

Imagination University Programme – RVfpga Lab 17: Superscalar Execution
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 17

Superscalar Execution

Imagination University Programme – RVfpga Lab 17: Superscalar Execution
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

As we’ve already discussed, Western Digital’s SweRV EH1 processor is a 9-stage pipelined
32-bit 2-way superscalar core. In Labs 11-13, we analyzed the flow of the basic instructions
through the SweRV processor and the details of each of the pipeline stages, and in Labs 14-
16 we looked at how data, control, and structural dependencies are handled in this
processor. Now, with that foundational understanding, you are ready to analyse superscalar
execution!

NOTE: Before starting this lab, we recommend reading Section 7.7.4 of the book by S.
Harris and D. Harris, “Digital Design and Computer Architecture: RISC-V Edition”, Morgan
Kaufmann [DDCARV]. Some of the content in this lab is inspired by that book.

Superscalar execution is a microarchitectural technique that improves the performance of a
processor. A superscalar processor contains multiple copies of the datapath hardware to
execute multiple instructions simultaneously. The latency of executing a single instruction
remains unchanged, but the processor can execute and commit more instructions per cycle,
thus improving its throughput. Figure 1 shows an example block diagram of a two-way
superscalar processor extracted from [DDCARV].

Figure 1. Figure 7.68 from [DDCARV]: Two-way superscalar processor block diagram

SweRV EH1 is a 2-way superscalar processor similar to the one shown in Figure 1 that can
fetch, execute, and commit up to two instructions per cycle. The datapath aligns two
instructions at a time that come from instruction memory. The multi-ported register file can
read up to four source operands and write two values back in each cycle (plus one more
value coming from a non-blocking load, as we analysed in Lab 15). The SweRV EH1
processor contains two Integer Pipes, one Multiply Pipe, one Load-Store Pipe, and one non-
pipelined Divider. All these pipes are completely independent, so a pair of independent
arithmetic-logic (AL) instructions or any pair of two independent different instructions can be
executed simultaneously. However, as discussed in Lab 14, a pair of multiplications,
divisions, or load/store instructions cannot be executed in the same cycle, because there is
only one of each of these pipes in the processor, and thus two sequential equal non-AL
instructions will lead to a structural hazard.

SweRV EH1 does not include support for dynamic instruction scheduling with out-of-order
execution, except for in the case of non-blocking loads. However, it is possible to statically
reorder the code in order to better exploit the resources, including the two ways of the
pipeline. Ideally, in a 2-way superscalar processor such as SweRV EH1, throughput (IPC)
would double when compared to a single-issue design. Unfortunately, actual programs don’t
typically achieve that ideal: in real programs, performance typically improves by 1.3x-1.5x

Imagination University Programme – RVfpga Lab 17: Superscalar Execution
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

when going from 1- to 2-way processors; however, adding the second way requires much
more hardware.

In Section 2, we analyse two simple programs, comparing the behaviour when using single-
issue and dual-issue configurations of SweRV EH1. Then, in Section 3, we propose several
exercises related to superscalar execution.

2. SINGLE-ISSUE VS. DUAL-ISSUE

In this section, we work with two simple programs: the first one (Section 2.A) contains a loop
with four AL instructions and the second one (Section 2.B) contains a loop with two
multiplications interleaved with two AL instructions.

A. Four independent AL instructions

In this section, we compare performance of the program from Figure 2 running on the single-
or dual-issue SweRV EH1 core. Recall that, in Appendix B of Lab 11, we described how the
different core features (pipelined execution, branch prediction, superscalar, etc.) can be
configured.

The program contains a loop that performs 1,000,000 (0xF4240) iterations; the loop body

contains four AL independent instructions (add, sub, or, and xor), surrounded by nop

instructions that allow us to see each iteration isolated from the others. Folder
[RVfpgaPath]/RVfpga/Labs/Lab17/Four_AL_Instructions provides the PlatformIO project that
you can analyse, simulate, and modify as desired.

