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1. INTRODUCTION 
 
In this lab we deal with data hazards. As explained by Hennessy and Patterson in their 6th 

edition of “Computer Architecture : A Quantitative Approach” [HePa], data hazards occur 
when the pipeline changes the order of read/write accesses to operands so that the order 
differs from the order seen by sequentially executing instructions on an unpipelined 
processor. Assume instruction i is followed by instruction j in the program and both 
instructions use register x. Three types of data hazards can occur between i and j:  
 

- Read After Write (RAW) data hazard: This is the most common type of hazard. It 
occurs when instruction j reads register x before instruction i writes register x. Thus, 
instruction j would use the wrong value of x. 
 

- Write After Read (WAR) data hazard: WAR hazards occur when instruction j writes 
x and instruction i reads x, and instruction j is reordered to occur before i. Thus, 
instruction i reads the incorrect value of x. This hazard only occurs when instructions 
are reordered, which only rarely happens in SweRV EH1; specifically, WAR hazards 
never happen in SweRV EH1. 

 
- Write After Write (WAW) data hazard: WAW hazards occur when instructions are 

reordered and instruction j writes x before instruction i writes x. This hazard only 
occurs when instructions are reordered, which only rarely happens in SweRV EH1; 
however, in the case of non-blocking loads, a WAW hazard could occur as we will 
analyse later in this lab.  

 
In the following sections we analyse how RAW data hazards are resolved in the SweRV EH1 
processor, and then we describe tasks and exercises related to RAW hazards. We also 
describe an exercise analysing a situation when a WAW hazard takes place. 
 

NOTE: Before analysing the SweRV EH1 data hazard logic, we recommend reading 
Section 7.5 in DDCARV about how hazards are resolved in the pipelined processor. Data 
hazards, specifically, are analysed in Section 7.5.3. Although the pipelined processor 
shown in the book is simpler than SweRV EH1, data hazards are resolved similarly in both 
processors. 

 
 

2. SOLVING DATA HAZARDS WITH FORWARDING AT THE DECODE STAGE 
 
As explained in Section 7.5.3 of DDCARV, some RAW data hazards can be solved by 
forwarding (also called bypassing) a result from an instruction executing in an advanced 
pipeline stage to a dependent instruction executing in an earlier pipeline stage. This requires 
adding multiplexers in front of the Functional Units (ALUs, Multiplier, Adder that computes 
the Effective Address in DC1, etc.) to select their operands from either the Register File or 
from subsequent stages. 
 
Figure 1 extends the Decode stage shown in Figure 4 of Lab 11 with the bypass values. The 
Forwarding Logic produces bypass (i.e., forwarded) for each of the two source operands in 
each of the Ways: 
 

- Way-0: 

o First input operand: i0_rs1_bypass_data_d[31:0] 

o Second input operand: i0_rs2_bypass_data_d[31:0] 
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- Way-1: 

o First input operand: i1_rs1_bypass_data_d[31:0] 

o Second input operand: i1_rs2_bypass_data_d[31:0] 

 
These four inputs are distributed to the 3:1 and 4:1 multiplexers that determine the input 
operands for each of the Execution stages pipeline paths. For the sake of clarity in Figure 1, 
signals are connected by name. The inputs to the Forwarding Logic are the results produced 
by previous program instructions that are more advanced in the pipeline, as we will see 
below. 
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Figure 1. Bypass inputs to the Functional Units. 
 
Many forwarding paths exist in the SweRV EH1 processor – in this section we focus on a 
specific path and analyse it in detail. Then, in the tasks and exercises, you will inspect other 
cases. We analyse the situation of two dependent A-L instructions executing simultaneously 
and how RAW data hazards are resolved. As we did in Labs 12 and 13, we start with a basic 
study (Section 2.A) and then proceed to an advanced analysis (Section 2.B). You may 
choose to complete the basic section only or to complete both sections. 
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We will work with the example shown in Figure 2, that executes two add instructions 

contained within a loop that repeats for 0xFFFF iterations. The first add instruction writes a 

value to t4 and the second add instruction uses t4 as its second input operand. An 

independent add instruction (add t6, t6, -1), which is the instruction that updates the 

loop index) is inserted in between the two add instructions to force the dependent add 

instructions use the same way of the processor. 
 

