

Imagination University Programme – RVfpga Lab 16: Control Hazards: Branch Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 16

Control Hazards: Branch
Instructions

Imagination University Programme – RVfpga Lab 16: Control Hazards: Branch Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

In this lab, we complete our analysis of hazards. In the past two labs, we studied structural
and data hazards on the SweRV EH1 processor, and we now focus on control hazards. As
explained by S. Harris and D. Harris at “Digital Design and Computer Architecture: RISC-V
Edition” (which we call DDCARV), a control hazard occurs when the decision of what
instruction to fetch next has not been made by the time it needs to be fetched.

NOTE: Before analysing the SweRV EH1 control hazard logic, we recommend reading how

beq instructions are executed and how control hazards are resolved in the pipelined

processor described in Section 7.5 of DDCARV. Specifically, control hazards are discussed
in Section 7.5.3. We also recommend reading Section 7.7.3 about Branch Prediction before
completing Section 3 of this lab.

Control hazards are caused by branch and jump instructions, because these instructions
must calculate which instruction to fetch next. And, for branch instructions, they must also
calculate whether the branch is taken or not. In contrast, for all other instructions, the
instruction to fetch next is at PC + 4.

In some processors, control hazards never occur. For example, control hazards do not occur
in processors where a given instruction executes completely before the next instruction is
fetched. This is true for both the single- or multi-cycle processors in DDCARV. Specifically,
because a branch instruction executes completely, the decisions about whether the branch
is taken and what instruction to fetch next are resolved before the next instruction is fetched.
In contrast, pipeline processors fetch the next instruction before those decisions are
resolved.

One mechanism for dealing with control hazards is to stall the pipeline until the decision of
what instruction to fetch after the branch has been made. Because this decision is made at
the EX1 stage in SweRV EH1 (as we will see in Section 2), the pipeline would have to be
stalled for four cycles at every branch (see Figure 1 in Lab 11 – which shows the pipeline).
This would severely degrade the system performance if branches occur often, which is
typically the case in real programs, thus this solution is not implemented in SweRV EH1.

An alternative is to predict whether the branch will be taken or not and begin fetching
instructions from the predicted path. Once the branch decision is available, the processor
can flush the fetched instructions if the prediction was wrong (in which case a branch
misprediction penalty must be paid), or it can continue execution of the fetched instructions
when the prediction was correct (in which case there is no performance loss). In SweRV
EH1 two branch predictors (BPs) are available, which we analyse in this lab: a naïve Branch
Predictor, which always predicts branches as not taken and thus offers a poor performance
at no hardware cost, and a Gshare Branch Predictor, which offers higher performance at
the cost of extra hardware.

In Section 2, we describe the execution of a beq instruction in SweRV and then perform

some example simulations using the naïve BP (this is the typical scenario assumed in
textbooks such as DDCARV). Then, in Section 3, we explain how control hazards can be
handled more efficiently using the Gshare Branch Predictor that SweRV EH1 implements.

2. EXECUTION OF THE beq INSTRUCTION AND PC CALCULATION

Imagination University Programme – RVfpga Lab 16: Control Hazards: Branch Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

In this section we analyse the execution of a beq instruction in SweRV EH1. First, in

Section 2.A, we explain how beq instructions are executed in the EX1 stage and how the

Fetch Address and the Next Fetch Address are computed in the FC1 stage (this completes
the explanation of the FC1 stage that we started in Section 2.B.i of Lab 11). Although the
figure included (Figure 1) and most of the descriptions are valid for any instruction, we focus

on the execution of a beq instruction on a processor configuration that uses the naïve BP

where branches are always predicted as not taken (as is done in DDCARV or in PaHe).
Then, in Section 2.B, we perform some experiments to exemplify these concepts. Again, for
these experiments, we disable the use of the Branch Predictor and instead use a not taken
prediction for all conditional branches (i.e. what we have called naïve BP).

A. Theoretical explanation

Figure 1 shows the main structures in the FC1 stage that are used to determine the Fetch
Address (which is the value in the Program Counter (PC), defined in DDCARV as a register
that holds the memory address of the current instruction) and the Next Fetch Address
(which is the value used to update the PC at the end of each cycle). The figure also shows

the structures needed to execute a beq instruction in the EX1 stage (most of the hardware

shown is also used in the execution of other branch instructions). As in other labs, the names
of the signals used in the figure are the actual names used in the Verilog modules of the
SweRV EH1 processor.

i. Fetch Address Computation

As shown in Figure 1, the FC1 stage includes two multiplexers: A 2:1 multiplexer that

produces the Fetch Address in ifc_fetch_addr_f1[31:1], and a 5:1 multiplexer that

calculates the Next Fetch Address and puts it into signal fetch_addr_bf[31:1].