.globl Test_Assembly

.text

Test_Assembly:

li t2, 0x400 # Disable Dual-Issue Execution

csrrs t1, 0x7F9, t2

li t0, 0x0

li t1, 0x1

li t2, 0x1

li t3, 0x3

li t4, 0x4

li t5, 0x5

li t6, 0x6

lui t2, 0xF4

add t2, t2, 0x240

REPEAT:

 add t0, t0, 1

 INSERT_NOPS_10

 INSERT_NOPS_4

 add t3, t3, t1

 sub t4, t4, t1

 or t5, t5, t1

 xor t6, t6, t1

 INSERT_NOPS_10

 INSERT_NOPS_3

 bne t0, t2, REPEAT # Repeat the loop

Imagination University Programme – RVfpga Lab 17: Superscalar Execution
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

.end

Figure 2. Program with four AL instructions

In Section 2.A.i, we analyse the simulation in Verilator and the execution on the Nexys A7
board for the program from Figure 2 in a single-issue SweRV EH1 processor. For that
purpose, we disable the dual-issue capability using the following two instructions at the
beginning of the program:

 li t2, 0x400

csrrs t1, 0x7F9, t2

In Section 2.A.ii, we analyse the simulation in Verilator and the execution on the Nexys A7
board for the program from Figure 2 in a dual-issue SweRV EH1 processor. To do so, we
simply comment out the two previous instructions.

i. Execution in a single-issue SweRV EH1 processor

In its single-issue configuration, SweRV EH1 simply ignores the second way, executing only
one instruction per cycle. Figure 3 illustrates the simulation of the program from Figure 2 in
this SweRV EH1 configuration. We pick a random iteration of the REPEAT loop (except the
first one), given that all iterations are the same.

Figure 3. Simulation of the program from Figure 2 in a single-Issue SweRV EH1

The instructions are received in both ways at decode time (see signals

dec_i0_instr_d[31:0] and dec_i1_instr_d[31:0]), but they are only sent to

execution in Way 0, because Way 1 is disabled. Signals dec_i0_decode_d and

dec_i1_decode_d determine if the instruction is propagated from the Decode Stage to the

EX1 Stage, and signals i0_inst_e1[31:0] and i1_inst_e1[31:0] contain the

instruction in Way 0 and Way 1, respectively, in the E1 Stage.

- Way 0:

o Signal dec_i0_decode_d is always 1 in our example; specifically, it is 1

for the four AL instructions under analysis.

add sub or xor

WAY0

Decode

EX1 (I0 Pipe)

Writeback

Decode

EX1 (I1 Pipe)

Writeback

WAY1

1 2 3 4 5 6 7 8 9

Imagination University Programme – RVfpga Lab 17: Superscalar Execution
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

o The instruction in the Decode Stage (dec_i0_instr_d[31:0]) is

propagated to the I0 Pipe (i0_inst_e1[31:0])

- Way 1:

o Signal dec_i1_decode_d is always 0 in our example; specifically, it is 0

for the four AL instructions under analysis.

o The instruction at the Decode Stage (dec_i1_instr_d[31:0]) is NOT

propagated (i1_inst_e1[31:0]) to the Execution Stage.

Accordingly, only the ALU from the I0 Pipe is used (see signals aff, bff and out in both

ways) and only write port 0 of the Register File is used (see signals waddr, wen and wd in

both ways).

Figure 4 illustrates the flow of the four AL instructions through the I0 Pipe, from the Decode
to the Writeback (EX5) stages. It shows the nine cycles (1 to 9) specified in Figure 3. The
empty holes correspond to the nop instructions that surround the four AL instructions, which
are not shown in the figure for the sake of simplicity.

Figure 4. Flow of the 4 AL instructions through I0 Pipe

TASK: In the simulation from Figure 3, include the trace signals and highlight the
instructions as they go through the pipeline from the Decode stage to the Writeback stage,
similarly to Figure 4. You can use the .tcl file provided at:
[RVfpgaPath]/RVfpga/Labs/Lab17/Four_AL_Instructions/test_task1.tcl.

TASK: Remove all the nop instructions within the body of the loop from Figure 2.

Repeat the simulation from Figure 3. What is the expected IPC for this program?

Execute the program on the board and verify that the IPC obtained is the one that you
expected.

Cyc 1

EX1

EX2

EX3

Decode add

Commit

Writeback

Cyc 2

sub

add

Cyc 3 Cyc 4

xor

or

sub

add

or

sub

add

Cyc 5

xor

or

sub

add

Cyc 6

xor

or

sub

add

Cyc 7

xor

or

sub

Cyc 8

xor

or

Cyc 9

xor

Imagination University Programme – RVfpga Lab 17: Superscalar Execution
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

ii. Execution in 2-Way Superscalar SweRV EH1

Comment out the two instructions from Figure 2 to enable the dual-issue capability of
SweRV EH1. Now, SweRV EH1 will send to execution two instructions per cycle whenever
possible. Figure 5 illustrates the simulation of the program. As before, we pick a random
iteration of the REPEAT loop (except the first one), given that all iterations are the same.

