

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 1

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 10
Serial Buses

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

In this lab, we first describe how serial buses work and the main features of one of the most
typical serial buses currently used, the SPI bus (Section 2). We then focus on the SPI
accelerometer available on the Nexys A7 board: we analyse the high-level specification for
this peripheral and propose fundamental exercises (Sections 3 and 4), and then we analyse
its low-level implementation and propose some advanced exercises (Sections 5 and 6).

2. SERIAL BUSES – THE SPI BUS

Parallel buses send several bits at once, whereas serial buses send one bit at a time. We
first compare these two communication schemes and then describe the SPI (serial
peripheral interface) protocol, which is one of the most common serial buses currently used.
You can find lots of information on the internet for extending your knowledge about this
important communication protocol.

As already demonstrated in previous labs, the main purpose of embedded electronics is to
connect processors and circuits to create desired functions. In order for processors and
circuits to share information, they must share a common communication protocol. Hundreds
of communication protocols have been defined to achieve this data exchange, and, in
general, they can be separated into two main categories: parallel or serial interfaces.

Parallel interfaces transfer multiple bits in parallel, i.e., at the same time. They require buses
(multiple wires) of data. For example, the protocol may transmit eight, sixteen, or more bits
at the same time (see Figure 1). They also require a clock to time when new groups of N
data bits are ready to transfer.

Figure 1. Example of a parallel 8-bit data bus.

In contrast to parallel communication, serial interfaces stream their data one bit at a time.
These interfaces can operate using as few as one wire and usually never more than four.
Figure 2 shows an example serial interface with one wire for data and one for a clock. At
each new clock edge, a new data bit is transferred.

Figure 2. Example of a serial 1-bit data bus.

Out0

OutN

Clk

In0

InN

Clk

Transmitter Receiver

…
…
…

…
…
…

…
…
…

Out

Clk

In

Clk

Transmitter Receiver

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

Parallel communication has the benefits of being fast, straightforward, and relatively easy to
implement. However, it requires many more input/output (I/O) lines. So, because pins are
limited, embedded systems often opt for serial communication, sacrificing potential speed for
pin real estate.

SPI Bus:

The Serial Peripheral Interface (SPI) protocol is one of the most widely used interfaces
between microcontroller and peripheral ICs such as sensors, ADCs, DACs, shift registers,
SRAM, and others. SPI is a synchronous, full duplex interface based on controller-peripheral
(formerly called master-slave) communication.

The SPI bus usually communicates via 4 ports (see Figure 3):

 SDO – Serial Data Out: Controller’s output to peripheral device

 SDI – Serial Data Input: Controller’s input from peripheral device

 SCK – Serial Clock: Sent from controller to peripheral device

 CS – Chip Select: Active low signal; Controller sends signal (0 when peripheral is
selected) to peripheral

Note: historically, SDO has also been called MOSI (master data out, slave data in) and SDI
has been called MISO (master data in, slave data out). Those terms are outdated and
offensive, but they still exist in the literature and in documentation.

Figure 3. Example of a system with one SPI controller and one SPI peripheral.

The serial data is synchronized to the rising or falling clock edge. SPI is a full-duplex
interface; the controller and the peripheral can send data at the same time via the SDO and
SDI lines, respectively. SPI interfaces only have one controller, but they may have multiple
peripherals. When more than one peripheral is connected, multiple low-asserted chip select
signals (CSbar) from the controller are used to select which peripheral is being accessed.
SDO and SDI are the serial data lines: SDO (serial data out) is the output data from the
controller to the peripheral and SDI (serial data in) is the input data from the peripheral to the
controller.

To initiate SPI communication, the controller must select the peripheral device (by asserting
the CSbar signal, i.e., CSbar = 0) and then sending the clock signal to the peripheral. During
SPI communication, the data is simultaneously transmitted from and to the controller through
the SDO and SDI signals, respectively. The serial clock (SCK) edge synchronizes the
sampling of the data.

