

Imagination University Programme – RVfpga Lab 7: 7-Segment Displays
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 1

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 7
7-Segment Displays

Imagination University Programme – RVfpga Lab 7: 7-Segment Displays
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

This lab describes how the RVfpga System was extended to work with 7-segment displays
and shows how to modify the 7-segment display controller. The Nexys A7 FPGA board has
eight 7-segment displays. We first describe how they work (Section 2) and then analyse the
high-level specification of the 8-digit 7-segment display controller included in the RVfpga
System and provide some fundamental exercises (Sections 3 and 4). Finally, we analyse the
low-level implementation of this controller, perform a Verilator simulation and provide
additional exercises where you will modify and experiment with the controller implementation
(Sections 5 and 6).

2. 7-SEGMENT DISPLAYS ON THE NEXYS A7 BOARD

The Nexys A7 board contains two 4-digit common-anode 7-segment LED displays1,
configured to behave as a single 8-digit 7-segment display (see Figure 1). Each of the eight
digits is composed of seven segments arranged in a “figure 8” pattern (see Figure 2), with an
LED for each segment. Each of these segments can be switched on or off, so any one of
128 patterns can be displayed on a digit by illuminating certain LED segments and leaving
the others dark; specifically, among these 128 patterns, the decimal digits can be displayed
as shown in Figure 2.

Figure 1. 8-digit 7-segment displays on the Nexys A7

Figure 2. Patterns corresponding to decimal digits

1 The information in this section is described in:
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual

https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual

Imagination University Programme – RVfpga Lab 7: 7-Segment Displays
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

The LED segments of a single digit are labelled A-G, as shown on the right of Figure 3. The
anodes of the seven LEDs for a single digit are tied together into one “common anode”
circuit node, but the LED cathodes remain separate (see Figure 3). The eight common
anode signals, one for each digit (AN0-AN7), act as a “digit enable”. The cathodes of the
same segment on all eight digits are connected into seven signals, CA-CG (see Figure 3).
(Note that an eighth signal exists for the decimal point, DP, but we will not use it in this lab.)
For example, the cathode of segment D from the eight digits are grouped together into a
single circuit node called CD. This signal connection scheme creates a multiplexed display,
where the cathode signals are common to all digits, but they can only illuminate the
segments of the digit whose corresponding anode signal is asserted. All these signals are
driven low when active; thus, to illuminate a segment, for example, segment D on digit 2,
both the anode AN2 and the cathode CD must be driven low.

Figure 3. Connection of the 8-digit 7-segment Display on the Nexys A7

A scanning display controller circuit can be used to show an 8-digit number on the 8-digit 7-
segment displays. This circuit drives the cathodes with the pattern of each digit in a
repeating continuous succession at an update rate that is faster than the human eye can
detect; at the same time the circuit drives the anodes one at a time. Thus, each digit is
illuminated just one-eighth of the time, but, because the eye cannot perceive the darkening
of a digit before it is illuminated again, the digit appears to be continuously illuminated.

For each of the 8 digits to appear bright and continuously illuminated, all eight digits should
be driven once every 1 to 16 ms, and each digit would be illuminated for 1/8 of the refresh
cycle (e.g., for a 16ms refresh cycle, each digit is illuminated for 2ms). As explained above,
the controller must drive the cathodes of a digit low with the correct pattern while the
corresponding anode signal is also driven low. However, since the Nexys A7 uses NPN
transistors to drive enough current into the common anode point, the anode enables are
inverted. Therefore, both the AN0...7 and the CA...G/DP signals are driven low when active.

To illustrate the process, assume that you want to show 71 on the two right-most digits. The
controller circuit would drive AN0, CB, and CC low for the first 2ms, thus showing a 1 in the
right-most digit. Then, for the next 2ms, the circuit would drive AN1, CA, CB, and CC low,
thus showing a 7 in the next most significant digit. If the process is repeated indefinitely, the
human eye will see number 71 in the two right-most digits.