Figure 5. Simulation of the program from Figure 2 in a dual-issue SweRV EH1

Two instructions are received, one in each way, at decode time (see signals

dec_i0_instr_d[31:0] and dec_i1_instr_d[31:0]), and two instructions per cycle

are sent to the Execute stages, one through the I0 Pipe and the other through the I1 Pipe.

- Way 0:

o Signal dec_i0_decode_d is always 1 – being true for two of the four AL

instructions of our example (the other two AL instructions are decoded in
Way 1).

o The instruction in the Decode stage (dec_i0_instr_d[31:0]) is

propagated to the I0 Pipe (i0_inst_e1[31:0]).

- Way 1:

o Signal dec_i1_decode_d is always 1 – being true for two of the four AL

instructions of our example (the other two AL instructions are decoded in
Way 0).

o The instruction in the Decode stage (dec_i1_instr_d[31:0]) is

propagated to the I1 Pipe (i1_inst_e1[31:0]).

Thus, the ALUs in both pipes (I0 and I1) are used (see signals aff, bff, and out in both

ways), and both Register File write ports are used (see signals waddr, wen and wd in both

ways).

sub xor

add or

WAY0

WAY1

Decode

EX1 (I0 Pipe)

Writeback

Decode

EX1 (I1 Pipe)

Writeback

1 2 3 4 5 6 7

Imagination University Programme – RVfpga Lab 17: Superscalar Execution
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

Figure 6 illustrates the flow of the four AL instructions through the I0 Pipe and the I1 Pipe,
from the Decode Stage to the EX5 Stage. It shows the seven cycles (1 to 7) specified in
Figure 5. The empty holes correspond to the nop instructions that surround the four AL
instructions, which are not shown in the figure for the sake of simplicity.

Figure 6. Flow of the 4 instructions through both pipes (I0 and I1)

TASK: In the simulation from Figure 5, add trace signals and highlight the instructions as
they go through the pipeline from the Decode to Writeback stages, similar to what’s shown
in Figure 6. You can use the .tcl file provided at:
[RVfpgaPath]/RVfpga/Labs/Lab17/Four_AL_Instructions/test_task2.tcl.

TASK: Remove all the nop instructions within the body of the loop from Figure 2.

Repeat the simulation from Figure 5. What is the expected IPC for this program?

Execute the program on the board and verify that the IPC obtained is the one that you
expected.

B. Two mul instructions interleaved with two AL instructions

In this section we analyse the program from Figure 7 on a dual-issue SweRV EH1 core. The

program executes a loop that performs 1,000,000 iterations; the loop body contains two mul

instructions interleaved with two AL instructions (mul, add, mul, and sub), surrounded by

nop instructions that allow us to see each iteration isolated from the others. The four
instructions are independent. We analyse the simulation in Verilator, highlighting the main
signals and providing a brief explanation of the program behaviour in each case. Folder
[RVfpgaPath]/RVfpga/Labs/Lab17/TwoAL_TwoMUL_Instructions provides the PlatformIO
project that you can analyse, simulate, and modify as desired.

.globl Test_Assembly

.text

Test_Assembly:

Cyc 1

EX1

EX2

EX3

Decode add

Commit

Writeback

sub

I0 I1 I0 I1 I0 I1 I0 I1 I0 I1 I0 I1 I0 I1

Cyc 2

or xor

add sub

Cyc 3 Cyc 4

or xor

add sub or xor

add sub

Cyc 5

or xor

add sub

Cyc 6

or xor

add sub

Cyc 7

or xor

Imagination University Programme – RVfpga Lab 17: Superscalar Execution
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

li t2, 0x400 # Disable Dual-Issue Execution

csrrs t1, 0x7F9, t2

li t3, 0x3

li t4, 0x4

li t5, 0x5

li t6, 0x6

li t0, 0x0

lui t1, 0xF4

add t1, t1, 0x240

REPEAT:

 add t0, t0, 1

 INSERT_NOPS_10

 INSERT_NOPS_4

 mul t3, t3, t1

 add t4, t4, t1

 mul t5, t5, t1

 sub t6, t6, t1

 INSERT_NOPS_10

 INSERT_NOPS_3

 bne t0, t1, REPEAT # Repeat the loop

.end

Figure 7. Program with 2 mul instructions and 2 AL instructions

In this program, the processor will send to execution one mul instruction and one AL

instruction per cycle, so the Multiply Pipe as well as the I0 or the I1 Pipe are used. Figure 8
illustrates the simulation of the program from Figure 7 on the 2-way superscalar SweRV EH1
processor. We pick a random iteration of the REPEAT loop (except the first one), given that
all iterations are the same.

Figure 8. Simulation of the program from Figure 7

mul mul

add sub

WAY0

WAY1

EX1 (Multiply
Pipe)

EX1 (I1 Pipe)

Decode

Decode

Writeback

Writeback

Imagination University Programme – RVfpga Lab 17: Superscalar Execution
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

The instructions are received in both ways at decode time (see signals

dec_i0_instr_d[31:0] and dec_i1_instr_d[31:0]) and are sent to the execution

stages in both ways.

- Way 0:

o Signal dec_i0_decode_d is always 1 – for two of the four instructions

analysed in our example (the other two instructions are decoded in Way
1).

o The instruction at the Decode Stage (dec_i0_instr_d[31:0]) is

propagated to the Multiply Pipe (i0_inst_e1[31:0])

- Way 1:

o Signal dec_i1_decode_d is always 1 – for two of the four instructions

analysed in our example (the other two instructions are decoded in Way
1).

o The instruction at DECO (dec_i1_instr_d[31:0]) is propagated to

the I1 Pipe (i1_inst_e1[31:0])

Thus, the ALU from the I1 Pipe and the Multiplier are used (see signals a_ff_e1, b_ff_e1,

and out and signals a_ff, b_ff, and out), and both Register File write ports are used (see

signals waddr, wen, and wd in both ways).

TASK: In the simulation from Figure 8, add trace signals and highlight the instructions as
they go through the pipeline from the Decode to Writeback stages. You can use the .tcl file
provided at: [RVfpgaPath]/RVfpga/Labs/Lab17/TwoAL_TwoMUL_Instructions
/test_taskMuls.tcl.

TASK: Remove all the nop instructions within the body of the loop from Figure 7.

Repeat the simulation from Figure 8. What is the expected IPC for this program?

Execute the program on the board and verify that the IPC obtained is the one that you
expected.

Repeat the same experiments for the single-issue configuration and compare the results.

3. EXERCISES

1) Create programs similar to those in Figure 2 and Figure 7 using combinations of
instructions that show new situations related to dual-issue execution.

2) Analyse the differences between the (dual-issue) SweRV EH1 processor and the

example superscalar processor proposed in Section 7.7.4 of the textbook by S.
Harris and D. Harris, “Digital Design and Computer Architecture: RISC-V Edition”
[DDCARV] (shown in Figure 1 for convenience).

3) Analyse the program from Figure 7.70 in Section 7.7.4 of DDCARV, which is

provided in a PlatformIO project in folder
[RVfpgaPath]/RVfpga/Labs/Lab17/DDCARV_SuperscalarExample. Run the program
on SweRV EH1, both in simulation and on the board (for the latter remove the nop
instructions). Explain the results. If necessary, reorder the program trying to obtain
the optimal IPC.

Imagination University Programme – RVfpga Lab 17: Superscalar Execution
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

 Next, disable the dual-issue execution as explained in this lab – and in

SweRVref.docx (Section 2). Compare the simulation and the results obtained on the
board when compared to when the dual-issue feature is enabled.

4) Modify the program from Exercise 3 substituting instruction add s9, s8, t1 for

instruction add t2, s8, t1. Explain the results. If necessary, reorder the program

to try to obtain the optimal IPC.

 Then disable the dual-issue execution as explained in this lab and in SweRVref.docx

(Section 2). Compare the simulation and the results obtained on the board when
compared to when the dual-issue feature is enabled.

5) (The following exercise is based on exercise 4.31 from the book “Computer

Organization and Design – RISC-V Edition”, by Patterson & Hennessy ([HePa]).)