SDO

SDI

SDI

SDO

SPI Controller SPI Peripheral

SCK SCK

CS CS

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

The SPI interface also provides additional signals, CPOL and CPHA, for selecting the idle
state of the clock and the phase for sampling the signal. The clock polarity (CPOL) signal is
0 when the clock (SCK) idles at 0 and 1 when it idles at 1. The clock phase (CPHA) signal
selects the phase of the clock to send and sample data. When CPHA = 0, data (on SDI or
SDO) is sampled on the leading edge (i.e., the first edge after SCK stops idling - and on
every cycle thereafter); so data (SDI and SDO) must change on the trailing edge, as shown
in the top two timing diagrams of Figure 4. CPHA = 1 does the opposite: data is sampled on
the trailing edge and data changes on the leading edge, as shown in the bottom two figures
of Figure 4. The edge on which new data is transmitted is also called the shifting edge,
because this serial communication is typically implemented using a shift register.

The SPI interface we use in this lab is CPHA = 0 and CPOL = 0, so SCK idles low and the
controller and peripheral sample data on the rising edge and shift new data onto the line
(SDO or SDI) just after each falling edge, as shown in the top timing diagram of Figure 4.
Note that when SCK is idle, and just before it rises, SDO and SDI must carry the most
significant bit of the next data byte.

CPHA CPOL

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0

0 1Sa
m

p
le

s
o

n

Le
ad

in
g

Ed
ge

1 0

1 1Sa
m

p
le

s
o

n

Tr
ai

lin
g

Ed
ge

SDI/SDO

SDI/SDO

SCK

SCK

SCK

SCK

Leading
Edge

Trailing
Edge

Figure 4. Relationship of CPHA/CPOL with sampling/sending data

3. SPI ACCELEROMETER: HIGH-LEVEL SPECIFICATION

Many peripherals include an SPI interface. For example, the accelerometer on the Nexys A7
board has an SPI interface. In this section we describe the high-level specification of the
RVfpga System’s SPI controller and introduce the ADXL362 accelerometer included on the
Nexys A7 board. We also introduce an exercise that uses the accelerometer.

A. SPI controller specification

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

The RVfpga System’s SPI module is from OpenCores
(https://opencores.org/projects/simple_spi). If you download the package, a document is
provided that describes the high-level specification of the module. This document is also
provided here:

[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/spi/docs/simple_spi.pdf

We summarize the main operation and features of the SPI module; however, refer to the
above document for additional information.

This module has the following main features:

- It is compatible with Motorola’s SPI specifications
- It uses the 8-bit WISHBONE RevB.3 classic interface
- It contains a 4-entry read FIFO buffer and a 4-entry write FIFO buffer
- It allows interrupt generation after 1, 2, 3, or 4 transferred bytes
- It can operate with a wide range of input clock frequencies
- It is fully synthesizable

Section 3 of the SPI core specification describes the control and status registers available
inside the SPI module, each of which is assigned to a different address (see Table 1). The
base address of the SPI controller is 0x80001100. These registers are described in detail
below.

Table 1. SPI Registers

Name Address Width Access Description

SPCR 0x80001100 8 R/W Control register

SPSR 0x80001108 8 R/W Status register

SPDR 0x80001110 8 R/W Data register

SPER 0x80001118 8 R/W Extensions register

SPCS 0x80001120 8 R/W CS register

The SPI Control Register (SPCR) controls the SPI module; Table 2 shows the function of
each of its bits.

Table 2. SPCR bits

Bit Access Name & Description
0:1 R/W SPR

SPI clock Rate: These bits select the SPI clock rate.

2 R/W CPHA
Clock Phase: Determines the phase of sampling and sending data. When
CPHA = 1, new data is shifted onto the wire at the leading edge and data is
sampled on the trailing edge. When CPHA = 0, new data is shifted onto the
wire at the trailing edge and sampled on the leading edge.