Imagination University Programme – RVfpga Lab 7: 7-Segment Displays
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

3. HIGH-LEVEL SPECIFICATION OF THE 8-DIGIT 7-SEGMENT
DISPLAY CONTROLLER

In this section, we first describe and analyse the high-level specification of the 8-digit 7-
segment displays controller used in the RVfpga System, and then we provide exercises for
using it.

A. High-level specification

The 8-digit 7-segment display controller used in this course has been custom-designed for
the RVfpga System. It includes two registers, called Enables_Reg and Digits_Reg, that are
mapped to addresses 0x80001038 and 0x8000103C respectively (note that these addresses
are unused addresses within the address range reserved for the System Controller, which
you can view at https://github.com/chipsalliance/Cores-SweRVolf).

TASK: Locate the declaration of registers Enables_Reg and Digits_Reg, as well as the
place where they are assigned a value. The 8-digit 7-segment displays is implemented in
file:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/SystemController/swervolf_syscon.v.

Enables_Reg is an 8-bit register where each bit determines if the corresponding digit is ON
(0) or OFF (1). Digits_Reg is a 32-bit register where each 4-bit group represents the
hexadecimal value to show in the corresponding digit. For example, to show 71 on the two
right-most digits, the programmer would assign the following values to the registers:

- Enables_Reg = 0xFC (two right-most digits enabled)
- Digits_Reg = 0x00000071 (value = 71)

4. FUNDAMENTAL EXERCISES

Exercise 1. Write a RISC-V assembly program and a C program that shows the value of the
switches on the four right-most digits of the 7-segment displays.

Exercise 2. Write a RISC-V assembly program and a C program that shows the string “0-1-
2-3-4-5-6-7-8” moving from the right to the left of the 8-digit 7-segment displays. That is, 0
should show up on the right-most digit first. Then it should move to the left and 1 should
show up on the right-most digit, and so on.

5. 8-DIGIT 7-SEGMENT DISPLAY CONTROLLER: LOW-LEVEL
IMPLEMENTATION, SIMULATION

Up until this point, we have shown how to use the 8-digit 7-segment displays only. In this
section, we describe their low-level implementation and analyse RVfpgaSim in simulation
when executing a simple assembly example. Finally, we provide exercises for modifying the
8-digit 7-segment display controller.

A. Low-level implementation of the 8-digit 7-segment display
controller

https://github.com/chipsalliance/Cores-SweRVolf

Imagination University Programme – RVfpga Lab 7: 7-Segment Displays
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

Similar to previous general-purpose I/O (GPIO) labs, we divide the analysis of the 8-digit 7-
segment display controller into three phases:

1. Connection between the SoC and the I/O device on the board (left shadowed region
in Figure 4);

2. Integration of the new controller, which is included inside the SweRVolfX System
Controller contained in the SoC (middle shadowed region in Figure 4);

3. Connection between the new controller and the SweRV EH1 Core (right shadowed
region in Figure 4).

Figure 4. 8-digit 7-segment displays controller analysis in 3 phases

1. Connection of the LEDs/Switches to the SoC

The constraints file of the project ([RVfpgaPath]/RVfpga/src/rvfpganexys.xdc) defines the
connection between the input/output SoC signals and the board. Each I/O device on the
Nexys A7 FPGA board is connected to a specific FPGA pin. The signal that connects the
eight anodes (see Figure 3) is called AN[i] (with i ranging from 0-7), and the signals that
connect the cathodes of similar segments on all 8 digits (see Figure 3) are called CA, CB,
CC, CD, CE, CF and CG. Figure 5 shows the snippet of the constraints file where these
connections are defined.

Figure 5. Connection of the 8-digit 7-segment displays inputs (file rvfpganexys.xdc).

Imagination University Programme – RVfpga Lab 7: 7-Segment Displays
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

In lines 50-51 of the top-module of our system (module rvfpganexys, implemented in file
[RVfpgaPath]/RVfpga/src/rvfpganexys.sv) you can find the 8-digit 7-segment displays input
signals connected to the SoC, AN[i] and CA…CG (left part of Figure 6), and at the end of
that module (right part of Figure 6) you can find their connection to the swervolf_core
module (note that the CA…CG signals are renamed in that module as Digits_Bits[6:0]).

