

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

TASKS

TASK: Verify that these 32 bits (0x01de0e33) correspond to instruction add t3,t3,t4 in the RISC-V architecture.

0x01de0e33  0000000 11101 11100 000 11100 0110011

funct7 = 0000000
rs2 = 11101 = x29 (t4)
rs1 = 11100 = x28 (t3)
funct3 = 000
rd = 11100 = x28 (t3)
op = 0110011

From Appendix B of DDCARV:

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

TASK: Replicate the simulation from Figure 3 on your own computer. To do so, follow the next steps (as described in detail in Section 7 of
the GSG):
- If necessary, generate the simulation binary (Vrvfpgasim).
- In PlatformIO, open the project provided at: [RVfpgaPath]/RVfpga/Labs/Lab12/ADD_Instruction.
- Establish the correct path to the RVfpga simulation binary (Vrvfpgasim) in file platformio.ini.
- Generate the simulation trace with Verilator (Generate Trace).
- Open the trace on GTKWave.
- Use file test_1.tcl (provided at [RVfpgaPath]/RVfpga/Labs/Lab12/ADD_Instruction/) for opening the same signals as the ones shown in

Figure 3. For that purpose, on GTKWave, click on File – Read Tcl Script File and select the test_1.tcl file.

- Click on Zoom In () several times and move to 15000ps.

Solution provided in the main document of Lab 12.

TASK: Locate the main structures and signals from Figure 6 in the Verilog files of the SweRV EH1 processor.

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

- Control Unit in module dec_decode_ctl

- Register file:

o Instantiation in line 525 of module dec.
o Implementation in module dec_gpr_ctl.

- 3:1 muxes in Decode stage: Line 279 of module exu.

- Pipeline Registers for Control Signals: Distributed in several modules.

- Registers aff and bff: Lines 90 and 92 of module exu_alu_ctl.

- I0 ALU at EX1:

o Instantiation in line 401 of module exu.
o Implementation in module exu_alu_ctl.

- Pipeline registers with the result of the operation (i0e2resultff, i0e3resultff, i0e4resultff, i0wbresultff): Lines 2260-2283 of module

dec_decode_ctl.

- 3:1 mux in EX3 stage: Line 2268 of module dec_decode_ctl.

- 3:1 mux in EX4 stage: Line 2277 of module dec_decode_ctl.

- 2:1 mux in Writeback stage: Line 2286 of module dec_decode_ctl.

TASK: Find in the Verilog code (module dec_decode_ctl) how the i0r control signal is used for reading the Register File.

- The register identifiers are obtained from the 32-bit instruction in Way-0: signal i0[31:0] = dec_i0_instr_d[31:0].

In an R-Type instruction they are located in the following fields:

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

In module dec_decode_ctl:

- The register identifiers and read enable signals are assigned to dec_i0_rs1_d/dec_i0_rs2_d and dec_i0_rs1_en_d/

dec_i0_rs2_en_d.

These signals are sent from module dec to module dec_decode_ctl. In module dec_decode_ctl:

- The register identifiers and read enable signals are provided to the Register File, which is instantiated in module dec. In module
dec:

TASK: Find in the Verilog code (module exu) how the i0_ap and the dd control signals are propagated from the Decode Stage to

the Execution Stage. Also, find how the dd control signal is used by the Register File at the Write-Back Stage, after traversing all the

stages from Decode to Writeback.

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

Signal i0_ap is obtained in module dec_decode_ctl. It is provided to module exu, where it is propagated to EX1, EX2, EX3 and Commit

(EX4). In module exu:

Signal dd is obtained in module dec_decode_ctl and propagated to EX1, EX2, EX3, Commit (EX4) and WB (EX5). In module

dec_decode_ctl:

Note that the output of each register is slightly modified (and thus renamed) before going into the next register. You can look at the Verilog
code if you want to check the details.

The register identifier for the output operand is assigned at Decode Stage:

Signal dd is propagated from Decode to Writeback as shown above: dd  e1d  e2d  e3d  e4d  wbd. Then the destination

register is provided to the Register File at the Writeback stage:

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

TASK: The generation of these two signals (i0_e1_ctl_en and dec_i0_alu_decode_d) is quite a complex process that we do

not explain here in detail but that you can further analyse on your own in modules dec_decode_ctl and exu.

Solution not provided.

TASK: Find in the Verilog code (module exu) the 3:1 multiplexer on the bottom (second input operand) and try to find the origin of its
inputs (in Figure 6 only the input coming from the Register File is shown). You do not need to look into the inputs too closely, as they
will be analysed in the exercises proposed in Section 3 and in future labs.

