TASKS

TASK: Examine the processor elements included in Figure 1 in the Verilog code and

explain how they work.

- The elements shown in the Decode stage (Register File, Instruction Register and
Control Unit) can be found in modules dec, dec_decode_ctl and dec_gpr_ctl.

- The elements shown in the EX1 stage can be found in modules exu and exu_alu_ctl.

- The elements shown in the FC1 stage can be found in modules ifu and ifu_ifc_ctl.

FC1 Stage:

- 2:1 Multiplexer: Module ifu_ifc_ctl

({31 exu flush final exu flush path final[31:1]1)

({21{-exu flush final ifc fetch addr f1 raw[31:11));
- 5:1 Multiplexer: Module ifu_ifc_ctl

iss _sel flush exu_flush_path_finall[31:1])
L miss addr bf miss addr[31:1])
L btb addr bf ifu_bp btb target f2[31:11})
| last addr bf ifc_fetch addr f1[31:1]})
| next addr bf fetch addr next[31:11:));

- Adder for sequential address: Module ifu_ifc_ctl

overflow nc, fetch addr next[31:1] ({1'b0, ifc fetch addr f1[31:4]

EX1 Stage:

- Comparator: Module exu_alu_ctl

It compares the two operands:
- Ifthey are equal: eg=1.
- If they are different: eg=0.

- Adder for the branch target address: Module exu_alu_ctl
der ibradder |

.pc{pc_ffl31:11),
.offset(brimm ff[12:11),

.dout{pcout[31:11)
);

It computes the addition of the PC and the offset.

- LOGIC: Module exu_alu_ctl

Imagination University Programme — RVfpga Lab 16
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

imagination
university programme

actual taken - (ap.beqg
(ap.bne
(a p. blt

(ap.bge
ENREINE

actual taken contains the resolution of the branch direction: 1 if the branch must
be taken and 0 if it must be not-taken. For example:
o If the instruction is a beq (ap .beg==1) and the two operands are equal
(eg==1) 2 actual taken=1
o If the instruction is a bne (ap.bne==1) and the two operands are different
(ne==1) 2 actual taken=1
o Iftheinstructionis a jal (any jal==1) the branch must be taken ->
actual taken=1

cond mispredict = (ap.predict t actual taken)

(ap.predict nt & actual taken);

The branch has been mispredicted (cond mispredict=1) if it was predicted taken
(ap.predict t =1)and it must be not-taken (actual taken =0), orif it was
predicted not-taken (ap.predict nt =1) and it must be taken (actual taken =
1)

flush_upper = (ap.jal | cond mispredict | target mispredict) & valid ff flush freeze;

The pipeline must be flushed if it was mispredicted (cond mispredict=1), the
instruction is valid (valid ff=1), and the pipeline is not being flushed or frozen.

TASK: Explain how signal f1ush upper is generated in module exu_alu_ctl from signal
eq, control signals ap.beq, ap.predict t and ap.predict nt, and some other
signals.

- LOGIC: Module exu_alu_ctl

actual taken = (ap.beq
{ap.bne
(a B. blt

(ap.bge
ENREINE

actual taken contains the resolution of the branch direction: 1 if the branch must
be taken and O if it must be not-taken. For example:
o If the instruction is a beq and the two operands are equal > actual taken =

1

o If the instruction is a bne and the two operands are different > actual taken
=1

o If the instruction is a jal the branch must always be taken - actual taken =
1

Imagination University Programme — RVfpga Lab 16
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 2

imagination
university programme

cond mispredict = (ap.predict t actual taken)

(ap.predict_nt & actual taken);

The branch has been mispredicted (cond mispredict=1) if it was predicted taken
(ap.predict t =1)anditis not actually taken (actual taken =0), or if it was
predicted not taken (ap.predict nt = 1) and itis actually taken (actual taken =
0)

flush_upper = (ap.jal | cond mispredict | target mispredict) & valid ff flush freeze;

The pipeline must be flushed if it was mispredicted (cond mispredict=1), the
instruction is valid (valid ff=1), and the pipeline is not being flushed or frozen.