.globl Test_Assembly 

 

.text 

Test_Assembly: 

 

li t3, 0x3 

li t4, 0x2 

li t5, 0x1 

li t6, 0xFFFF 

 

REPEAT: 

   INSERT_NOPS_8 

   add t4, t4, t5        # t4 = t4 + t5 (t4 = 2 + 1) 

   add t6, t6, -1 

   add t3, t3, t4        # t3 = t3 + t4 (t3 = 3 + 3) 

   INSERT_NOPS_9 

   li t3, 0x3 

   li t4, 0x2 

   li t5, 0x1 

   bne t6, zero, REPEAT    # Repeat the loop 

 

.end 

Figure 2. RAW data hazard between two add instructions 

 
Folder [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_AL-AL provides the PlatformIO 
project so that you can analyse, simulate, and modify the program as desired. Open the 
project in PlatformIO, build it, and open the disassembly file (available at 
[RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_AL-

AL/.pio/build/swervolf_nexys/firmware.dis) you will see that the two add instructions that we 

are analysing are placed at addresses 0x000001A0 and 0x000001A8: 
 
 0x000001a0: 01ee8eb3           add t4,t4,t5 

 0x000001a4: ffff8f93   addi t6,t6,-1 

0x000001a8: 01de0e33           add t3,t3,t4 

 
 

A. Basic analysis of a RAW data hazard between A-L 
instructions 
 

In the example that we are analysing, the second add instruction (add t3,t3,t4) needs to 

use the result of the first add instruction (add t4,t4,t5) as its second input operand. This 

result is available at the EX1 stage, from where it can be bypassed to the Decode stage and 

used by the second add instruction. In our example (Figure 2), all iterations are equal and 

t4 is 2 initially and 3 after the first addition. This last value (3) is the one that the second 

addition must use as its second input operand, and not the value read from the Register File 

(which is 2 until the first add instruction reaches the Writeback stage and updates it). 

 
Figure 3 illustrates the flow of the instructions of the example from Figure 2 through the 
SweRV EH1 pipeline for a random iteration of the loop. In cycle i, the value computed at the 
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EX1 stage of the I0 Pipe must be forwarded to the instruction which is at the Decode stage 

of Way-0, due to the RAW data hazard between the two add instructions under analysis. 

 

Cycle i-1 Cycle i

...
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Figure 3. Execution of Figure 2 example code. Forwarding is performed in cycle i. 
 
Figure 4 illustrates the SweRV EH1 Way-0 Decode and EX1 stages during cycle i of Figure 

3. In this cycle, the first add instruction (add t4,t4,t5) is in the EX1 stage and the second 

add instruction (add t3,t3,t4) is in the Decode stage. As shown in the figure, the result 

of the first add instruction is bypassed to the Decode stage, it is selected by the Forwarding 

Logic (as we will analyse in detail in the following section), and it is used as the second input 

operand for the second add instruction. 
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Figure 4. Result forwarded from EX1 to Decode (second operand) of Way 0 
 
Finally, Figure 5 shows the simulation of the program from Figure 2 during cycles i and i+1 of 
Figure 3. 
 
 
 

 
 

Figure 5. Simulation of Figure 2 example code 
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stage 
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TASK: Replicate the simulation from Figure 5 on your own computer. You can use the .tcl 
file provided in: [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_AL-AL/test_Basic.tcl. 

 
Analyse the simulation from Figure 5 and the diagram from Figure 4 at the same time. 
 

- Instruction add t4,t4,t5 (0x01ee8eb3): 

o In cycle i, this instruction is in the EX1 stage of the I0 Pipe (i0_inst_e1 = 

0x01ee8eb3). It computes the following addition in the ALU: 

a_ff (2) + b_ff (1) = out (3) 

The result of the addition is provided as an input to the Forwarding Logic at 
the Decode stage, as shown in Figure 4. 

 

- Instruction add t3,t3,t4 (0x01de0e33): 

o In cycle i, this instruction is in the Decode stage of Way-0 (dec_i0_instr_d 

= 0x01de0e33). The Forwarding Logic connects i0_result_e1 with 

i0_rs2_bypass_data_d. The two 3:1 multiplexers select the input 

operands for the addition that will be calculated in the next cycle (cycle i+1) in 
the EX1 stage of the I0 Pipe; specifically: 

a = 3 (from the Register File) 

b = 3 (from the ALU output in the EX1 stage of the I0 Pipe, through the 

Forwarding Logic, signal i0_rs2_bypass_data_d) 

o In cycle i+1, this instruction is in the EX1 stage of the I0 Pipe (i0_inst_e1 = 

0x01de0e33). It computes the following addition in the ALU: 

a_ff (3) + b_ff (3) = out (6) 

 
 

TASK: Remove all nop instructions in the example from Figure 2. Draw a figure similar to 

Figure 3 for two consecutive iterations of the loop, then analyse and confirm that the figure 
is correct by comparing it to a Verilator simulation, and finally compute the IPC by using the 
Performance Counters while executing the program on the board. 