These 3:1 muxes receive 3 inputs:

- One from the register file (gpr_i0_rs2_d)

- One from the 32-bit instruction register, which constitutes the immediate (dec_i0_immed_d)

- One from the bypass logic, that we analyse in Lab 15 (i0_rs2_bypass_data_d)

TASK: Replicate the simulation from Figure 7 on your own computer. You can use the .tcl script provided at:
[RVfpgaPath]/RVfpga/Labs/Lab12/ADD_Instruction/test_2.tcl. Note that aliases are used in this .tcl file for some of the control bits.

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

Solution provided in the main document of Lab 12.

TASK: In the example from Figure 2, replace the add instruction with a non A-L instruction (such as a mul instruction). Verify that the

i0_ap signal has all its fields equal to 0 and that this makes the I0 ALU not work (you will see that signals a_ff and b_ff for the I0 Pipe

at the EX1 Stage remain stable for this instruction). You can use the same test_2.tcl file used in the example from Figure 7.

For example, the simulation of mul t3, t3, t4 (0x03de0e33) provides the following results:

TASK: Include the new signals analysed in this section in the simulation from Figure 7.

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

Solution not provided.

TASK: Perform a simulation of a sub instruction similar to the one from Figure 7. Remember that you can include new signals in the

simulation through the .tcl file.

For example, the simulation of sub t3, t3, t4 (0x41de0e33) provides the following results:

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

TASK: Analyse the Verilog implementation of the adder/subtractor implemented in module exu_alu_ctl. Figure 8 gives you some help by
showing the logic directly related with addition and subtraction operations.

The input operands are propagated from the Decode Stage (a and b) to the Execution Stage (a_ff and b_ff).

This is the adder/subtractor.

- If the instruction is an addition, aout = a_ff + b_ff
- If the instruction is a subtraction, b_ff is first two’s complemented and then a_out is computed.

If the instruction is an addition or a subtraction, then out = aout.

TASK: Verify in the simulation that this multiplexer selects the result from the expected Pipe for the add instruction, for the example from

Figure 2.

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

TASK: Verify in the simulation that this multiplexer selects the result from the proper input source (i0_result_e4) for the add instruction

of our example from Figure 2.

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

TASK: In the Verilog code, analyse how signals wen0 and waddr0 are generated in the Decode stage and propagated to the Writeback

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

stage.

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 13

EXERCISES

1) Perform a similar analysis to the one presented in this lab for logical instructions (and, or, xor).

The following example, provided at [RVfpgaPath]/RVfpga/Labs/RVfpgaLabsSolutions/Programs_Solutions/Lab12/AND_Instruction,

illustrates the execution of an and instruction contained within a loop that repeats forever. As in the example for the add instruction, the

and instruction (highlighted in red) is surrounded by several nop instructions. Two instructions are included at the end of the loop for

modifying the values stored in t3 and t4.

#define INSERT_NOPS_1 nop;

#define INSERT_NOPS_2 nop; INSERT_NOPS_1

#define INSERT_NOPS_3 nop; INSERT_NOPS_2

#define INSERT_NOPS_4 nop; INSERT_NOPS_3

#define INSERT_NOPS_5 nop; INSERT_NOPS_4

#define INSERT_NOPS_6 nop; INSERT_NOPS_5

#define INSERT_NOPS_7 nop; INSERT_NOPS_6

#define INSERT_NOPS_8 nop; INSERT_NOPS_7

#define INSERT_NOPS_9 nop; INSERT_NOPS_8

#define INSERT_NOPS_10 nop; INSERT_NOPS_9

.globl main

main:

li t3, 0xFC # t3 = 0xFC

li t4, 0x7 # t4 = 0x7

REPEAT:

 INSERT_NOPS_10

 and t3, t3, t4 # t3 = t3 & t4

 INSERT_NOPS_10

 li t3, 0xFC # t3 = 0xFC

 add t4, t4, t4

 beq zero, zero, REPEAT # Repeat the loop

.end

If you open the project in PlatformIO, build it, and open the disassembly file (available at
[RVfpgaPath]/RVfpga/Labs/RVfpgaLabsSolutions/Programs_Solutions/Lab12/AND_Instruction/.pio/build/swervolf_nexys/firmware.dis) you

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

will see that the and instruction is placed at address 0x00000108, and you can also see the machine code for the instruction

(0x01de7e33):
 0x00000108: 01de7e33 and t3,t3,t4

We next simulate the program in Verilator and then open the trace file generated by the simulator on GTKWave. Move to the any iteration
of the loop, except the first one.

Analyse the waveform (the values highlighted in red correspond to the and instruction). In this lab we skip the fetch and align stages, which

will be explained in a forthcoming lab.