3 R/W CPOL
Clock Polarity: Determines idle state of SPI clock (SCK). When CPOL = 0,
SCK idles at 0, when CPOL = 1, SCK idles at 1.

4 R/W MSTR
Mode Select: When MSTR = 1, the SPI core is a controller device. This is
the only supported mode for this controller.

6 R/W SPE
SPI Enable: When SPE = 1, the SPI core is enabled. When it is cleared
(SPE = 0), the SPI core is disabled.

7 R/W SPIE
SPI Interrupt Enable: When SPIE = 1, when the SPI Interrupt Flag in the
status register is set, the host is interrupted.

https://opencores.org/projects/simple_spi

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

The SPI Status Register (SPSR) provides the status of the SPI module; Table 3 shows the
function of each of its bits.

Table 3. SPSR bits

Bit Access Description
0 R/W RFEMPTY

Read FIFO Empty: If RFEMPTY = 1, the read FIFO is empty.

1 R/W RFFULL
Read FIFO Full: If RFFULL = 1, the read FIFO is full.

2 R/W WFEMPTY
Write FIFO Empty: IF WFEMPTY = 1, the write FIFO is empty.

3 R/W WFFULL
Write FIFO Full: IF WFFULL = 1, the write FIFO is full.

6 R/W WCOL
Write Collision flag: When WCOL = 1, the SPDATA register was written to
while the Write FIFO was full. Writing a 1 to WCOL clears this bit.

7 R/W SPIF
SPI Interrupt Flag: SPIF = 1 upon completion of a transfer block. If SPIF is
asserted (‘1’) and SPIE is set, an interrupt is generated. Writing a 1 to SPIF
clears it.

The SPI Data Register (SPDR) provides the data to read or write. The SPI controller
includes 4 x 8-bit Write Buffer and a 4x 8-bit Read Buffer.

The SPI Extended Register (SPER) provides some additional functionality; Table 4
describes the different fields that it contains.

Table 4. SPER bits

Bit Access Description
0:1 R/W ESPR

Extended SPI Clock Rate Select: Add two bits to the SPR (SPI Clock Rate
Select).

6:7 R/W ICNT
Interrupt Count: Determine the transfer block size. The SPIF bit is set after
ICNT transfers. Thus, it is possible to reduce kernel overhead due to
reduced interrupt service calls.

Finally, the SPI Chip Select (SPCS) register selects which peripheral to use. The width of
this signal is configurable through parameter SS_WIDTH (SPI Select Width). In the RVfpga
System, only one peripheral exists for each SPI interface, so SS_WIDTH = 1.

TASK: Locate the declaration of registers SPCR, SPSR, SPDR, SPER and SPCS in the
SPI module, as well as the definition of their addresses. The SPI module is available inside
folder [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/spi.

R

B. ADXL362 accelerometer specification

The Nexys A7 board includes an Analog Devices ADXL362 accelerometer. You can find the
complete information for the device in its data sheet, located here:
 https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf

The ADXL362 is a 3-axis MEMS accelerometer that consumes less than 2μA at a 100Hz
output data rate and 270 nA when in motion triggered wake-up mode. It provides 12-bit
output resolution, although 8-bit formatted data is also provided for more efficient single-byte

https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

transfers when a lower resolution is sufficient. Measurement ranges of ±2 g, ±4 g, and ±8 g
are available with a resolution of 1 mg/LSB on the ±2 g range. While the ADXL362 is in
Measurement Mode, it continuously measures and stores acceleration data in the X-data, Y-
data, and Z-data registers.

The ADXL362 accelerometer includes several registers (Table 5) that allow the user to
configure it and to read the acceleration data. The device is configured by writing to the
control registers, and the accelerometer data is found by reading the device registers. All
communication with the device must specify a register address and a flag that indicates
whether the communication is a read or a write. Data transfer occurs after the register
address and communication flag are sent to the device.