 
 

TASK: In the example from Figure 2, remove all nop instructions and move the add 

t6,t6,-1 instruction after the add t3,t3,t4 instruction, and then re-examine the 

program both in simulation and on the board. In this reordered program, the two dependent 

add instructions (add t4,t4,t5 and add t3,t3,t4) arrive at the Decode stage in the 

same cycle, and this has an impact in performance. Explain the impact of these changes, 
using both simulation and execution on the board. 
 

Test similar situations where you replace the dependent add instruction for other 

dependent instructions, such as: 
 

-  add t4,t4,t5 
mul t3,t3,t4 

 

-  add t4,t4,t5 
div t3,t3,t4 

 

-  add t4,t4,t5 
lw  t3, 0(t4) 



 

Imagination University Programme – RVfpga Lab 15: Data Hazards 
Version 2.2 – 9th May 2022 
© Copyright Imagination Technologies  8 

 
 

B. Advanced analysis of a RAW data hazard between A-L 
instructions 
 

i. Theoretical explanation 
 
Figure 6 extends the diagrams from Figure 1 and Figure 4 by adding a 10:1 multiplexer 

(surrounded by a blue square in Figure 6) that produces signal i0_rs2_bypass_data_d, 

which in our example from Figure 2 provides the second input operand for the second add 

instruction (add t3,t3,t4). This 10:1 multiplexer is implemented inside the Forwarding 

Logic box shown in Figure 1 and Figure 4. 
 
The figure also shows the input connections of this 10:1 multiplexer. The bypassed value 
can come from an instruction executing through Way 0 or Way 1. Thus five forwarding paths 
are necessary per way. Specifically, the inputs to the 10:1 multiplexer can come from any of 
the subsequent stages (EX1, EX2, EX3, Commit, and Writeback) of Way 0 or Way 1. For the 
sake of simplicity, we connect the five inputs coming from Way 0 using wires, whereas the 5 
inputs coming from Way 1 are connected by name. 
 
Three additional 10:1 multiplexers inside the Forwarding Logic compute the three other 

source operands: signals i0_rs1_bypass_data_d, i1_rs1_bypass_data_d and 

i1_rs2_bypass_data_d. However, we do not show them in the figure as they are not 

used in the example that we analyse in this section (Figure 2). All four multiplexers can be 
found in lines 2429-2473 of module dec_decode_ctl. 
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Figure 6. I0 Pipe including the Forwarding Logic used for the second input source of the ALU
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Figure 7. 10:1 and 3:1 multiplexers highlighted in Figure 6 
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Figure 7 zooms into the two multiplexers (10:1 and 3:1 multiplexers) from Figure 6 that 

compute the second input operand for the I0 Pipe ALU (b). The figure shows both a block 

diagram and the Verilog code where these multiplexers are implemented in modules 
dec_decode_ctl and exu. 
 

NOTE: The two multiplexers from Figure 7 also exist in the processor from DDCARV. Data 
is forwarded to the Execute stage in that processor and fewer forwarding paths exist 
because it is not superscalar and has a shorter pipeline. You can analyse the forwarding 
paths in Figure 7.55 of DDCARV. 

  
We next analyse the inputs, outputs, and control signal of the two multiplexers shown in 
Figure 7. 
 

10:1 Multiplexer: 
 

Output: The output of the 10:1 multiplexer is i0_rs2_bypass_data_d[31:0]. This signal 

contains the value that must be forwarded (bypassed) to the instruction in the Decode stage. 
 
Inputs: The inputs to the 10:1 multiplexer are the results of previous instructions in the 
program that are executing at later stages (EX1, EX2, EX3, Commit, or Writeback). Five of 
these signals come from the I0 Pipe (as shown in Figure 6) and the other five signals come 
from the I1 Pipe (not shown in Figure 6), as the instruction in the Decode stage could 
potentially depend on an instruction executing in any of the two ways. 
 

Control signal: The control signal (i0_rs2bypass[9:0]) selects which input is connected 

with the output of the multiplexer. It is formed by 10 bits, with at most one of them being high 
at the same time (they can all be zero if there is no data hazard). The multiplexer operates 
as follows: 
 