- 2:1 multiplexer: produces signal ifc_fetch_address_f1[31:1], the memory

address of the instruction fetched in the current cycle, which, as we analysed in
Figure 3 of Lab 11, is provided to the Memory Controller for reading the 128-bit
instruction bundle from the Instruction Cache. The two inputs to this multiplexer are:

o The branch target address (exu_flush_path_final[31:1]) computed at

the EX1 stage as we will analyse below.

o The Next Fetch Address (ifc_fetch_addr_f1_raw[31:1]), computed

and registered in the previous cycle as the output of the 5:1 multiplexer

included in this stage and analysed below (fetch_addr_bf[31:1]).

The control signal of this multiplexer is called exu_flush_final and it is provided

from the Execute stage. If fetching must occur from the branch target address,

exu_flush_final = 1 and exu_flush_path_final[31:1] is used as the Fetch

Address; otherwise exu_flush_final = 0 and

ifc_fetch_addr_f1_raw[31:1] is used as the Fetch Address.

Note that an analogous 2:1 multiplexer is used in the processors explained in
DDCARV for updating the PC in every cycle.

- 5:1 multiplexer: produces signal fetch_addr_bf[31:1], the address coming

from one of the following five sources:

Imagination University Programme – RVfpga Lab 16: Control Hazards: Branch Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

o The Fetch Address (ifc_fetch_addr_f1), which is used in some cases

when the PC stays the same from one cycle to the next.

o The next sequential address (fetch_addr_next), which is computed as the

Fetch Address (ifc_fetch_addr_f1) + 16, and which points to the next

128-bit bundle.

o The address predicted by the Branch Target Buffer

(ifc_bp_btb_target_f2), which is one of the main structures of the

Branch Predictor, and which is used as the Fetch Address when a branch is
predicted to be taken.

o Two more input signals (miss_addr and exu_flush_path_final) which

correspond to the miss path and the flush path respectively, but that we do
not analyse in this lab.

The signal provided by this multiplexer (fetch_addr_bf[31:1]) is registered and

used in the next cycle as an input to the 2:1 multiplexer analysed above.

Note that this 5:1 multiplexer does not exist in the processors from DDCARV, which
have simpler designs.

ii. Execution of the beq Instruction

A conditional branch must calculate the branch target address and test if the condition is
met. Specifically, in the case of SweRV EH1 (see Figure 1):

- Branch Target Address computation: a new adder is used in EX1 for computing

the branch target address and placing it into signal flush_path[31:1]. This signal

is provided as an input to the 2:1 multiplexer in FC1

(exu_flush_path_final[31:1]) through some logic and registers.

- Condition resolution: a new module is used in EX1, inside the exu_alu_ctl module,

for checking if the two operands are equal (eq = 1) or not (eq = 0). Based on the eq

signal (and some other signals, such as ap.beq, which you will analyse in a

proposed task), signals flush_upper and exu_flush_final are computed and

provided to the FC1 stage, where the latter is used as the control signal of the 2:1

multiplexer. This control signal (exu_flush_final) is 1 when the branch was

mispredicted and 0 otherwise.

Specifically, in the case of a beq instruction and assuming the use of the naïve BP

explained above where all branches are predicted as not taken, if the two operands of the
branch are not equal then the branch must not be taken and the prediction is correct:

exu_flush_final = flush_upper = eq = 0. In this case, the processor can continue

fetching and executing instructions sequentially and there is no performance loss. We will
analyse this situation in Section 2.B.i.

In contrast, if the two operands are equal, the branch must be taken and, in the case of the

naïve BP that predicts not taken, a misprediction occurred: exu_flush_final =

flush_upper = eq = 1. In this case, as we will explain in Section 2.B.ii, the following

actions are triggered in the SweRV EH1 pipeline (see Figure 1).

Imagination University Programme – RVfpga Lab 16: Control Hazards: Branch Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

- When exu_flush_final = 1, the instruction fetch is redirected to the target

address of the branch, by selecting input 1 of the 2:1 multiplexer in FC1

(ifc_fetch_addr_f1[31:1] = exu_flush_path_final[31:1]), which

contains the branch target address computed in the EX1 stage as explained above.

- The pipeline stages preceding EX1 are flushed. For that purpose, several signals

(exu_flush_final, exu_flush_upper_e2, exu_i0_flush_final and

exu_i1_flush_final) are provided to previous stages (the use of these signals is

not specified in Figure 1).