- Decode stage: Signal dec_i0_pc_d_ext contains the address of the instruction (in the textbooks, this is usually called the

Program Counter), which for the and is 0x00000108, and signal dec_i0_instr_d contains the 32-bit machine instruction

0x01DE7E33 (in the textbooks, this is usually called the Instruction Register).

In RISC-V, the opcode for the and instruction is (see Appendix B of [Harris&Harris]):
0000000 | rs2 | rs1 | 111 | rd | 0110011

so you can easily verify that 0x01DEFE33 corresponds to: and t3, t3, t4 (remember that t3=x28 and t4=x29).

During this stage the pipeline control signals are generated (we will show some details in the next section). Moreover, the

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 15

Register File is read in this stage. Signals a and b contain the inputs to the ALU, which in this case coincide with the values read

from the Register File (in other cases that we will analyse in forthcoming labs, this will not be the case).

- EX1 Stage: In the next cycle, the and instruction is executed. Signals a_ff and b_ff contain the inputs to the ALU (0xFC and

0x1C0 respectively), whereas out contains the result of the addition (0xC0).

- EX5 Stage, also called Writeback: Finally, 4 cycles later, the result of the addition is written-back to the Register File through

signal wd0=0xC0, which contains the data to write. Given that wen0=1 (write enable), the result of the and operation is written at the

end of that cycle into register x28 (the register index, waddr0=0x1C). You can observe that, in the following cycle (last cycle shown

in the figure), register x28 contains the new value (dout=0xC0).

We next add the control signals to the previous simulation:

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 16

You can see that the control bit for the and instruction is 1 in the first cycle.

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 17

The following Verilog fragments show the Logical Unit of SweRV EH1.

When the and control bit is 1, the result of the and operation is selected:

logic_sel[3]=1 and logic_sel[2]=logic_sel[1]=0  lout = a_ff & b_ff

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 18

2) (The following exercise is based on exercise 4.1 from the book “Computer Organization and Design – RISC-V Edition”, by Patterson
& Hennessy ([HePa]).)

 Consider the following instruction: and rd, rs1, rs2

a. What are the values of control signals generated by SweRV EH1 for this instruction?
b. Which resources (blocks) perform a useful function for this instruction?
c. Which resources (blocks) produce no output for this instruction? Which resources produce output that is not used?

Solution not provided.

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 19

3) Analyse, both in a Verilator simulation and directly in the Verilog code, the shift left/right instructions available in the RV32I Base

Integer Instruction Set: srl, sra and sll.

#define INSERT_NOPS_0

#define INSERT_NOPS_1 nop; INSERT_NOPS_0

#define INSERT_NOPS_2 nop; INSERT_NOPS_1

#define INSERT_NOPS_3 nop; INSERT_NOPS_2

#define INSERT_NOPS_4 nop; INSERT_NOPS_3

#define INSERT_NOPS_5 nop; INSERT_NOPS_4

#define INSERT_NOPS_6 nop; INSERT_NOPS_5

#define INSERT_NOPS_7 nop; INSERT_NOPS_6

#define INSERT_NOPS_8 nop; INSERT_NOPS_7

#define INSERT_NOPS_9 nop; INSERT_NOPS_8

#define INSERT_NOPS_10 nop; INSERT_NOPS_9

.globl main

main:

li t3, 0xEEEEEEEE

li t4, 0x1

REPEAT:

 srl t0, t3, t4

 INSERT_NOPS_7

 sra t1, t3, t4

 INSERT_NOPS_7

 sll t2, t3, t4

 INSERT_NOPS_6

 beq zero, zero, REPEAT # Repeat the loop

.end

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 20

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 21

The following Verilog fragments show the Shift Unit of SweRV EH1.

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 22

4) Analyse, both in a Verilator simulation and directly in the Verilog code, the set-less-than instructions available in the RV32I Base

Integer Instruction Set: slt and sltu.

#define INSERT_NOPS_0

#define INSERT_NOPS_1 nop; INSERT_NOPS_0

#define INSERT_NOPS_2 nop; INSERT_NOPS_1

#define INSERT_NOPS_3 nop; INSERT_NOPS_2

#define INSERT_NOPS_4 nop; INSERT_NOPS_3

#define INSERT_NOPS_5 nop; INSERT_NOPS_4

#define INSERT_NOPS_6 nop; INSERT_NOPS_5

#define INSERT_NOPS_7 nop; INSERT_NOPS_6

#define INSERT_NOPS_8 nop; INSERT_NOPS_7

#define INSERT_NOPS_9 nop; INSERT_NOPS_8

#define INSERT_NOPS_10 nop; INSERT_NOPS_9

.globl main

main:

li t3, 0x80000007

li t4, 0x6

REPEAT:

 slt t0, t3, t4

 INSERT_NOPS_7

 sltu t0, t3, t4

 INSERT_NOPS_6

 beq zero, zero, REPEAT # Repeat the loop

.end

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 23

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 24

The following Verilog fragments show the logic that executes these operations in SweRV EH1.