- If i0_rs2bypass[9] == 1    i0_rs2_bypass_data_d = i1_result_e1 

- If i0_rs2bypass[8] == 1    i0_rs2_bypass_data_d = i0_result_e1 

- If i0_rs2bypass[7] == 1    i0_rs2_bypass_data_d = i1_result_e2 

- If i0_rs2bypass[6] == 1    i0_rs2_bypass_data_d = i0_result_e2 

- If i0_rs2bypass[5] == 1    i0_rs2_bypass_data_d = i1_result_e3_final 

- If i0_rs2bypass[4] == 1    i0_rs2_bypass_data_d = i0_result_e3_final 

- If i0_rs2bypass[3] == 1    i0_rs2_bypass_data_d = i1_result_e4_final 

- If i0_rs2bypass[2] == 1    i0_rs2_bypass_data_d = i0_result_e4_final 

- If i0_rs2bypass[1] == 1    i0_rs2_bypass_data_d = i1_result_wb 

- If i0_rs2bypass[0] == 1    i0_rs2_bypass_data_d = i0_result_wb 

 
In order to understand how this 10-bit control signal is computed, we explain the 

computation of signal i0_rs2bypass[8], which is the one which goes high in our example 

from Figure 2 for the add-add bypass. 

 

- If i0_rs2bypass[8] is 1, the bypassed value selected is i0_result_e1, which is 

the result of the instruction executing in the EX1 stage of the I0 pipe (see Figure 6). 
 

- For EX1 to forward data to the Decode stage (both in the I0 pipe), the following 
conditions must occur (see Section 4 of the SweRVref document to review the 
control signals): 

 

 The second input operand of the instruction in the Decode stage is read from the 
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Register File, and it is not read from register zero. In the SweRV EH1 Control 

Unit, this occurs when dec_i0_rs2_en_d is 1. The corresponding Verilog code 

is: 
dec_i0_rs2_en_d = i0_dp.rs2 & (i0r.rs2[4:0] != 5'd0); 

 

 The instruction in the EX1 stage of the I0 Pipe is valid: 

e1d.i0v == 1 

 

 The destination register of the instruction in the EX1 stage (of the I0 pipe) and the 
second source register of the instruction in the Decode stage (of Way 0) are the 
same: 

e1d.i0rd[4:0] == i0r.rs2[4:0] 

 

 The instruction in the EX1 stage (of the I0 Pipe) is an ALU operation: 

i0_rs2_class_d.alu == 1 

 
- Taking all this into account, we can conclude that: 

i0_rs2bypass[8] = 

(i0_dp.rs2 & (i0r.rs2[4:0] != 5'd0)) & 

e1d.i0v      & 

(e1d.i0rd[4:0] == i0r.rs2[4:0])  & 

i0_rs2_class_d.alu    ; 
 
 

TASK: Compare the previous equations with the ones explained for the pipelined 
processor from DDCARV. 

 
 

TASK: Analyse the Verilog code to explain how the computation of the previous equation 
is performed. You must inspect the following lines of module dec_decode_ctl. 

 

 
 

 
 

 
 

 
 
 

TASK: Write equations (similar to the one above) for other control bits of 

i0_rs2bypass[9:0], i0_rs1bypass[9:0], i1_rs2bypass[9:0], and 

i1_rs1bypass[9:0]. 

 
 

3:1 Multiplexer: 
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Output: The output of the 3:1 multiplexer is i0_rs2_d[31:0]. This signal is sent to the 

second input (b) of the ALU in Way 0. 

 
Inputs: The inputs to the 3:1 multiplexer are: 
 

- The value read from the Register File (gpr_i0_rs2_d). 

 

- The Immediate value (dec_i0_immed_d), obtained from the instruction. 

 

- The value bypassed from later stages (i0_rs2_bypass_data_d) obtained from the 

10:1 multiplexer described earlier. 
 

Control signal: The control signal to the 3:1 multiplexer (dec_i0_rs2_bypass_en_d) 

selects either: 
 

- The value bypassed from later stages (i0_rs2_bypass_data_d), if 

dec_i0_rs2_bypass_en_d ==1 

 

- Or the value coming from the Register File or the Immediate (gpr_i0_rs2_d and 

dec_i0_immed_d, respectively), if dec_i0_rs2_bypass_en_d == 0. It may look 

strange that the same signal selects two inputs; however, the signal that must not be 

selected (either gpr_i0_rs2_d or dec_i0_immed_d) is forced to zero in the 

Verilog code. 
 

The select signal of the 3:1 multiplexer (dec_i0_rs2_bypass_en_d) is simply computed 

as the logical OR of the 10-bit control signal of the 10:1 multiplexer: 
 

assign dec_i0_rs2_bypass_en_d = |i0_rs2bypass[9:0]; 

 
Thus, whenever the second input operand of an instruction depends on the result of an 
earlier instruction that is still executing (i.e. any of the 10 bits of signal 

i0_rs2bypass[9:0] is 1), dec_i0_rs2_bypass_en_d  == 1 and the operand is 

obtained through forwarding. Conversely, if it does not depend on any earlier instruction, 

dec_i0_rs2_bypass_en_d  == 0 and the operand comes from either the Register File or 

the Immediate. 
 