TASK: Examine the processor elements included in Figure 1 in the Verilog code and
explain how they work.
- The elements shown in the Decode stage (Register File, Instruction Register and

Control Unit) can be found in modules dec, dec_decode_ctl and dec_gpr_ctl.
- The elements shown in the EX1 stage can be found in modules exu and exu_alu_ctl.
- The elements shown in the FC1 stage can be found in modules ifu and ifu_ifc_ctl.

TASK: Explain how signal flush_upper is generated in module exu_alu_ctl from signal

eq, control signals ap.beq, ap.predict_t and ap.predict_nt, and some other

signals.

TASK: Analyse in the Verilog code the effect of signals exu_flush_final,

exu_flush_upper_e2, exu_i0_flush_final and exu_i1_flush_final in EX1 and

in the stages preceding it: FC1, FC2, Align, and Decode. For this analysis, it can be useful
to use the simulations from Section 2.B, where you can include the signals that you need.

Imagination University Programme – RVfpga Lab 16: Control Hazards: Branch Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

==

DECODE

In
s

tr
u

c
ti

o
n

 R
e

g
is

te
r

(d
e
c
_
i
0
_
i
n
s
t
r
_
d

)

raddr0

raddr1

CONTROL

UNIT

a

b

eq

EX1

REGISTER

FILE

rd0

rd1

ap.beq

flush_upper

FC1

ifu_mem_ctl

pc_ff [31:1]

brimm_ff [12:1]

LOGIC

flush_path [31:1]

exu_flush_path_final [31:1]

ibradder

+

FC2 ALN

ifc_fetch_addr_f1 [31:1] (PC)
1

0
ifc_fetch_addr_f1_raw [31:1]

LOGIC

LOGIC

+
16

fe
tc

h
_

a
d

d
r_

b
f
[3

1
:1

]
(N

e
x

t
P

C
)

5-1 Mux

exu_flush_final

2-1 Mux
aff

a_ff

bff
b_ff

pcff
pc [31:1]

MUX

MUX

fetch_addr_next [31:1]

ifu_bp_btb_target_f2 [31:1]

miss_addr [31:1]

exu_flush_path_final [31:1]

faddrf1
_ff

i0_ap

Figure 1. High-level view of the beq instruction executing through SweRV EH1

Imagination University Programme – RVfpga Lab 16: Control Hazards: Branch Instructions
Version 2.0 – 30th October 2021
© Copyright Imagination Technologies

B. Experiments

Now that we have described the main concepts in the execution of a beq instruction in EX1

and the computation of the Fetch Address and Next Fetch Address in FC1, we now show
some simulations to solidify these concepts.

Throughout this section we work with the example shown in Figure 2, which executes a loop

that repeats for 0xFFFF iterations (i.e. 65,535 in decimal) and which contains two beq

instructions: the first beq will always be not taken (except in the last iteration of the loop)

and the second one will always be taken. As usual, the instructions that we want to analyse

(in this case the beq instructions, highlighted in red) are surrounded by several nops in

order to isolate them from preceding and subsequent instructions. Folder
[RVfpgaPath]/RVfpga/Labs/Lab16/BEQ_Instruction provides the PlatformIO project that you
can analyse, simulate, and modify as desired.

Test_Assembly:

li t2, 0x008 # Disable Branch Predictor

csrrs t1, 0x7F9, t2

li t3, 0xFFFF

li t4, 0x1

li t5, 0x0

li t6, 0x0

LOOP:

 add t5, t5, 1

 INSERT_NOPS_7

 beq t3, t4, OUT

 INSERT_NOPS_7

 add t4, t4, 1

 INSERT_NOPS_7

 beq t3, t3, LOOP

 INSERT_NOPS_7

OUT:

INSERT_NOPS_8

.end

Figure 2. Program including beq instructions

In our experiments we disable the use of compressed instructions. Moreover, as we
mentioned above, in this section the Gshare Branch Predictor available in SweRV EH1 is
disabled and branches are always predicted to be not taken (naïve BP). This is done by
including two instructions that allow the user to configure the processor during execution. As
described in Appendix B of Lab 11, you must include the following two instructions in your
code to disable the Branch Predictor and instead use a not taken prediction for every branch.

 li t2, 0x008

csrrs t1, 0x7F9, t2

In this configuration, the first branch in the program (Figure 2) will always be correctly
predicted (except in the last iteration of the loop, which we will not analyse here) and the
second branch will always be mispredicted, which will cause a flush of the four preceding

stages and an execution redirection. We will next analyse the execution of the two beq

instructions.

i. Execution of the first branch: beq t3, t4, OUT

Imagination University Programme – RVfpga Lab …
Version 2.0 – 30th October 2021
© Copyright Imagination Technologies 8

In this section we analyse the execution of the first branch instruction from Figure 2, which is
always predicted correctly (except in the last iteration of the loop, which we don’t analyse
here). Open the project in PlatformIO, build it, and open the disassembly file (available at
[RVfpgaPath]/RVfpga/Labs/Lab16/BEQ_Instruction/.pio/build/swervolf_nexys/firmware.dis).

