
Imagination University Programme – RVfpga Lab 19
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

TASKS

TASK: Replicate the simulation from Figure 3 on your own computer. To do so, follow the
next steps (as described in detail in Section 7 of the GSG):
- If necessary, generate the simulation binary (Vrvfpgasim).
- In PlatformIO, open the project provided at: [RVfpgaPath]/RVfpga/Labs/Lab19/LW-

SW_Instruction_ExtMemory.
- Establish the correct path to the RVfpga simulation binary (Vrvfpgasim) in file

platformio.ini.
- Generate the simulation trace using Verilator (Generate Trace).
- Open the trace on GTKWave.
- Use file test_Blocking_Extended.tcl (provided at [RVfpgaPath]/RVfpga/Labs/Lab19/LW-

SW_Instruction_ExtMemory) for opening the same signals as the ones shown in Figure
6. For that purpose, on GTKWave, click on File → Read Tcl Script File and select the
test_Blocking_Extended.tcl file.

- Click on Zoom In () several times and analyse the region starting at 42500 ps.

Solution provided in the main document of Lab 19.

TASK: Using the HW Counters, measure the number of cycles, instructions, loads and
stores in the program from Figure 2. How much time in total (both for reading and writing)
does it take to access the DDR External Memory? You can compare the execution when
using the DDR memory as in Figure 3 and when using the DCCM (another PlatformIO
project is provided at [RVfpgaPath]/RVfpga/Labs/Lab19/LW-SW_Instruction_DCCM/,
which contains the same program prepared for reading from / writing to the DCCM).
Remember that the simulated memory is not the same as the actual DDR memory on the
Nexys A7 board.

DCCM:

Simulation in Verilator:

Each iteration executes 5 instructions in 3 cycles. Only half a cycle is lost per iteration.

Execution on the Board:

Imagination University Programme – RVfpga Lab 19
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Cycles per iteration = 3

DDR Memory:

Execution on the Board:

The number of instructions is the same, since the program is the same. However, now
around 358000 cycles are necessary for executing all the iterations, thus:

Number of cycles spent accessing memory per iteration ≈ (358000 - 30000) / 10000 ≈ 33

TASK: Use the example from [RVfpgaPath]/RVfpga/Labs/Lab19/LW_Instruction_ExtMem
to estimate the DDR External Memory read latency using the HW Counters. As in the
previous task, you can use the example from
[RVfpgaPath]/RVfpga/Labs/Lab19/LW_Instruction_DCCM to compare with a program with
no stalls due to the memory accesses. Remember that the simulated memory is not the
same as the actual DDR memory on the Nexys A7 board.

DCCM:

Simulation in Verilator:

Each iteration executes 10 instructions in 5 cycles, so it executes with the ideal IPC.

Imagination University Programme – RVfpga Lab 19
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Execution on the Board:

Cycles per iteration = 5

DDR Memory:

Simulation in Verilator:

Execution on the Board:

The number of instructions is the same, since the program is the same. However, now
around 939000 cycles are necessary for executing all the iterations, thus:

Latency of a DDR memory read ≈ (939000 - 50000) / (10000 * 4) ≈ 22

Imagination University Programme – RVfpga Lab 19
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

To check if it is correct, we double the number of load instructions and execute the program
again:

DCCM:

DDR Memory:

Latency of a DDR memory read ≈ (1862000 - 90000) / (10000 * 8) ≈ 22

Imagination University Programme – RVfpga Lab 19
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

TASK: A quite complex but very interesting exercise is to analyse the Memory Controller
used in the RVfpga System. Remember that you can find the modules that make up this
controller in folder [RVfpgaPath]/RVfpga/src/LiteDRAM, and that the top module is
implemented in file litedram_top.v inside that folder. You can start with the simulation from
Figure 3 and add and analyse some signals from the LiteDRAM controller.

Solution not provided.

TASK: Analyse module ifu_ic_mem to understand how the elements in Figure 4 are
implemented.

Module ifu_ic_mem:

Data Array and Tag Array instantiation:

Data Array plus Parity bits (In our case RV_ICACHE_ECC is not defined):

Imagination University Programme – RVfpga Lab 19
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

4-1 Multiplexer:

Tag Array plus Parity bits (In our case RV_ICACHE_ECC is not defined):

Imagination University Programme – RVfpga Lab 19
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Comparators:

TASK: Replicate the simulation from Figure 6 on your own computer. To do so, follow the
next steps (as described in detail in Section 7 of the GSG):
- If necessary, generate the simulation binary (Vrvfpgasim).
- In PlatformIO, open the project provided at:

[RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_Example.
- Update the path to the RVfpga simulation binary (Vrvfpgasim) in file platformio.ini.
- Generate the simulation trace with Verilator (Generate Trace).
- Open the trace on GTKWave.
- Use file test1_Miss.tcl (provided at

[RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_Example) for opening the same
signals as the ones shown in Figure 6. For that purpose, on GTKWave, click on File →
Read Tcl Script File and select the test1_Miss.tcl file.

- Click on Zoom In () several times and analyse the region from 28900 ps to 30220

Imagination University Programme – RVfpga Lab 19
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

ps.

You can also analyse some things in more detail, such as the write to the I$ or the bypass
of the initial instructions.

Solution provided in the main document of Lab 19.

TASK: Replicate the simulation from Figure 7 on your own computer. Use file test1_Hit.tcl

(provided at [RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_Example). Zoom In (
) several times and move to 34680ps.

Solution provided in the main document of Lab 19.

TASK: Analyse the Verilog code from Figure 9 and explain how it operates based on the
above explanations.

Solution not provided.

TASK: Analyse the Verilog code from Figure 10 and explain how it operates based on the
above explanations.

Solution not provided.

1. EXERCISES

1) Transform the infinite loop from Figure 11 into a loop with 0x10000 iterations, but

keep the j instructions at the same addresses. Measure the number of cycles and I$

hits and misses. Then remove one of the j instructions and measure the same

metrics. Compare and explain the results.

 5 jump instructions: 4 jump instructions:

Imagination University Programme – RVfpga Lab 19
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

In the program with 4 j instructions the number of I$ misses and the number of cycles

decrease drastically, as now only the blocks do not conflict with each other. At the same
time, the number of I$ hits increases a lot.

2) Use the program from Figure 5 to analyse an I$ hit from the point of view of the I$

Replacement Policy.

Solution not provided.

3) Extend Figure 6 to analyse in detail how each 64-bit chunk is written in the I$.

Solution not provided.

4) Analyse in simulation and on the board other I$ configurations, such as an I$ with a
different block size. Recall that the number of ways cannot be modified.

Solution not provided.

5) Analyse the logic that checks the correctness of the parity information from the Data
Array and from the Tag Array.

Solution not provided.