 

ii. Experiment 
 
Figure 8 shows the simulation of the program from Figure 2 in a random iteration of the loop. 
Cycle i from Figure 3 is indicated at the top part of the figure. 
 
The signals on the top (Trace Signals) are included to help trace the instructions as they 
progress through the pipeline. Note that these signals were already used in previous labs. 
The meaning of each signal in Way 0 is as follows (the same applies to Way 1 by just 

substituting i0 for i1 in the signal names): 

 

 dec_i0_instr_d   instruction in the Decode stage 

 i0_inst_e1    instruction in the EX1 stage 

 i0_inst_e2    instruction in the EX2 stage 
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 i0_inst_e3    instruction in the EX3 stage 

 i0_inst_e4    instruction in the Commit stage 

 i0_inst_wb    instruction in the Writeback stage 

 
Below the Trace Signals, the main signals of each multiplexer analysed above are shown. 
Each multiplexer is surrounded by two blue lines, whereas the control signal, inputs, and 
output of each multiplexer are separated by red lines. 
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Figure 8. Simulation of the program from Figure 2 in a random iteration of the loop 
 

Figure 9 shows the Decode and EX1 stages during the execution of the program from Figure 
2 in Cycle i (as defined in Figure 8). 
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Figure 9. Decode and EX1 stages during execution of the Figure 2 example program in 
Cycle i (as defined in Figure 8) 

 

TASK: Replicate the simulation from Figure 8 on your own computer. You can use the .tcl 
file provided in: [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_AL-AL/test_Advanced.tcl. 

 
Analyse the simulation from Figure 8 and the diagram from Figure 9 at the same time. 
 

- Trace Signals shown in Figure 8: 
 

o In cycle i, the second add instruction is executing in the Decode stage of Way 

0 (dec_i0_instr_d  = 0x01DE0E33), and the first add instruction is 

executing in the EX1 stage of the I0 Pipe (i0_inst_e1  = 0x01EE8EB3). 

 

o In cycle i+1, the second add progresses to the EX1 stage of the I0 Pipe 

(i0_inst_e1  = 0x01DE0E33) and the first add progresses to the EX2 stage 

of the I0 Pipe (i0_inst_e2  = 0x01EE8EB3). 
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- 10:1 Multiplexer: In Cycle i, signal i0_rs2bypass[9:0] = 0x100 (i.e. 

i0_rs2bypass[8] = 1), thus the output is connected with the value coming from 

the EX1 stage of the I0 Pipe (see Figure 9): 

i0_rs2_bypass_data_d = i0_result_e1 = 0x00000003 

 

- 3:1 Multiplexer: In Cycle i, signal dec_i0_rs2_bypass_en_d = 1, thus the output 

is connected with the value coming from the bypass logic (see Figure 9): 

i0_rs2_d = i0_rs2_bypass_data_d = 0x00000003 

 
- EX1 stage shown in Figure 8: 

 

o In cycle i, the first add instruction computes the addition in the I0 Pipe ALU: 

a_ff (2) + b_ff (1) = out (3). 

 

o In cycle i+1, the second add instruction computes the addition in the I0 Pipe 

ALU: a_ff (3) + b_ff (3) = out (6). 

 
 
 

TASK: For the program from Figure 2, perform the same analysis as in Figure 8 for 
situations where the two dependent instructions are placed at different distances one from 
each other. You can control the distance by changing the number of nops between the two 

dependent add instructions. 

 
Also, create other examples where the first input operand is the one that receives the 
forwarding data. 
 
You can also create other examples where the two add instructions are executing through 
the I1 Pipe, and confirm that the behaviour is the same. 
 

Finally, substitute the dependent add instruction (add t3,t3,t4) for other dependent 

instructions executing though other pipes and analyse the results of the simulation. For 

example, instead of the second add instruction, you could include one of the following 

instructions: 

   - lw  t3, (t4) (force the read value to come from the DCCM as explained in Lab 13) 

   - mul t3, t3, t4 

   - div t3, t3, t4 

 
 
 

3. SOLVING DATA HAZARDS WITH FORWARDING AT THE COMMIT STAGE 
 
A more delicate situation occurs when an instruction depends on a previous instruction that 

needs several cycles to obtain the result (i.e. a multi-cycle operation), such as a lw 

instruction, a mul instruction, a div instruction, etc. In this section we analyse a specific 

situation that can occur in the execution of a lw instruction and a dependent add instruction, 

and we leave as an exercise the analysis of other instructions and situations. 
 