Notice that the first beq instruction is placed at address 0x000001a8:
0x000001a8: 07de0063 beq t3,t4,208 <OUT>

We next simulate the program from Figure 2 in Verilator as explained in the GSG and then
open the trace file generated by the simulator on GTKWave. Figure 3 zooms into a random
iteration of the loop (the first iteration should be avoided, as it contains I$ misses which make
it more difficult to analyse, as well as the last iteration, which misses the prediction) and

focuses on the execution of the first beq instruction.

Most of the signals included in the figure are the ones that we showed in the diagram from
Figure 1. However, you must take into account that those signals containing instruction

addresses (marked with a suffix _ext) have been extended for the simulation with 1 bit to

the right equal to 0 for the sake of clarity (note that the original non-extended signals in the
Verilog code do not include the least significate bit as it is always 0); specifically:

 Verilog code: exu_flush_path_final[31:1]  Simulation: exu_flush_path_final_ext[31:0]

 Verilog code: ifc_fetch_addr_f1_raw[31:1]  Simulation: ifc_fetch_addr_f1_raw_ext[31:0]

 Verilog code: ifc_fetch_addr_f1[31:1]  Simulation: ifc_fetch_addr_f1_ext[31:0]

 Verilog code: pc_ff[31:1]  Simulation: pc_ff_ext[31:0]

 Verilog code: brim_ff[12:1]  Simulation: brim_ff_ext[12:0]

 Verilog code: flush_path[31:1]  Simulation: flush_path_ext[31:0]

File test_1.tcl is provided with the project. To use it in GTKWave, click on File → Read Tcl
Script File, and open the [RVfpgaPath]/RVfpga/Labs/Lab13/BEQ_Instruction/test_1.tcl file.

Then, click on Zoom In () several times and move to any iteration of the loop, except the

first or the last one. You will see the execution of the two beq instructions; Figure 3 shows

what you should observe for the first branch instruction.

Imagination University Programme – RVfpga Lab …
Version 2.0 – 30th October 2021
© Copyright Imagination Technologies 9

Figure 3. Verilator simulation for the execution of the first beq in Figure 2

Analyse the waveform from Figure 3 and the diagram from Figure 1 at the same time. Figure

3 shows three consecutive cycles: Decode of the beq (cycle i), EX1 of the beq (cycle i+1),

and selection of the next PC at FC1 after resolving the beq (cycle i+2).

- Cycle i - Decode stage for the beq instruction: Signal dec_i0_pc_d_ext

contains the address of the instruction in the Decode stage (in Way 0), which for the

first beq is 0x000001A8, and signal dec_i0_instr_d (usually called the Instruction

Register (IR) in textbooks) contains the 32-bit machine instruction, which for the first

beq is 0x07DE0063 (in binary: 0000 0111 1101 1110 0000 0000 0110 0011).

In RISC-V, the opcode for the beq instruction is (see Appendix B of [DDCARV]):
imm12,10:5 | rs2 | rs1 | 000 | imm4:1,11 | 1100011

so you can verify that 0x07DE0063 corresponds to: beq t3,t4,OUT (imm12:0 =

0x060). Recall that the immediate gives the offset from the current PC of the target

address. The target address (indicated by label “OUT:”) is 24 instructions (i.e., 7 nops
+ 1 add + 7 nops + 1 beq + 7 nops + 1 nop = 24 instructions) past the current PC

(i.e., beq t3,t4,OUT). This is 24*4 = 96 (0x60) bytes past the current PC.

During this stage, the pipeline control signals are generated. For the first beq

instruction, the following bits of i0_ap (which for this instruction is equal to 0x81084

– see SweRVref.docx) are set:

o valid: indicates it is a valid instruction that uses the ALU.

o beq: indicates it is a branch if equal instruction.

o sub: indicates that the ALU must perform subtraction. Some branch

instructions use the result of the subtraction for computing the

FC1

2-1 MUX

DECODE

EX1

i i+1 i+2

beq t3,t4,OUT

Imagination University Programme – RVfpga Lab …
Version 2.0 – 30th October 2021
© Copyright Imagination Technologies 10

comparison (however, this is not the case for beq, as we will

show).

o predict_nt: indicates that the branch is predicted as not taken.