TASK: Analyse in the Verilog code the effect of signals exu flush final,

exu flush upper e2,exu i0 flush finalandexu il flush final in EX1 and
in the stages preceding it: FC1, FC2, Align, and Decode. For this analysis, it can be useful
to use the simulations from Section 2.B, where you can include the signals that you need.

Solution not provided.

TASK: Modify Figure 1 to include the values of each signal shown in Figure 3 in cycles i,

i+1, and i+2.
exu_flush_final
FC1 FC2 \ ALN J J DECODE EX1
CONTROL i0_ap
0 0x07DE0063 UNIT 0x81084

exu_flush_path_final [31:1] 0x000001F0 T

1 2 |

ifc_fetch_addr_f1 [31:1] (PC) . é]

ifu_mem_ctl — L a ap.beq
ifc_fetch_addr_f1_raw [31:1] 0 P 5‘
S 1
g OXFFFF || oxFFFF
2-1 Mux 58 | raddro rdo ﬂjl[‘ﬁ bLJf
fetch_addr_next [31:1] o - e flush_upper
0x000001F0 _addr_next [31:1] o L raddr1 = -89 lrocic PP LOGIC '—
16 5 0 0
ifu_bp_btb_target_f2 [31:1] = REGISTER "
- | = FILE "

o
jach

0xC4

miss_addr [31:1]

pc [31:1]

exu_flush_path_final [31:1] pc_ff [31:1]

flush_path [31:1]

fetch_addr_bf

5-1 Mux brimm_ff [12:1]
H ibradder

TASK: Modify the program from Figure 2 to make the first branch instruction retrieve its
input operands through forwarding.

Solution not provided.

TASK: Modify Figure 1 to include the values of each signal shown in Figure 4 in cycles i,
i+1, and i+2.

Imagination University Programme — RVfpga Lab 16
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 3

0x00000188
exu_flush_path_final

imagination
university programme

exu_flush_final

FC1 FC2 J ALN J \ DECODE EX1

CONTROI i0_ap
1 OXFBCEOOE3 UNIT 0x81084

[81:1] 1 0x00000188

ifc_fetch_addr_f1_raw [31:1] o

ifc_fetch_addr_f1 [31:1] (PC) .
ap.beq

ifu_mem_ctl —

OXFFFF || OXFFFF

| raddro rdoil Ha aff 'LJ

—raddrl

)
H
b}
a
c
A
o
3
9y
7]
3

4
5

2-1 Mux

fetch_addr_next [31:1]

€4 | ocic

flush_upper E
] L_upp LOGIC
1 1

16

ifu_bp_btb_target_f2 [31:1] REGISTER

FILE rd1

[31:1]|(Next PC)

OXFFFF

miss_addr [31:1]

pc [31:1]

pc_ff [31:1]

exu_flush_path_final [31:1]
S —— 0x000001E8

flush_path [31:1]
0x00000188

fetch_addr_bf

LOGIC

5-1 Mux

brimm_ff [12:1]

0x1FAO
ibradder

TASK: Analyse the operation of the two multiplexers from FC1 with the example from
Figure 2, examining the signals under different circumstances.

For example, analyse how fetch is accomplished for sequential execution (i.e. a group of
instructions with no branches). You will see that, in the SweRV EH1 processor, the
operation in this case is as follows:

- In the even cycles, the fetch addr next is selected using the 5:1 multiplexer, which
contains the current Fetch Address (ifc fetch addr £1) plus 16, thus reading the next
sequential 128-bit bundle of instructions (remember that an 1$ read provides 128 bits).

- In the odd cycles, the ifc_fetch addr f1 is selected using the 5:1 multiplexer, thus
no new instructions are fetched.

This way, four 32-bit instructions are fetched every 2 cycles, which is the same rate of
instructions needed by the Decode stage (2 instructions per cycle).

Note that in the processors from DDCARYV the PC is simply incremented by four in every
cycle (for sequential execution) to fetch one instruction per cycle.

Also modify the program from Figure 2 to create new scenarios. For example, you can add
some A-L instructions after the taken branch and see how they are flushed after the
redirection.