Figure 6. Connection of the 8-digit 7-segment displays to the SoC (file:
rvfpganexys.sv).

Finally, the two signals are inserted from the swervolf_core module into the System
Controller module (swervolf_syscon) (see Figure 7), where the 8-digit 7-segment display
controller is implemented.

Figure 7. Connection of the 8-digit 7-segment displays to the System Controller (file:
swervolf_core.v).

Imagination University Programme – RVfpga Lab 7: 7-Segment Displays
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

TASK: Follow these signals (CA-CG and AN) from the constraints file to the System
Controller module (where CA-CG are merged into array Digits_Bits). You will need to inspect
the following files:
 [RVfpgaPath]/RVfpga/src/rvfpganexys.xdc
 [RVfpgaPath]/RVfpga/src/rvfpganexys.sv
 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/swervolf_core.v
 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/SystemController/swervolf_syscon.v

RI

2. Integration of the 8-digit 7-segment display controller into the SoC

In lines 276-288 of module swervolf_syscon
([RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/SystemController/swervolf_syscon.v)
the 8-digit 7-segment display controller is instantiated and integrated in the SoC (see Figure
8).

Figure 8. 8-digit 7-segment displays controller instantiation (file: swervolf_syscon.v).

The SevSegdisplays_Controller module receives, in addition to the clock signal (i_clk,
renamed as clk) and the reset signal (i_rst, renamed as rst_n), two input signals
(Enables_Reg and Digits_Reg), which are the two memory-mapped control registers already
described. This module outputs two signals, AN and Digits_Bits, which are connected to the
7-segment displays on the board. For the example showing 71 on the two right-most digits,
the SevSegdisplays_Controller would assign the following values to signals AN and
Digits_Bits:

- From 0 to 2ms: Signal AN[0] is low to enable digit 0 (the right-most digit) to
display. Signals Digits_Bits[5] and Digits_Bits[4] (that correspond to CB and CC)
are also low to display “1” on digit 0 (the right-most digit). All other signals are
high.

- From 2 to 4ms: Signal AN[1] is low to enable digit 1 to display. Digits_Bits[6],
Digits_Bits[5] and Digits_Bits[4] (that correspond to CA, CB, and CC) are high to
display “7” on digit 1. All other signals are high.

- From 4 to 16ms: AN[2]…AN[7] are high in 2 ms intervals so that they do not
display values. The segments are also high for the remaining digits, digits 2-7.

The SevSegdisplays_Controller module is implemented in lines 295-366 of file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/SystemController/swervolf_syscon.v. It
contains the following subunits:

- Two multiplexers select the value to send to the AN and Digits_Bits signals every
2ms. The multiplexer is implemented inside module SevSegMux.

- For creating the 2ms period, we use a counter module provided in files

Imagination University Programme – RVfpga Lab 7: 7-Segment Displays
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

counter.sv and delta_counter.sv, both included in folder
[RVfpgaPath]/RVfpga/src/OtherSources/pulp-
platform.org__common_cells_1.20.0/src. The counter is configured to count from
0 to 219, and the 3 most significant bits, which change approximately every 2ms,
are used as the select signals for the two multiplexers described above.

- A decoder is implemented in module SevenSegDecoder, which outputs the
segment values for a given 4-bit hexadecimal value.

TASKS: Analyse the SevSegdisplays_Controller module in detail. The simulation
performed in the next section can help you on this task. You can also extend the simulation
with new signals if necessary.

3. Connection between the 8-digit 7-segment displays controller and the
SweRV EH1 Core

As described in Lab 6, the device controllers are connected to the SweRV EH1 Core using a
multiplexer (see Figure 4). Remember that the 7:1 multiplexer (Figure 9) is instantiated in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon.v.
Then, the wb_intercon module is instantiated in lines 104-205 of file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon.vh
. This latter file is included in line 145 of the swervolf_core module located here:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/swervolf_core.v.