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 25

5) Analyse, both in a Verilator simulation and directly in the Verilog code, some of the immediate instructions available in the RV32I

Base Integer Instruction Set: addi, andi, ori, xori, srli, srai, slli, slti and sltui.

#define INSERT_NOPS_0

#define INSERT_NOPS_1 nop; INSERT_NOPS_0

#define INSERT_NOPS_2 nop; INSERT_NOPS_1

#define INSERT_NOPS_3 nop; INSERT_NOPS_2

#define INSERT_NOPS_4 nop; INSERT_NOPS_3

#define INSERT_NOPS_5 nop; INSERT_NOPS_4

#define INSERT_NOPS_6 nop; INSERT_NOPS_5

#define INSERT_NOPS_7 nop; INSERT_NOPS_6

#define INSERT_NOPS_8 nop; INSERT_NOPS_7

#define INSERT_NOPS_9 nop; INSERT_NOPS_8

#define INSERT_NOPS_10 nop; INSERT_NOPS_9

.globl main

main:

li t3, 0x4 # t3 = 4

INSERT_NOPS_1

REPEAT:

 INSERT_NOPS_10

 addi t3, t3, 2 # t3 = t3 + t4

 INSERT_NOPS_10

 beq zero, zero, REPEAT # Repeat the loop

.end

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 26

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 27

At module dec_decode_ctl the 32-bit immediate is computed.

At module exu the proper rs2 source is selected. In this case, we use dec_i0_immed_d.

At module dec_gpr_ctl the enable signal rden1 determines if the register file is accessed for the second operand or not. If an instruction uses an

immediate operand: i0_dp.rs2=0  rden1=0  rd1[31:0]=0x00000000  gpr_i0_rs2_d[31:0]=0x00000000.

6) (The following exercise is based on exercise 4.6 of [HePa].)

 Figure 5 does not discuss I-type instructions like addi or andi.

a. What additional logic blocks, if any, are needed to support execution of I-type instructions in SweRV EH1? Add any
necessary logic blocks to Figure 5 and explain their purpose.

b. List the values of the signals generated by the control unit for addi.

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 28

One of the inputs to the two 3-1 multiplexers at the Decode Stage comes from the immediate in signal dec_i0_immed_d[31:0]. The

immediate is a 32-bit signal that is computed differently depending on the I-Type instruction that is executed. It is a subset of 32 bits that
make up the instruction, which are selected and sign extended as follows:

The values of the control signals for the addi can be seen in the simulation from Exercise 5.

7) (The following exercise is based on exercise 4.4 of [HePa] and exercise 1 of Chapter 7 of the textbook by S. Harris and D. Harris,
“Digital Design and Computer Architecture: RISC-V Edition” [DDCARV].)
 When silicon chips are fabricated, defects in materials (e.g., silicon) and manufacturing errors can result in defective circuits. A
very common defect is for one signal wire to get “broken” and always register a logical 0. This is often called a “stuck-at-0” fault.

Determine the effect of each of the control bits included in signal i0_ap (a signal of type alu_pkt_t) being stuck at 0.

The structure type is defined in file swerv_types.sv:

typedef struct packed {

 logic valid;

 logic land;

 logic lor;

 logic lxor;

 logic sll;

 logic srl;

 logic sra;

 logic beq;

 logic bne;

 logic blt;

Imagination University Programme – RVfpga Lab 12
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 29

 logic bge;

 logic add;

 logic sub;

 logic slt;

 logic unsign;

 logic jal;

 logic predict_t;

 logic predict_nt;

 logic csr_write;

 logic csr_imm;

 } alu_pkt_t;

- Signal valid stuck-at-0: It would not be possible to execute any A-L instruction, as any A-L instruction would be considered invalid.

- Signals land, lor, lxor, sll, srl, sra, beq, bne, blt, bge, add, sub, slt and jal stuck-at-0: For each of

these bits, it would not be possible to execute the corresponding A-L instruction; for example, if land is stuck-at-0, it would not be

possible to execute an and instruction.

- Signal unsign stuck-at-0: It would not be possible to communicate to the processor that the operation must be unsigned.

- Signals predict_t and predict_nt: It would not be possible to communicate to the processor that a branch is predicted taken or

not-taken.

- Signals csr_write and csr_imm: It would not be possible to write or to operate with an immediate in the CSR Register.