SEQUENTIAL EXECUTION:

Using the following sources:
- Program from: [RVfpgaPath]/RVfpga/Labs/Lab14/LW _Instruction_ExtMemory

- Tcl Script from:
[RVfpgaPath])/RVfpga/Labs/RVfpgalabsSolutions/Programs_Solutions/Lab16/test_Seq
uentialExecution.tcl

We can obtain the following simulation in Verilator:

Imagination University Programme — RVfpga Lab 16
Version 2.2 — 9th May 2022
© Copyright Imagination Technologies 4

imagination
university programme

Signals
Time
clk=
flush upper=
ifc_fetch addr fl ext[31:6]=
ifu fetch data[127:0] =
ifu_ie_instr[31:e]=
dec_i@_instr_d[31:8]=
ie _inst el[31:e]=
ie_inst e2[31:0
ie_inst e3[31:0
[
[

=

£ =
ie_inst_e4[31:0]=
i@_inst_wb[31:0] =

1
1
1
1
1
1
1
1

268: 000eae03 Iw 3,0(t4)
26c¢c: ffffOf13 aadl t5,t5,-1
270: 00108093 addi rara,l
274: 001f8f93 addi 16,t6,1
278: 00118193 addi gp.gp,dl
27c. 00120213 addi—"tp,tp,1
280: 00128293 addi 10,t0,1
284: 00130313 addi t1,t1,1
288: 00138393 addi t2,t2,1
28c: 00140413 addi s0,s0,1

We can see that every two cycles a new 128-bit bundle is fetched.

TASK: In Lab 15, we analysed how RAW data hazards are resolved in the Commit stage
by means of the Secondary ALUs. Similar to the A-L instructions that we studied in that lab,
a conditional branch instruction can have a RAW data hazard with a previous multi-cycle
operation that must be resolved at commit time. If the branch is determined to have been
mispredicted, the pipeline must be flushed and redirected from the Commit stage. Analyse
this situation using a slightly modified version of the program from Figure 2, provided at
[RVfpgaPath]/RVfpga/Labs/Lab16/BEQ _Instruction_HazardCommit, and the .tcl file
provided in that same folder.

Code generated:

060008198

addi t5,t5,1
nop

nop

nop

nop

nop

nop

nop

beq t3,t4,220 <OUT>
nop

nop

nop

nop

nop

nop

nop

addi t4,t4,1
nop

nop

nop

nop

nop

nop

nop

mul te,tl,t2
nop

beq t3,10,198 <LOOP=
nop

nop

nop

nop

nop

nop

nop

Imagination University Programme — RVfpga Lab 16
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 5

imagination
university programme

Verilator Simulation:

Signals
Time

clk=
exu_flush final=
exu_flush path final ext[31:0]=
ifc_fetch addr f1 raw ext[31:8
ifc_fetch addr f1 ext[31:8
dec 10 pc d ext[31:@
dec 1@ instr d[31:0
dec il instr d[31:0
i@ ap[19:@
a_ff[31:e
b ff[31:08]=
flush upper=
pc Tf ext[31:8]=
brimm ff ext[12:0]
flush path ext[31:8]=

801608

P
1]

The beg instruction (0xf85e0ce3) is decoded, goes through EX1 (where it executes on the
wrong operands), goes through EX2 and EX3, and then it goes through Commit where it
executes again on the correct operands, triggering a flush and redirection (flush upper =
exu flush final =1).

TASK: In the example from Figure 2, remove all the nop instructions and analyse the
simulation. Then compute the IPC with the Performance Counters by executing the
program on the board.

Enable the branch predictor used in SweRV EH1 (by commenting out the two initial
instructions in Figure 2) and analyse the simulation and the execution on the board.

Compare the two experiments and explain the results.

Naive Branch Predictor:

Signals
Time 341668 ps 34260 ps
dec_i0 pc d ext
dec_i@ instr d
dec_il instr d
i@ _inst el
il inst el
i@ _inst e2

[31
[31
[31
[31 EBED
[31
[31

il inst e2[31:
[31
[31
[31
[31
[31
[31

FFCEBAE3 B

FBF13

i@ _inst e3
il inst e3
i@ _inst e4
il inst e4
i@ _inst wb
il inst wb

Imagination University Programme — RVfpga Lab 16
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 6

imagination
university programme

Test_Assembly.5 x

TERMINAL

> Executing task: platformio device monitor <

IPC =262/393 =0.67

Gshare Branch Predictor:

Signals
Time
clk=
dec i@ pc d ext[31:0]=
dec i@ instr d[31:8]=
dec il instr d[31:8]=
i@ inst el[31:0]=
il inst el[31:8]=
if inst e2[31:0]=
il inst e2[31:8]= FFCEBAE3 |
i0 inst e3[31:0] = BB1FBF13
il inst e3[31:0]=
i0 inst e4[31:8]=
il inst e4[31:0]=
if inst wb[31l:0]=
il inst wb[31:0] = GEEH=ERC |FFCEBAES |

Imagination University Programme — RVfpga Lab 16
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 7

imagination
university programme

Test_Assembly.5 X

, @
4, ouT
, 1
, Loop

ouT:

INSERT NOPS 8

end
E TERMINAL

> Executing task: platformio device monitor <

i ==o
Ctri+T followed by Ctri+H --

IPC=262/131=2

The IPC is ideal when using the Gshare BP but it is far from ideal when using the Naive BP
due to the flush and redirect caused by the second branch instruction.

TASK: Analyse all these hashing modules and try to get an idea of how they work and how
they are used in the Gshare BP structures.

Solution not provided.

TASK: Analyse how the access to these two structures is performed.

Solution not provided.

TASK: Analyse how select signal of the 5:1 multiplexer is computed.

Solution not provided.

TASK: Analyse how the predicted target address (ifu bp btb target £2)is obtained
from the value read in the BTB (btb rd tgt £2[11:0]) and the Fetch Address at FC2
(1fc_fetch addr f2[31:4]).

Module ifu_bp_ctl:

Imagination University Programme — RVfpga Lab 16
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 8

imagination
university programme

btb_sel f2[0] & btb_rd pcd f2;

2, ifc fetch adder prior;
h_req_f2 ifu_bp kill_next_f2 & ic_hit_f2), .din{ifc_fetch_addr_f2[31:4]), .dout(ifc_fetch_ adder prior[31:4

1 pc_ext adder_pc_:

8l pc_
a] offset_ext btb_r

ifu bp btb target f2[31:1 btb _rd_ret f2 btb rd call f2 7 rets out[81[31:1]1 @ bp btb target adder f2[31:11

TASK: Analyse the RAS implemented in the SweRV EH1 processor. An internet search will
also give additional information about the operation of this structure (for example
http://www-classes.usc.edu/engr/ee-

s/A57/EE457 Classnotes/ee457 Branch Prediction/EE560 05 Ras Just FYI.pdf).

Solution not provided.

TASK: Analyse how the Global History Register is updated.

Solution not provided.

EXERCISES

1) Implement a Bimodal Branch Predictor and compare its performance with respect to
the Gshare BP.

Solution not provided.

2) (The following exercise is based on exercise 4.25 from the book “Computer
Organization and Design — RISC-V Edition”, by Patterson & Hennessy ([HePa]).)
Consider the following loop:
LOOP: 1w x10, 0(x13)
1w x11, 4 (x13)
add x12, x10, x11
add x13, x13, -8
bnez x12, LOOP
Assume that perfect branch prediction is used (in the case of SweRV EH1, we can
emulate this behaviour by simply avoiding the first iteration), that the pipeline has full
forwarding support (again, this is the case in SweRV EH1), and that branches are
resolved in the EX1 stage.
a. Show a simulation for the second and third iterations of this loop. Explain the
behaviour obtained. You can use the program provided at
[RVfpgaPath]/RVfpga/Labs/Labl6/HePa_Exercise-4-25.

Imagination University Programme — RVfpga Lab 16
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 9

http://www-classes.usc.edu/engr/ee-s/457/EE457_Classnotes/ee457_Branch_Prediction/EE560_05_Ras_Just_FYI.pdf
http://www-classes.usc.edu/engr/ee-s/457/EE457_Classnotes/ee457_Branch_Prediction/EE560_05_Ras_Just_FYI.pdf

imagination
university programme

Signals Waves
Time

clk=
dec i@ instr d[31:8]=
dec_il instr_d[31:8]=

Imagination University Programme — RVfpga Lab 16
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 10