Moreover, the Register File is read and the branch instruction is routed to the I0

Pipe. Signals a and b (0xFFFF and 0xC4, respectively, in this example) contain the

inputs to the comparator used in the next stage, which in this case coincide with the
values read from the Register File (in other cases, the operands could be provided
through forwarding, as analysed in Lab 15).

- Cycle i+1 - EX1 stage for the beq instruction: In the next cycle, the beq

instruction is executed. Signals a_ff and b_ff are compared. Given that the two

numbers (0xFFFF and 0xC4) are different the branch is not taken. As described
before, in this configuration all branches are predicted not taken

(i0_ap.predict_nt = 1). Thus, the branch has not been mispredicted

(flush_upper = 0) and execution can continue as it is.

- Cycle i+2 - FC1 stage: In the next cycle, given that the branch was predicted and

resolved as not taken, fetching simply continues sequentially. In

- Figure 3, notice that exu_flush_final = 0 and

ifc_fetch_addr_f1_ext[31:0] = ifc_fetch_addr_f1_raw_ext[31:0] =

0x000001F0. This address points to the next sequential 128-bit bundle of
instructions. You can see that in the previous two cycles the previous 128-bit bundle

of instructions was fetched (ifc_fetch_addr_f1_ext[31:0] = 0x000001E0).

TASK: Modify Figure 1 to include the values of each signal shown in Figure 3 in cycles i,
i+1, and i+2.

TASK: Modify the program from Figure 2 to make the first branch instruction retrieve its
input operands through forwarding.

ii. Execution of the second branch: beq t3, t3, OUT

Now we analyse the second branch, which is always taken but mispredicted as not taken.
Open the disassembly file (available at
[RVfpgaPath]/RVfpga/Labs/Lab16/BEQ_Instruction/.pio/build/swervolf_nexys/firmware.dis).

Notice that the second beq instruction is placed at address 0x000001E8:
0x000001e8: fbce00e3 beq t3,t3,188 <LOOP>

Figure 4 shows signals during a random iteration of the loop (but not the first iteration –
which we avoid due to instruction cache (I$) misses).

Imagination University Programme – RVfpga Lab …
Version 2.0 – 30th October 2021
© Copyright Imagination Technologies 11

Figure 4. Verilator simulation for the second branch in the example from Figure 2

Analyse the waveform from Figure 4 and the diagram from Figure 1 at the same time. The

values highlighted in red show three consecutive cycles during execution of the second beq

instruction: Decode of the beq (cycle i), EX1 of the beq (cycle i+1), and selection of the next

PC at FC1 after resolving the beq (cycle i+2).

- Cycle i - Decode stage for the beq instruction: The PC (signal

dec_i0_pc_d_ext) is 0x000001E8, and the instruction (signal dec_i0_instr_d)

is 0xFBCE00E3 (in binary: 1111 1011 1100 1110 0000 0000 1110 0011).

In RISC-V, the opcode for the beq instruction is (see Appendix B of [DDCARV]):
imm12,10:5 | rs2 | rs1 | 000 | imm4:1,11 | 1100011

So you can verify that 0xFBCE00E3 corresponds to: beq t3,t3,LOOP

(Immediate12:0 = 0x1FA0). Recall that the immediate gives the offset from the

current PC of the target address. The target address (indicated by label “LOOP:”) is
24 instructions (i.e., 7 nops + 1 add + 7 nops + 1 beq + 7 nops + 1 add = 24

instructions) before the current PC (i.e., beq t3,t3,LOOP). This is 24*4 = 96 bytes

before the current PC. So, the immediate encodes -96, which is 0x1FA0, written in
13-bit two’s complement representation.

During this stage the pipeline control signals are generated. For this beq

instruction, the control signals are the same as for the first beq (see previous

section).

Moreover, the Register File is read and the branch instruction is routed to the I0

Pipe. Signals a and b (0xFFFF for both of them) contain the inputs to the comparator

DECODE

EX1

i i+1 i+2

beq t3,t3,LOOP

FC1

2-1 MUX

Imagination University Programme – RVfpga Lab …
Version 2.0 – 30th October 2021
© Copyright Imagination Technologies 12

used in the next stage, which in this case are the values read from the Register File.