As explained in Lab 13, a lw instruction needs three cycles (stages DC1, DC2 and DC3) to 

obtain its result when the low-latency DCCM memory is used. This is the scenario used in 
this section. (As we also analysed in Labs 13 and 14, a larger delay is incurred when the 
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External DDR2 Memory is used – the effects of this larger memory latency on data hazards 
is left as an exercise.) 
 

If the lw instruction executes three or more cycles ahead of the dependent add instruction, 

the hazard is resolved as explained in Section 2. In this case, the same 10:1 and 3:1 
multiplexers described in that section are used for forwarding the data read by the load 
instruction to the subsequent instruction that depends on it. 
 

APPENDIX A: The appendix at the end of the document includes an example of a lw-add 

RAW data hazard that is handled as explained in Section 2. 

 

However, if the load instruction executes closer to the dependent add instruction, the hazard 

is resolved in a different way than described in Section 2. The problem now is that when the 

add instruction reaches the EX1 stage, the value read by the lw instruction is not yet 

available. 
 
In the pipelined processor explained in DDCARV, bubbles are introduced in this case, which 
make the dependent instruction wait and only use the read value when it is available. This 
requires little added hardware, but it impacts performance. Thus, SweRV EH1 allows the 
dependent instruction to continue through the pipeline and then recalculate the operation in 
the Commit stage, if needed due to a data dependency. 
 
Specifically, SweRV EH1 adds an extra ALU (the Secondary ALU) in the Commit stage of 
each way. This ALU recalculates the arithmetic-logic operation with the proper inputs when 
necessary. Thus, no cycles are lost due to stalling – but at the cost of adding two extra ALUs 
(one per way) as well as added control signals and logic. Figure 10 illustrates the 
implementation of this Secondary ALU in the Commit stage of Way 0 (the ALU is surrounded 
by a blue square) as well as the added forwarding logic in the EX3 stage for the second 
input operand (this logic is surrounded by a red square). (In Figure 4 of Lab 11 these two 
extra ALUs and the forwarding paths were not included for the sake of simplicity.) 
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Figure 10. Secondary ALU in the Commit stage of Way 0 
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TASK: Add logic to Figure 10 to produce the first input operand (a) of the Secondary ALU 

in the I0 Pipe. 

 

Figure 11 shows the example code used in this section. It executes a lw instruction followed 

immediately by an independent add instruction (add t6, t6, -1: that calculates the loop 

index) and then an add instruction that depends on the load. The independent add 

instruction is included to force both the lw instruction and the dependent add instruction to 

execute through Way 0. Thus, the only difference with respect to the program from the 

Appendix is that the lw and add instructions are closer now; however, this small difference 

in the program translates into a huge difference in the way it is executed, as we have just 
explained and will demonstrate next. 
 
 

.globl Test_Assembly 

 

.section .midccm 

#.data 

A: .space 4 

 

.text 

 

Test_Assembly: 

 

la t0, A     # t0 = addr(A) 

li t1, 0x1     # t1 = 1 

sw t1, (t0)     # A[0] = 1 

li t1, 0x0 

li t3, 0x1 

li t6, 0xFFFF 

 

REPEAT: 

   beq t6, zero, OUT      # Stay in the loop? 

   INSERT_NOPS_9 

   lw t1, (t0) 

   add t6, t6, -1 

   add t3, t3, t1          # t3 = t3 + t1 

   INSERT_NOPS_8 

   li t1, 0x0 

   li t3, 0x1 

   add t4, t4, 0x1 

   add t5, t5, 0x1 

   j REPEAT 

OUT: 

 

.end 

Figure 11. Program that executes a lw, independent add, and dependent add 

 
As usual, folder [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_Close-LW-AL provides the 
PlatformIO project so that you can analyse, simulate, and modify the program as desired. 
Open the project in PlatformIO, build it, and open the disassembly file (available at 
[RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_Close-LW-

AL/.pio/build/swervolf_nexys/firmware.dis). Notice that the lw and add instructions are 

placed at addresses 0x000001bc and 0x000001c4. 
 

0x000001bc: 0002a303           lw t1,0(t0) 

0x000001c0: ffff8f93           addi t6,t6,-1 

0x000001c4: 006e0e33           add t3,t3,t1 
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Figure 12 shows the simulation of the program from Figure 11 in a random iteration of the 
loop. Again, any iteration would be valid except for the first one, which you should try to 
avoid due to instruction cache misses. As in the example from the previous section, the 
signals on the top (Trace Signals) are included for help trace the instructions as they 
progress through the pipeline. Below the Trace Signals, the main signals of the 4:1 and 2:1 
multiplexers and the new ALU from Figure 11 are shown. 
 