This accelerometer acts as a peripheral device using an SPI communication scheme. The
interface between the FPGA and accelerometer is shown in Figure 5.

Figure 5. ADXL362 Accelerometer interface with the Nexys A7 board

The recommended SPI clock frequency ranges from 1-5 MHz. The SPI operates in SPI
mode 0 (CPOL = 0 and CPHA = 0). The SPI port uses a multibyte structure wherein the first
byte indicates if the communication performs a register read (0x0B) or a register write
(0x0A):

<CS down> <Write/Read (0x0A/0x0B)> <address byte> <data byte> <CS up>

Figure 6 and Figure 7 illustrate two examples of the communication between the SPI
controller (controller) and the accelerometer (peripheral): Figure 6 shows the reading of a
register and Figure 7 shows the writing of a register.

Figure 6. Register read

(Figure from https://www.analog.com/media/en/technical-documentation/data-
sheets/ADXL362.pdf)

F14

E15

SDI

SDO

Artix-7 FPGA ADXL 362

F15 SCK

D15 CS

https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

Figure 7. Register write

(Figure from https://www.analog.com/media/en/technical-documentation/data-
sheets/ADXL362.pdf)

Table 5 shows the registers available in the ADXL362 accelerometer. For the complete
registers description, refer to the ADXL362 data sheet:
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf.

Table 5. ADXL362 accelerometer registers
(Table from https://www.analog.com/media/en/technical-documentation/data-

sheets/ADXL362.pdf)

https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL362.pdf

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

4. FUNDAMENTAL EXERCISES

Exercise 1. Create a RISC-V assembly program that reads the eight most significant bits of
the X-axis, Y-axis, and Z-axis acceleration data and then displays those values on the 8-digit
7-Segment Displays. Refer to Section B for configuration and register information. Use the
following subroutines to access the SPI module. Before using the subroutines, try to
understand them based on the information provided in Section A about the SPI module.
Here is a brief summary of each subroutine:

 Function spiInit: Initializes the SPI module.

 Function spiCS: Send CS status to SPCS register.

 Function spiCSUp: Pull CS Line to high, by invoking subroutine spiCS.

 Function spiCSDown: Pull CS Line to low, by invoking subroutine spiCS.

 Function spiSendGetData: Send byte through SPI and get the peripheral

data back.

Register addresses for SPI Peripheral

#define SPCR 0x80001100

#define SPSR 0x80001108

#define SPDR 0x80001110

#define SPER 0x80001118

#define SPCS 0x80001120

Function: Initialize SPI peripheral

call: by call ra, spiInit

inputs: None

outputs: None

destroys: t0, t1

spiInit:

 li t1, SPCR # control register

 li t0, 0x53 # 01010011 no ints, core enabled, reserved, controller,

cpol=0, cha=0, clock divisor 11 for 4096

 sb t0, 0(t1)

 li t1, SPER # extension register

 li t0, 0x02 # int count 00 (7:6), clock divisor 10 (1:0) for 4096

 sb t0, 0(t1)

ret

Function: Pull CS Line to either high or low - Provides quick calls spiCSUp

and spiCSDown

call: by call ra, spiCS

inputs: CS status in a0 (0 is low, 1 is high)

outputs: None

destroys: t0

spiCS:

 li t0, SPCS # CS register

 sb a0, 0(t0) # Send CS status

ret

spiCSUp:

 li a0, 0x00

 j spiCS

spiCSDown:

 li a0, 0xFF

 j spiCS

Function: Send byte through SPI and get the peripheral data back

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

call: by call ra, spiSendGetData

inputs: data byte to send in a0

outputs: received data byte in a1

destroys: t0, t1

spiSendGetData:

internalSpiClearIF: # internal clear interrupt flag

 li t1, SPSR # status register

 lb t0, 0(t1) # clear SPIF by writing a 1 to bit 7

 ori t0,t0,0x80

 sb t0, 0(t1)