- Cycle i+1 - EX1 stage for the beq instruction: In the next cycle, the beq

instruction is executed. On the one side, signals a_ff and b_ff are compared.

Given that the two values are equal the branch must be taken. However, as
explained before, in our configuration all branches are predicted not taken

(i0_ap.predict_nt = 1). Thus, the branch has been mispredicted (flush_upper

= 1). So instructions must be fetched from the branch target address, and the initial
pipeline stages must be flushed.

In this stage, the target address is computed as the addition between pc_ff_ext

(0x1E8) and brim_ff_ext (0x1FA0). The result is placed into signal

flush_path_ext (0x00000188).

- Cycle i+2 - FC1 stage: In the next cycle, execution must continue at the branch

target address. In Figure 4 you can see that exu_flush_final = 1 and

ifc_fetch_addr_f1_ext = exu_flush_path_final_ext = 0x00000188. This

address corresponds to the branch target address, which is the address of the first
instruction of the loop (note that this is a backward branch).

TASK: Modify Figure 1 to include the values of each signal shown in Figure 4 in cycles i,
i+1, and i+2.

TASK: Analyse the operation of the two multiplexers from FC1 with the example from
Figure 2, examining the signals under different circumstances.

For example, analyse how fetch is accomplished for sequential execution (i.e. a group of
instructions with no branches). You will see that, in the SweRV EH1 processor, the
operation in this case is as follows:

 - In the even cycles, the fetch_addr_next is selected using the 5:1 multiplexer, which

contains the current Fetch Address (ifc_fetch_addr_f1) plus 16, thus reading the next

sequential 128-bit bundle of instructions (remember that an I$ read provides 128 bits).

 - In the odd cycles, the ifc_fetch_addr_f1 is selected using the 5:1 multiplexer, thus

no new instructions are fetched.
This way, four 32-bit instructions are fetched every 2 cycles, which is the same rate of
instructions needed by the Decode stage (2 instructions per cycle).
Note that in the processors from DDCARV the PC is simply incremented by four in every
cycle (for sequential execution) to fetch one instruction per cycle.

Also modify the program from Figure 2 to create new scenarios. For example, you can add
some A-L instructions after the taken branch and see how they are flushed after the
redirection.

TASK: In Lab 15, we analysed how RAW data hazards are resolved in the Commit stage
by means of the Secondary ALUs. Similar to the A-L instructions that we studied in that lab,
a conditional branch instruction can have a RAW data hazard with a previous multi-cycle
operation that must be resolved at commit time. If the branch is determined to have been
mispredicted, the pipeline must be flushed and redirected from the Commit stage. Analyse
this situation using a slightly modified version of the program from Figure 2, provided at

Imagination University Programme – RVfpga Lab …
Version 2.0 – 30th October 2021
© Copyright Imagination Technologies 13

[RVfpgaPath]/RVfpga/Labs/Lab16/BEQ_Instruction_HazardCommit, and the .tcl file
provided in that same folder.

3. The Gshare Branch Predictor used by SweRV EH1

In Section 2, we discussed the SweRV EH1 configuration that includes only a naïve branch
predictor that always predicts not taken, but in this section we analyse the operation of the
Gshare Branch Predictor available in SweRV EH1. The Gshare BP performs a more
intelligent prediction for each branch instruction, which improves performance but requires
extra hardware. Before we describe how the Gshare BP works in SweRV EH1, we compare
the performance of the two BPs.

TASK: In the example from Figure 2, remove all the nop instructions and analyse the

simulation. Then compute the IPC with the Performance Counters by executing the
program on the board.

Enable the branch predictor used in SweRV EH1 (by commenting out the two initial
instructions in Figure 2) and analyse the simulation and the execution on the board.

Compare the two experiments and explain the results.

NOTE: A classic paper published by Scott McFarling in 1993 is called “Combining Branch
Predictors” (https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf). It
describes, in Section 7, the operation of the Gshare branch predictor. You can also search
for other documents, such as
https://people.engr.ncsu.edu/efg/521/f02/common/lectures/notes/lec16.pdf. We recommend
reading them to understand how the Gshare BP works before beginning this section.

Figure 5 shows a simplified view of the Gshare BP available in SweRV EH1. All the BP
structures are implemented inside module ifu_bp_ctl (in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/ifu/ifu_bp_ctl.sv). The
structures related to the Gshare BP are surrounded by a blue square in the figure.