 
 

 
 

Figure 12. Simulation of the program from Figure 11 in the third iteration of the loop 
 
Figure 13 shows a diagram of the execution of the program from Figure 11 in the seventh 

iteration of the loop and for cycle i shown in Figure 12, when the add instruction is in the 

EX3 stage and the lw instruction is in the Commit stage, and for cycle i+1, when the add 
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instruction is in the Commit (i.e., EX4) stage and recalculates the operation on the proper 
inputs. 
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Figure 13. Diagram of the execution of the program from Figure 11 in the seventh 
iteration of the loop and for cycles i and i+1 from Figure 12 

 
 

TASK: Replicate the simulation from Figure 12 on your own computer. You can use the .tcl 
file provided at: [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_Close-LW-
AL/scriptLoad.tcl 

 
 

TASK: Draw a figure similar to Figure 3 for the example from Figure 11. 

 
 
Analyse the waveform from Figure 12 and the diagram from Figure 13 at the same time. 
 

- Trace Signals shown in Figure 12: 

o In cycle i, the add instruction is in the EX3 stage of Way 0 (i0_inst_e3 = 

0x006E0E33), and the lw instruction is in the Commit stage of the I0 Pipe 

(i0_inst_e4 = 0x0002A303). 

 

o In cycle i+1, the add instruction is in the Commit stage of Way 0 

(i0_inst_e4 = 0x006E0E33). 

 
- 4-1 Multiplexer: In Cycle i, the value read by the load instruction, which in this cycle 

is in the Commit stage, is selected: 

i0_rs2_bypass_data_e3 = i0_result_e4_eff = 0x00000001 

 
- 2-1 Multiplexer: In Cycle i, due to the dependency between the load and the 

addition, the bypassed value is selected (dec_i0_rs2_bypass_en_e3 = 1). Thus: 

i0_rs2_e3_final = i0_rs2_bypass_data_e3 = 0x00000001 

 
- Commit stage ALU: In Cycle i+1, the addition is recomputed using the correct 

values: 

out = a_ff + b_ff = 0x00000001 + 0x00000001 = 0x00000002 

Then, in the 3:1 multiplexer, the ALU output is selected (exu_i0_result_e4). Note 

that, if no dependency exists, the value in signal i0_result_e4 would be selected. 

 
 

TASK: In the previous example, analyse how the first operand for the add t3, t3, t1 

instruction (t3) is obtained. You can use the .tcl file provided at: 

[RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_Close-LW-AL/scriptLoad_FirstOperand.tcl 

 
 

TASK: Remove the nop instructions in the example from Figure 11 and obtain the IPC 
using the HW Counters. 

 
 

TASK: Disable the Secondary ALU as explained in Lab 11 and analyse the example from 
Figure 11 both with a Verilator simulation and with an execution on the board. 

 
 

TASK: In the example from Figure 11, move the add t6,t6,-1 instruction after the add 
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t3,t3,t1 instruction and re-examine the program both in simulation and on the board. 

 
 
 

4. EXERCISES 
 

1) Modify the program used in Section 3 by adding an extra arithmetic-logic instruction 

that depends on the result of the add instruction. For example, you can replace the 

loop from Figure 11 with the following code, where a new AND instruction has been 
included (and t3, t4, t3), and where we have slightly reordered the code by 

moving forward instruction add t5, t5, 0x1: 

 
    REPEAT: 

beq t6, zero, OUT 

 INSERT_NOPS_9 

lw t1, (t0) 

 add t6, t6, -1 

 add t3, t3, t1 

 add t5, t5, 0x1 

 and t3, t4, t3 

INSERT_NOPS_8 

 li t1, 0x0 

 li t3, 0x1 

 add t4, t4, 0x1 

 j REPEAT 

    OUT: 

 

     Analyse the Verilator simulation and explain how data hazards are handled for the new 
A-L instruction. Then remove all nop instructions and analyse the results provided by the 
HW counters. 

 
 

2) Analyse the same situation as the one described in Section 3 for a mul instruction 

followed by an add instruction that uses the result of the multiplication. In the program 

from Figure 11 you can simply substitute the lw for a mul that writes to register t1. 

 
 

3) Analyse a situation with a lw instruction followed by a mul instruction that depends on 

the value read by the load. In the program from Figure 11 you can simply substitute the 

dependent add instruction for a mul instruction. 

 
 

4) (The following exercise is based on exercises 4.18, 4.19, 4.20, and 4.26 of [PaHe].) 
Suppose you executed the code below on a version of the SweRV EH1 processor that 
does not handle data hazards (i.e., the programmer is responsible for addressing data 
hazards by inserting nops where necessary). Add nops to the code so that it will run 
correctly. 
                       addi x11, x12, 5 

                       add x13, x11, x12 

                       addi x14, x11, 15 

                       add x15, x13, x12 
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     Then make up sequences of at least three assembly code snippets that exhibit different 
types of RAW data hazards. The type of RAW data dependence is identified by the stage 
that produces the result and the next instruction that consumes the result. 
      