internalSpiActualSend:

 li t0, SPDR # data register

 sb a0, 0(t0) # send the byte contained in a0 to spi

internalSpiTestIF:

 li t1, SPSR # status register

 lb t0, 0(t1)

 andi t0, t0, 0x80

 li t1, 0x80

 bne t0,t1,internalSpiTestIF # loop while SPSR.bit7 == 0. (transmission

in progress)

internalSpiReadData:

 li t0, SPDR # data register

 lb a1, 0(t0) # read the message from SPI

ret

5. LOW-LEVEL IMPLEMENTATION

A. SPI Accelerometer low-level implementation

In the first part of this lab, we showed how to use the RVfpga System’s SPI modules, and in
this last part of the lab we describe how the SPI module is implemented in RVfpga. Similar to
the format from previous labs, we divide the analysis of the SPI controller into three phases:

1. Physical connection between the SoC and the accelerometer (left shadowed region
in Figure 8)

2. Integration of the SPI controller, which is included inside the SweRVolfX System
Controller (middle shadowed region in Figure 8)

3. Connection between the SPI controller and the SweRV EH1 Core (right shadowed
region in Figure 8)

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

Figure 8. SPI controller integrated into the RVfpga System

INSTRUCT

1. Physical connection of the accelerometer and the SoC

As with other peripherals, the RVfpgaNexys constraints file must include the physical
connections to the accelerometer. The constraints file of the project
([RVfpgaPath]/RVfpga/src/rvfpganexys.xdc) defines the connection between the input/output
SoC signals and the board devices. The signals that connect the four pins of the
accelerometer with the SoC are called: o_accel_cs_n, o_accel_mosi (equivalent to signal
SDO), i_accel_miso (equivalent to signal SDI) and accel_sclk. Note that these signals refer
to outdated names, but we maintain them in order to be coherent with the names used by
the OpenCores’s SPI module that we use in the RVfpga System (you can see the
instantiation of this module at Figure 11). Figure 9 shows the piece of Verilog code where
these 4 connections are defined.

Figure 9. Connection of the SoC and the accelerometer (file rvfpganexys.xdc).

In lines 52-55 of the top-module of RVfpgaNexys (i.e., the rvfpganexys module) you can
see these four signals connected to the SoC (left part of Figure 10), and the end of that
module are their connection with the swervolf_core module (right part of Figure 10).

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

Figure 10. Connection of the accelerometer with the top-module (file rvfpganexys.sv).

TASKS: Follow these four signals (o_accel_cs_n, o_accel_mosi, i_accel_miso and
accel_sclk) from the constraints file to the SweRVolfX SoC module. You will need to inspect
the following files:
 [RVfpgaPath]/RVfpga/src/rvfpganexys.xdc
 [RVfpgaPath]/RVfpga/src/rvfpganexys.sv

 [RVfpgaPath]/RVfpga/src/SweRVolfSoC/swervolf_core.vI

2. Integration of the SPI2-Accelerometer module in the SoC

At lines 387-403 of module swervolf_core
([RVfpgaPath]/RVfpga/src/SweRVolfSoC/swervolf_core.v) the SPI module for the
accelerometer is instantiated (see Figure 11).

Figure 11. Integration of the SPI2-Accelerometer module (file swervolf_core.v).

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 13

As usual with peripherals, the interface of the module can be divided into two blocks:
Wishbone signals (Table 6) and external I/O signals (Table 7). The Wishbone signals enable
the SweRV EH1 Core to communicate with the ADC using the SPI protocol.