This BP is made up by the Branch History Table (BHT), which predicts the direction of the
branch (taken or not taken), and the Branch Target Buffer (BTB), which predicts the target
address in the case of taken branches. In our default configuration, the BHT contains 128 2-
bit entries. You can find it in lines 1615-1705 of module ifu_bp_ctl. In our default
configuration, the BTB contains 32 13-bit entries. You can find it in lines 1439-1613 of
module ifu_bp_ctl.

To make a branch prediction, the following occurs in every cycle (see Figure 5):

1. The Fetch Address (ifc_fetch_addr_f1 [31:1]) and some other signals are

passed through several hashing modules inside module ifu_bp_ctl: f1hash,

rdtagf1, fghrhs… All these hashing modules are implemented in file

[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/beh/beh_lib.sv,
using some of the macros defined at
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/common_
defines.vh.

As an example, you can see that the fghrhs module receives signal

https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-36.pdf
https://people.engr.ncsu.edu/efg/521/f02/common/lectures/notes/lec16.pdf

Imagination University Programme – RVfpga Lab …
Version 2.0 – 30th October 2021
© Copyright Imagination Technologies 14

btb_rd_addr_f1, which comes from a hashing of the Fetch Address

(f1hash(.pc(ifc_fetch_addr_f1[31:1]),

.hash(btb_rd_addr_f1[`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO]))) and fghr_ns

(which is the Global History Register), and outputs signal

bht_rd_addr_hashed_f1.

This signal is used to access the BHT table of the Gshare Branch Predictor.

TASK: Analyse all these hashing modules and try to get an idea of how they work
and how they are used in the Gshare BP structures.

2. All these hashed signals (btb_rd_addr_f1, bht_rd_addr_hashed_f1,

fetch_rd_tag_f1, etc.) are used for accessing the two main structures that make

up the Gshare BP: the BHT and the BTB.

TASK: Analyse how the access to these two structures is performed.

3. As a result of the access to the BHT, a direction prediction is obtained in signal

ifu_bp_kill_next_f2, which is 0 if the branch is predicted not taken and 1 if it is

predicted taken. This signal is used, in addition with other signals that we do not
describe here, to compute the control signal of the 5:1 multiplexer from FC1.

TASK: Analyse how the select signal of the 5:1 multiplexer is computed.

4. As a result of the access to the BTB, the predicted target address for taken branches

is obtained from an adder in signal ifu_bp_btb_target_f2 [31:1]. (Note that

the predicted address can also come from the Return Address Stack (RAS) in case a

ret instruction is predicted.) This signal is one of the inputs of the 5:1 multiplexer

from FC1.

TASK: Analyse how the predicted target address (ifu_bp_btb_target_f2) is

obtained from the value read in the BTB (btb_rd_tgt_f2[11:0]) and the Fetch

Address at FC2 (ifc_fetch_addr_f2[31:4]).

TASK: Analyse the RAS implemented in the SweRV EH1 processor. An internet
search will also give additional information about the operation of this structure (for
example, http://www-classes.usc.edu/engr/ee-
s/457/EE457_Classnotes/ee457_Branch_Prediction/EE560_05_Ras_Just_FYI.pdf).

5. In the 5:1 multiplexer from FC1, if ifu_bp_kill_next_f2 = 1, then the predicted

target address is used as the Next Fetch Address: fetch_addr_bf [31:1] =

ifu_bp_btb_target_f2 [31:1] (unless the pipeline is being flushed). Instead, if

ifu_bp_kill_next_f2 = 0, one of the other four inputs are used as the Next

Fetch Address.

http://www-classes.usc.edu/engr/ee-s/457/EE457_Classnotes/ee457_Branch_Prediction/EE560_05_Ras_Just_FYI.pdf
http://www-classes.usc.edu/engr/ee-s/457/EE457_Classnotes/ee457_Branch_Prediction/EE560_05_Ras_Just_FYI.pdf

Imagination University Programme – RVfpga Lab 16: Control Hazards: Branch Instructions
Version 2.0 – 30th October 2021
© Copyright Imagination Technologies

FC1

ifu_mem_ctl

exu_flush_path_final [31:1]

FC2

ifc_fetch_addr_f1 [31:1] (PC)
1

0
ifc_fetch_addr_f1_raw [31:1]

+
16

fetch_addr_bf [31:1]

(Next PC)

5-1 Mux
2-1 Mux

fetch_addr_next [31:1]

ifu_bp_btb_target_f2 [31:1]

miss_addr [31:1]

exu_flush_path_final [31:1]

faddrf1
_ff

ifu_bp_btb_target_f2 [31:1]

fghr_ns [4:0] (Global History)