The multiplexer selects which peripheral to read or write, connecting the CPU (wb_io_*
signals – lines 115-126 of Figure 9) with the Wishbone Bus of one peripheral (lines 127-138
of Figure 9), depending on the address (lines 110-111). For example, if the address
generated by the CPU is in the range 0x80001000-0x8000103F, the System Controller is
selected, and thus signals wb_io_* will be connected with signals wb_sys_*.

Figure 9. 7-1 multiplexer that selects the peripheral connected with the CPU (file:
wb_intercon.v).

The registers included in the System Controller are written from the CPU by directly
connecting them to the data signal of the Wishbone Bus (i_wb_dat), based on the address
(i_wb_adr) generated by the CPU (lines 162-228 of module swervolf_syscon).

Imagination University Programme – RVfpga Lab 7: 7-Segment Displays
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

TASK: Inspect lines 162-228 of module swervolf_syscon in order to understand how
addresses are mapped in the System Controller. Focus on lines 219 to 227 (Figure 10),
which refer to registers Enables_Reg and Digits_Reg (as we mentioned before, the
addresses assigned to these two registers are 0x80001038 and 0x8000103C respectively).

Figure 10. Connection between the 8-digit 7-segment displays and the Core (file
swervolf_syscon.v).

B. Verilator Simulation

In this section, we use RVfpgaSim for inspecting the main signals of the 8-digit 7-segment
displays controller when the processor executes a simple example that drives this
peripheral. In simulation, we analyse signals AN and Digits_Bits while we execute the
example from Figure 11, which writes 71 onto the two right-most digits. You can find this

program at: [RVfpgaPath]/RVfpga/Labs/Lab7/71_7SegDispl (you can also find the

C version at: [RVfpgaPath]/RVfpga/Labs/Lab7/71_7SegDispl_C-Lang).

#define SegEn_ADDR 0x80001038

#define SegDig_ADDR 0x8000103C

.globl main

main:

 li t1, SegEn_ADDR

 li t6, 0xFC

 sb t6, 0(t1) # Enable the 7SegDisplays

 li t1, SegDig_ADDR

 li t6, 0x71

 sw t6, 0(t1) # Write the 7SegDisplays

next: beq zero, zero, next

.end

Figure 11. 71_7SegDispl.S example

Figure 12 shows the disassembly version of the 71_7SegDispl.elf program, which, after
compilation in PlatformIO, you can find at:
[RVfpgaPath]/RVfpga/Labs/Lab7/71_7SegDispl/.pio/build/swervolf_nexys

/firmware.dis

00000090 <main>:

 90: 80001337 lui t1,0x80001

 94: 03830313 addi t1,t1,56 # 80001038

 98: 0fc00f93 li t6,252

 9c: 01f30023 sb t6,0(t1)

Imagination University Programme – RVfpga Lab 7: 7-Segment Displays
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

 a0: 80001337 lui t1,0x80001

 a4: 03c30313 addi t1,t1,60 # 8000103c

 a8: 07100f93 li t6,113

 ac: 01f32023 sw t6,0(t1)

000000b0 <next>:

 b0: 00000063 beqz zero,b0 <next>

Figure 12. Disassembly version of the 71_7SegDispl.S example

Follow the next steps for running the simulation. (If you prefer not to run the simulation, you
can directly go to step 7.)

1. In this case, for the simulation only, you must reduce the clock period by changing

COUNT_MAX (see line 295 of file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/SystemController/swervolf_syscon.
v) from 20 to 5; otherwise, it would take too much time to see the results. Modify the
value of COUNT_MAX and then recompile RVfpgaSim by executing the following
commands (this was explained in the GSG):

cd [RVfpgaPath]/RVfpga/verilatorSIM

make clean

make

A new file Vrvfpgasim (the RVfpgaSim simulation binary), should be generated inside
directory [RVfpgaPath]/RVfpga/verilatorSIM.

WINDOWS: in case you are using Windows, you have to execute these commands
inside the Cygwin terminal (refer to Section 6 and Appendix C in the Getting Started
Guide for the detailed instructions). Note that the C: Windows folder can be found inside
Cygwin at: /cygdrive/c.

MacOS: Refer to Appendix D of the Getting Started Guide for the detailed instructions.