In this exercise we compare the performance of single- and dual-issue processors,
taking into account program transformations that can be made to optimize for dual-issue
execution. Problems in this exercise refer to the following loop (written in C):

for(i=0;i!=j;i+=2) b[i]=a[i]–a[i+1];

A compiler doing little or no optimization might produce the following RISC-V assembly
code:
 li x12, 0

 li x13, 8000

 li x14, 0

 TOP:

 slli x5, x12, 2

 add x6, x10, x5

 lw x7, 0(x6)

 lw x29, 4(x6)

 sub x30, x7, x29

 add x31, x11, x5

 sw x30, 0(x31)

 addi x12, x12, 2

 ENT: bne x12, x13, TOP

This code uses the following registers:

This code is provided in [RVfpgaPath]/RVfpga/Labs/Lab17/PaHe_SuperscalarExample
with a few minor modifications compared with the code provided by the exercise from the
book that do not affect to the behaviour of the program:

- Register x13 is initialized to 8000, so that the loop will perform 4000 iterations.

- The jal instruction is removed.

- The ld and sd instructions are substituted for lw and sw instructions. This

implies changing the accesses from 4- to 8-bytes wide.

Assume a dual-issue, statically scheduled processor that has the following properties:

Imagination University Programme – RVfpga Lab 17: Superscalar Execution
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

 1. One instruction must be a memory operation; the other must be an arithmetic/logic
instruction or a branch.
 2. The processor has all possible forwarding paths between stages.
 3. The processor has perfect branch prediction.
 4. Two instruction may not issue together if one depends on the other.
 5. If a stall is necessary, both instructions in a stage must stall.

a) Compare the properties of this example processor and the properties of the SweRV

EH1 processor.
b) Draw a pipeline diagram and a simulation showing how a random iteration of the loop

(except the first one) of the RISC-V code given above executes on the dual-issue
SweRV EH1 processor. Assume that the loop exits after four thousand iterations (this
is the case in the above code).

c) What is the speedup of going from a single-issue to a dual-issue SweRV EH1
processor? Explain the results. Test the program on the board and enable/disable
dual-issue execution.

d) Rearrange/rewrite the RISC-V code given above to achieve better performance on
the two-issue SweRV EH1 processor. (However, do not unroll the loop.)

e) Now, unroll the RISC-V code so that each iteration of the unrolled loop handles two
iterations of the original loop. Then, rearrange/rewrite your unrolled code to achieve
better performance on the two-issue SweRV EH1 processor.

6) (The following exercise is based on exercises 7.30, 7.32 and 7.34 from Chapter 7 of
DDCARV.)

Suppose the SweRV EH1 processor is running the following code snippet. Recall that
SweRV EH1 has a Hazard Unit. You may assume a memory system that returns the
result within one cycle (for that purpose we use the DCCM, and we insert the code
snippet into a loop and avoid the first iteration so that there are no I$ misses).

 addi s1, t0, 11 # t0 contains the base address of the DCCM

 lw s2, 25(s1)

 lw s5, 16(s2)

 add s3, s2, s5

 or s4, s3, t4

 and s2, s3, s4

a) Simulate the program with Verilator and GTKWave. Analyse the results and for each
cycle, specify:

 * Which instructions are decoded, issued to execution and commited?
 * Which registers are being written and which are being read?
 * What forwarding and stalls occur?
b) What is the CPI of the processor on this program? First answer theoretically and then

confirm your answer by executing the program on the board.
c) Perform the same analysis on the single-issue processor and compare the results

with the results from the dual-issue processor.

A PlatformIO project is provided at:
[RVfpgaPath]/RVfpga/Labs/Lab17/DDCARV_Exercises-30-32-34. The program under
analysis is inserted in a loop so that it is easier to understand in the simulation (any
iteration but the first one can be used for analysis) and it can be measured using
performance counters.

Imagination University Programme – RVfpga Lab 17: Superscalar Execution
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

7) (The following exercise is based on exercises 7.31, 7.33 and 7.35 from Chapter 7 of
DDCARV.)

Repeat exercise 7 for the following code snippet.

 addi s1, t0, 52

 addi s0, s1, -4

 lw s3, 16(s0)

 sw s3, 20(s0)

 xor s2, s0, s3

 or s2, s2, s3

A PlatformIO project is provided at:
[RVfpgaPath]/RVfpga/Labs/Lab17/DDCARV_Exercises-31-33-35.