LOGIC

ifu_bp_kill_next_f2Branch History

Table (BHT)

Branch Target

Buffer (BTB)

+

Hashing

modules

faddrf2
_ff

LOGIC

2-1 Mux

From Return

Address Stack

offset [11:0]

pc [31:1]

predtgt_addr

dout [31:1]

Figure 5. Main structures (surrounded by a blue square) that make up the Gshare Branch Predictor available in SweRV EH1

Imagination University Programme – RVfpga Lab 16: Control Hazards: Branch Instructions
Version 2.0 – 30th October 2021
© Copyright Imagination Technologies

Throughout this section, we continue working with the example code in Figure 2. The only
difference in this section is that we enable the Gshare Branch Predictor by substituting the
two instructions that disable the Gshare BP with two nop instructions (the reason for
inserting two nops is to maintain the same instruction addresses as in the previous section).

We now analyse the execution of the second branch instruction in the program, as done in

Section 2.B.ii. Remember that the second beq instruction is placed at address 0x000001E8

in our program, which means that it is contained within the 128-bit bundle mapped in the
address range 0x1E0-0x1EF:

0x000001e8: fbce00e3 beq t3,t3,188 <LOOP>

Figure 6 zooms into a random iteration of the loop. As usual, the first iteration is avoided, as
it contains I$ misses – additionally, the branch prediction misses for this branch instruction in
its first iteration. Most of the signals included in the figure are the ones that we showed in
Figure 5. File test_1_BP.tcl is provided with the project. For using it in GTKWave, click on
File → Read Tcl Script File, and open the
[RVfpgaPath]/RVfpga/Labs/Lab16/BEQ_Instruction/test_1_BP.tcl file. Then, click on Zoom In

() several times and move to any iteration of the loop, except the first one. You will see

the execution of the two beq instructions; Figure 6 shows what you should observe for the

second branch instruction.

Figure 6. Verilator simulation for the example from Figure 2

Analyse the waveform from Figure 6 and the diagram from Figure 5 at the same time. The

values highlighted in red correspond to the second beq instruction as it traverses the

pipeline stages.

- Cycle i: The address of the bundle that contains the second branch is provided to the

Instruction Cache: ifc_fetch_addr_f1_ext = 0x000001E0. The Branch Target

Buffer (BTB) is read using this address.

- Cycle i+2: A hit takes place in the BTB: wayhit_f2 = 0x20 (this signal, which is not

included in Figure 5, indicates a hit when it is non-zero). The address of the branch

(pc_ext = 0x000001E8) is added to the offset provided by the BTB (offset_ext =

0x1FA0, which is a negative value), which results in the predicted target address

(ifu_bp_btb_target_f2_ext = 0x00000188). Given that the branch is predicted

taken by the BHT (ifu_bp_kill_next_f2 = 1), it is used as the Next Fetch PC

(fetch_addr_bf_ext = 0x00000188).

i i+2 i+7 i+8 i+9 i+3

Imagination University Programme – RVfpga Lab …
Version 2.0 – 30th October 2021
© Copyright Imagination Technologies 17

- Cycle i+3: The Fetch Address is the predicted target address of the branch, which

was computed in the previous cycle: ifc_fetch_addr_f1_ext = 0x00000188.

- Cycle i+7: The branch is decoded in Way 1 (dec_i1_instr_d = 0xFBCE00E3).

- Cycle i+8: The branch executes. The prediction was correct, so no flush needs to be

triggered (flush_upper = 0).

- Cycle i+9: Execution continues normally through the branch target address given

that the prediction was correct.

TASK: Explain how the Global History Register is updated at module ifu_bp_ctl.

4. EXERCISES

1) Implement a Bimodal Branch Predictor and compare its performance to the Gshare
BP.

2) (The following exercise is based on exercise 4.25 from the book “Computer

Organization and Design – RISC-V Edition”, by Patterson & Hennessy ([HePa]).)
 Consider the following loop:
 LOOP: lw x10, 0(x13)

 lw x11, 4(x13)

 add x12, x10, x11

 add x13, x13, -8

 bnez x12, LOOP

Assume that perfect branch prediction is used (in the case of SweRV EH1, we can
emulate this behaviour by simply avoiding the first iteration), that the pipeline has full
forwarding support (again, this is the case in SweRV EH1), and that branches are
resolved in the EX1 stage.

a. Show a simulation for the second and third iterations of this loop. Explain the
behaviour obtained. You can use the program provided at
[RVfpgaPath]/RVfpga/Labs/Lab16/HePa_Exercise-4-25.

