and select
Properties (see Figure 116).

B0% | ees &

A Device Manager
File Action View Help
¢ m 0 Hm B X3
0 Bluetooth
@ Cameras
& Computer
w Disk drives
& Display adapters
I Firmware
¥4 Human Interface Devices
= Keyboards
.1 Memory technology devices
w Mice and other pointing devices
B Monitors
&P Network adapters
@ Ports (COM & LPT)
= Print queues
n Processors
B Security devices
l‘ Software components
l Software devices
i Sound, video and game controllers
S Storage controllers
K= System devices

@ Universal Serial Bus controllers

<

@ Universal Serial Bus devices
§ Digilent USB Device
!‘ USB Connector Manage Update driver

Disable device

Opens property sheet for the currer
Eulen Uninstall device

Scan for hardware changes
Properties
Figure 116. Open driver properties for Digilent’s Nexys A7 FPGA board

In the Properties window, click on the Driver tab and select Roll Back Driver (see Figure
117).

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 100

imagination

university programme

Digilent USB Device Properties X
General Dnver Details Events

E Digilent USB Device

Driver Provider: libwdi
Driver Date: 8/9/2018
Driver Version: 6.1.7600.16385
Digital Signer: USB\VID_0403&PID_6010&MI_00 (libwdi
autogenerated)
Driver Details View details about the installed driver files.
Update Driver Update the driver for this device.
- the device fails after updating the driver, roll
B2 EEE B kack 1o the previously installed driver.
Disable Device Disable the device.
Uninstall Device Uninstall the device from the system (Advanced).

OK Cancel

Figure 117. Roll back driver

A window will pop up asking why you are rolling back the driver. Select a reason and click

Yes (see Figure 118).

Driver Package rollback

installed drivers?

are available.

Are you sure you would like to roll back to the previously

Rolling back to older drivers may reduce the functionality or security of
your device. If this doesn't resolve the issues you're having with your
device, visit the manufacturer's website to determine if updated drivers

Why are you rolling back?

® My apps don't work with this driver |

O For another reason

Tell us more

O Previous version of the driver performed better
O Previous version of the driver seemed more reliable

O Previous version of the driver had more features

« [

Figure 118. Confirm roll back

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022
© Copyright Imagination Technologies

101

imagination
university programme

After the driver reverts back to the previous driver, the Driver Provider should be listed as
FTDI (see Figure 119).

USB Serial Converter A Properties X
General Driver Details Events

o USB Sernal Converter A

Driver Provider: FTDI

Driver Date: 8/16/2017
Driver Version: 2.12.28.0

Digital Signer: Microsoft Windows Hardware Compatibility
Publisher
Driver Details View details about the installed driver files.
Update Driver Update the driver for this device.
Roll Back Driver If the device fails after updating the driver, roll

back to the previously installed driver.

Disable Device Disable the device.

Uninstall Device Uninstall the device from the system (Advanced).

Close Cancel

Figure 119. FTDI driver shown as driver provided

Now you can load bitfiles onto the FPGA board using Vivado. However, you will still need to
use Zadig to replace the Nexys A7 board’s driver, so that PlatformlO can download the
program onto RVfpgaNexys. Thus, it is recommended that you use PlatformlO to download
bitfiles as well (instead of using Vivado) — this will keep you from continually having to swap
drivers.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 102

imagination
university programme

Appendix F: Using RVfpga in an industrial IoT application

In July 2020, Daniel Le6n Gonzalez, a master’s student at the University Complutense of
Madrid completed his master’s thesis titled “FPGA implementation of an ad-hoc RISC-V
system-on-chip for industrial 10T”. This work shows the use of RVfpga in a real industrial 10T
application. We provide the project abstract below, and the complete thesis is available at:
https://eprints.ucm.es/62106/1/DANIEL LEON _GONZALEZ DL -

FPGA Implementation of an_ad-hoc RISC-
V_SoC for_Industrial 10T _Graded 4286351 962908330.pdf.

FPGA implementation of an ad-hoc RISC-V system-on-chip for industrial 1oT

Abstract: Node devices for 10T need to be energy efficient and cost effective, but they do not
require a high computing power in a large number of scenarios. This changes substantially in
an Industrial 10T environment, where massive sensor utilization and the fast pace of events
require more processing power. A custom developed node, using an efficient processor and a
high performance and feature-full operating system, may balance these requirements and
offer an optimal solution. This project addresses the hardware implementation, using an
Artix-7 FPGA, of a prototype IoT node based on the RISC-V processor architecture. The
project presents the implemented custom SoC and the development of the necessary Zephyr
OS drivers to support a proof-of-concept application, which is deployed in a star network
around a custom border router. End-to-end messages can be sent and received between the
node and the ThingSpeak cloud platform. This thesis includes an analysis of the existing
RISC-V processor implementations, a description of the required elements, and a detailed
guide to environment configuration and project design.

Imagination University Programme — RVfpga Getting Started Guide
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 103

https://eprints.ucm.es/62106/1/DANIEL_LEON_GONZALEZ_DL_-_FPGA_Implementation_of_an_ad-hoc_RISC-V_SoC_for_Industrial_IoT__Graded__4286351_962908330.pdf
https://eprints.ucm.es/62106/1/DANIEL_LEON_GONZALEZ_DL_-_FPGA_Implementation_of_an_ad-hoc_RISC-V_SoC_for_Industrial_IoT__Graded__4286351_962908330.pdf
https://eprints.ucm.es/62106/1/DANIEL_LEON_GONZALEZ_DL_-_FPGA_Implementation_of_an_ad-hoc_RISC-V_SoC_for_Industrial_IoT__Graded__4286351_962908330.pdf