2. Open VSCode/PlatformIO on your computer.

3. On the top bar, click on File - Open Folder..., and browse into directory

[RVfpgaPath]/RVfpga/Labs/Lab7

4. Select directory 71_7SegDispl (do not open it, but just select it) and click OK. The

example will open in PlatformIO.

5. Open file platformio.ini and check if the path to the RVfpgaSim simulation binary is
correct. Remember from the GSG that it should look like:

board_debug.verilator.binary =

[RVfpgaPath]/RVfpga/verilatorSIM/Vrvfpgasim

6. Run the simulation by clicking on the PlatformIO icon in the left menu ribbon , then
expand Project Tasks → env:swervolf_nexys → Platform and click on Generate Trace.

File trace.vcd should have been generated inside
[RVfpgaPath]/RVfpga/Labs/Lab7/71_7SegDispl/.pio/build/swervolf_nexys, and you can
open it with GTKWave by executing the following command:

Imagination University Programme – RVfpga Lab 7: 7-Segment Displays
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

 gtkwave [RVfpgaPath]/RVfpga/Labs/Lab7/71_7SegDispl/.pio/build/swervolf_nexys/trace.vcd

WINDOWS: folder gtkwave64 that you downloaded, includes an application called
gtkwave.exe inside the bin folder. Launch GTKWave by double clicking on that application.
On the top part of the application, click on File – Open New Tab, and open the trace.vcd file
generated in folder
[RVfpgaPath]/RVfpga/Labs/Lab7/71_7SegDispl/.pio/build/swervolf_nexys.

7. Include the following signals in the simulation (go into the referred modules for locating

each of the signals):
- rvfpgasim – swervolf – syscon – SegDispl_Ctr

 Input signals: Enables_Reg and Digits_Reg.
 Output signals: AN and Digits_Bits.

8. Analyse the simulation shown in Figure 13. Initially, the values shown on the eight 7-

segment displays are all 0 (initially all the digits are enabled as Enables_Reg=0). We

then disable the six left-most digits by writing 0xFC to the Enables_Reg (sb instruction

in Figure 12) and write 71 into the two right-most digits by writing 0x71 to the Digits_Reg

(sw instruction in Figure 12). The effect on the output signals is as follows (as shown in

Figure 13):
 In the first period: AN=0xFE and Digits_Bits=0x4F, thus displaying 1 on the

right-most digit, digit 0.

 In the second period: AN=0xFD and Digits_Bits=0x0F, thus displaying 7 on
the next digit, digit 1.

 In the next six periods: AN=0xFF and Digits_Bits=0x01, thus switching off the
six left-most digits.

 This process then repeats.

Figure 13. Write value 71 on the two right-most digits of the 8-digits 7-segment
displays

9. Before continuing, do not forget to restore the value of COUNT_MAX to its original value

(COUNT_MAX=20).

6. ADVANCED EXERCISES

Exercise 3. Modify the controller described in this lab so that the 8-digit 7-segment displays
can show any combination of ON/OFF LEDs.

 You do not need an enable register now. Instead, you need eight 7-bit registers.
Call them: Segments_Digit0 – Segments_Digit7, one for each of the eight 7-
segment displays. In each of these registers, each bit indicates if the
corresponding segment is ON (0) or OFF (1). For example, if all the bits of the
first register (Segments_Digit0) are 0, all segments in the right-most digit will be
ON, whereas if all the bits of the first register are 1, all segments of the right-most
digit will be OFF.

Imagination University Programme – RVfpga Lab 7: 7-Segment Displays
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

 You can map these two new registers to the same addresses that we used
before (first remove the two previous registers Enables_Reg and Digits_Reg):

o Segments_Digit0  Address 0x80001038
o Segments_Digit1  Address 0x80001039
o …
o Segments_Digit7  Address 0x8000103F

 Note that you do not need the 4-7 decoder anymore (module
SevenSegDecoder), as the information provided by the program is already
decoded.

Exercise 4. Use the new controller for printing the following on the 8-digit 7-segment
displays: “I SAY HI”. As usual, implement both RISC-V assembly and C versions of the
program.