Table 6. Wishbone Signals

Port Width Direction Description
cyc_i 1 Inputs Indicates valid bus cycle (core select)

adr_i 15 Inputs Address inputs

dat_i 32 Inputs Data inputs

dat_o 32 Outputs Data outputs

sel_i 4 Inputs Indicates valid bytes on data bus (during
valid cycle it must be 0xf)

ack_o 1 Output Acknowledgment output (indicates
normal transaction termination)

err_o 1 Output Error acknowledgment output (indicates
an abnormal transaction termination)

rty_o 1 Output Not used

we_i 1 Input Write transaction when asserted high

stb_i 1 Input Indicates valid data transfer cycle

inta_o 1 Output Interrupt output

Table 7. External I/O Signals

Port Width Direction Description
miso_i 1 Input Controller data Input - Peripheral data Output

mosi_o 1 Output Controller data Output - Peripheral data Input

ss_o 1 Output Chip Select

sck_o 1 Output System clock

As shown in Figure 11, bits [5:2] of the address provided by the core in the Wishbone bus
signal (wb_m2s_spi_accel_adr[5:2]) are used for selecting one among the 5 available SPI
registers (Table 1).

3. Connection between the SPI Controller and the SweRV EH1 Core
As explained in previous labs, the device controllers are connected to the SweRV EH1 Core
through a multiplexer and a bridge (Figure 8). The 7:1 multiplexer (Figure 12) is instantiated
in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon.v.
Then, the wb_intercon module is instantiated in lines 104-205 of file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon.vh
. This latter file is included in line 145 of the swervolf_core module located here:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/swervolf_core.v.

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

Figure 12. 7-1 multiplexer selects the peripheral to connect to the CPU
(wb_intercon.v).

The multiplexer selects which peripheral to read or write, connecting the CPU (wb_io_*
signals – lines 115-126 of Figure 12) with the Wishbone Bus of one peripheral (lines 127-138
of Figure 12), depending on the address (lines 110-111). For example, if the address
generated by the CPU is in the range 0x80001100-0x8000113F, the accelerometer module
is selected, and thus signals wb_io_* are connected to signals wb_spi_accel_*.

6. ADVANCED EXERCISES

Exercise 2. The Universal Asynchronous Receiver-Transmitter (UART) is an asynchronous
serial communication protocol. The RVfpga System includes a UART module in its basic
design (see Figure 8), for which you can find the specification at:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/uart/docs/UART_spec.pdf

First, analyse the low-level implementation of this module in RVfpga, similarly to what we
have done in Section A for the SPI Accelerometer.

Then, create a RISC-V assembly program that prints a message to the PlatformIO shell
through the serial port. Use the following subroutines to access the UART module.
Before using the subroutines, try to understand them. Here is a brief summary of each
subroutine:

 Function uartInit: Initializes the UART module.

 Function uartSendByte: Send byte through UART.

 Function uartSendString: Send string through UART.

Register addresses for UART Peripheral

--

#define CONSOLE_ADDR 0x80001008

#define HALT_ADDR 0x80001009

#define UART_BASE 0x80002000

#define REG_BRDL (4*0x00) /* Baud rate divisor (LSB) */

#define REG_IER (4*0x01) /* Interrupt enable reg. */

#define REG_FCR (4*0x02) /* FIFO control reg. */

#define REG_LCR (4*0x03) /* Line control reg. */

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 15

#define REG_LSR (4*0x05) /* Line status reg. */

#define LCR_CS8 0x03 /* 8 bits data size */

#define LCR_1_STB 0x00 /* 1 stop bit */

#define LCR_PDIS 0x00 /* parity disable */

#define LSR_THRE 0x20

#define FCR_FIFO 0x01 /* enable XMIT and RCVR FIFO */

#define FCR_RCVRCLR 0x02 /* clear RCVR FIFO */

#define FCR_XMITCLR 0x04 /* clear XMIT FIFO */

#define FCR_MODE0 0x00 /* set receiver in mode 0 */

#define FCR_MODE1 0x08 /* set receiver in mode 1 */

#define FCR_FIFO_8 0x80 /* 8 bytes in RCVR FIFO */

.section .data

welcome:

.string "\nHELLO WORLD !!!\n"

Function: Initialize UART peripheral

call: by call ra, uartInit

inputs: None

outputs: None

overwrites: t0, t1

--

uartInit:

 li t0, UART_BASE

 /* Set DLAB bit in LCR */

 li t1, 0x80

 sb t1, REG_LCR(t0)

 /* Set divisor regs */

 li t1, 27

 sb t1, REG_BRDL(t0)

 /* 8 data bits, 1 stop bit, no parity, clear DLAB */

 li t1, LCR_CS8 | LCR_1_STB | LCR_PDIS

 sb t1, REG_LCR(t0)

 li t1, FCR_FIFO | FCR_MODE0 | FCR_FIFO_8 | FCR_RCVRCLR | FCR_XMITCLR

 sb t1, REG_FCR(t0)

 /* disable interrupts */

 sb zero, REG_IER(t0)

 ret

Function: Send byte through UART

call: by call ra, uartSendByte

inputs: a0, byte to be sent

outputs: None

destroys: t0, t1

--

uartSendByte:

 li t1, UART_BASE

 /* Check for space in UART FIFO */

 lb t0, REG_LSR(t1)

 andi t0, t0, LSR_THRE

 beqz t0, uartSendByte

 sb a0, 0(t1)

 ret

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 16

Function: Send string through UART (terminated by \0)

call: by call ra, uartSendString

uses: uartSendByte

inputs: a0, address of first character of string to be sent

outputs: None

destroys: t0, t1, t2

--

uartSendString:

 li t1, UART_BASE

 add t2,zero,ra # save caller address

 add a1,zero,a0 # use a1 as index

 /* Load first byte */

 lb a0, 0(a1)

internalNextChar:

 call ra, uartSendByte

 addi a1, a1, 1

 lb a0, 0(a1)

 bne a0, zero, internalNextChar

 add ra,zero,t2 # restore caller address

 ret

Exercise 3. Implement the three following functions in the C language:

- char uart_getchar(void): This function waits for the keyboard to send a

character through the UART to the Nexys A7 board and then returns this character
as an output parameter. Remember that characters are represented in ASCII code
(https://www.ascii-code.com/).

- int uart_putchar(char c): This function receives a character as an input

argument and displays it on the serial console through the UART. You have to
implement your own function that accesses the UART registers instead of using the

printfNexys function provided by WD’s BSP (Western Digital’s board support

package).

- int SevSegDispl(char c): This function receives a character as an input

argument and displays it on the right-most digit of the 7-segment displays, shifting
the remaining digits one position to the left (the left-most digit is lost). Given that the
7-segment displays only display the characters 0 to 9, A, B, C, D, E and F, for any
other character you can simply display a 0. You could extend this exercise to show
more characters by using the 7-segment display extended controller implemented in
Lab 7 – Exercise 3.

Note that to implement the first two functions you must use the UART module specification
document, available at:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/uart/docs/UART_spec.pdf

Based on the three functions above, create a program in C that receives a character from
the keyboard and displays it on both the serial terminal and on the 7-Segment Displays.

For initializing the UART module, you can use the uartInit function provided by WD’s

BSP.

https://www.ascii-code.com/

Imagination University Programme – RVfpga Lab 10: Serial Buses
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 17

Exercise 4. Another common serial communication protocol is called I2C (pronounced “eye
two see” or also “eye squared see”). The temperature sensor on the Nexys A7 board uses
this protocol. Expand the RVfpga System to include an I2C controller, and connect it with the
Nexys A7 board’s ADT7420 temperature sensor
(https://www.analog.com/media/en/technical-documentation/data-sheets/adt7420.pdf). Then
write a program that communicates with this new peripheral and displays the temperature on
the 7-segment displays.

https://www.analog.com/media/en/technical-documentation/data-sheets/adt7420.pdf