     For each sequence, how many nops would need to be inserted and where, to allow your 
code to run correctly on a SweRV EH1 processor with no forwarding or hazard detection? 
What is the CPI if we use the forwarding available in SweRV EH1 and don’t insert nops?  

 
 

5) In the program from Section 2.C of Lab 14 (available at 

[RVfpgaPath]/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory), replace instruction add 

x1, x1, 1 with add x28, x1, 1. This introduces a WAW hazard between the 

modified add instruction and the non-blocking load at the beginning of the loop (lw 

x28, (x29)). Analyse in simulation how this hazard is handled in SweRV EH1, for 

which you can look at the value of signal wen2 in the Register File. Try to understand 

how this signal is computed in the Control Unit (module dec). 

 
 

6) In the program from Section 2.C of Lab 14 (available at 

[RVfpgaPath]/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory), replace instruction add 

x1, x1, 1 with add x1, x28, 1. This introduces a RAW hazard between the 

modified add instruction and the non-blocking load at the beginning of the loop (lw 

x28, (x29)). Analyse in simulation how this hazard is handled in SweRV EH1. 

 
 

7) In the program from Section 2.C of Lab 14 (available at 

[RVfpgaPath]/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory), replace instruction add 

x1, x1, 1 with add x1, x28, 1, and instruction add x7, x7, 1 with add x28, 

x7, 1. This causes both a RAW and a WAW hazard to occur. Analyse in simulation 

how these two hazards are handled in SweRV EH1. 

 
 

8) Store to Load Forwarding 
 
This is a very interesting situation that we have not analysed in this lab and that you will 
analyse in this exercise. When a store followed by a load access the same address, data 
can be forwarded from the store to the load within the core and DDR External Memory 
reading can be avoided, saving both time and power. 
 
The logic that implements this forwarding is included in the LSU, and specifically in 
modules lsu_bus_intf and lsu_bus_buffer, which you must inspect in this exercise. 
 
The PlatformIO project from [RVfpgaPath]/RVfpga/Labs/Lab15/Sw-Lw-Forwarding 
illustrates a store-load forwarding. A .tcl script is provided in that folder, which you can use 
for analysing a random iteration of the loop and understand how the store-load forwarding 
is carried out in SweRV EH1. 
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APPENDIX A 
 

In this appendix we include an example of a lw-add RAW data hazard that is handled as 

explained in Section 2. Figure 14 shows the example code used in this appendix. It executes 

a lw instruction followed by 5 nop instructions and an add instruction that depends on the 

load. The intermediate nop instructions are included in order to separate the two dependent 

instructions. 
 
 

.globl Test_Assembly 

 

.section .midccm 

#.data 

A: .space 4 

 

.text 

Test_Assembly: 

 

# Register t3 is also called register 28 (x28) 

la t0, A     # t0 = addr(A) 

li t1, 0x1     # t1 = 1 

sw t1, (t0)     # A[0] = 1 

li t1, 0x0 

li t3, 0x1 

li t6, 0xFFFF 

 

REPEAT: 

   beq t6, zero, OUT      # Stay in the loop? 

   INSERT_NOPS_8 

   lw t1, (t0) 

   INSERT_NOPS_5 

   add t3, t3, t1          # t3 = t3 + t1 

   INSERT_NOPS_8 

   li t1, 0x0 

   li t3, 0x1 

   add t6, t6, -1 

   j REPEAT 

OUT: 

 

.end 

 

Figure 14. Program that executes lw, 5 nops, and a dependent add instruction 

 
As usual, folder [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_FarAway-LW-AL provides 
the PlatformIO project so that you can analyse, simulate, and modify the program as 
desired. Open the project, build it, and open the disassembly file (available at 
[RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_FarAway-LW-

AL/.pio/build/swervolf_nexys/firmware.dis). Notice that the lw and add instructions are 

placed at addresses 0x000001b0 and 0x000001c8. 
 

0x000001b0: 0002a303           lw t1,0(t0) 

0x000001b4: 00000013           nop 

0x000001b8: 00000013           nop 

0x000001bc: 00000013           nop 

0x000001c0: 00000013           nop 

0x000001c4: 00000013           nop 

0x000001c8: 006e0e33           add t3,t3,t1 
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Figure 15 shows the simulation of the program from Figure 14 in the third iteration of the 
loop. Again, any iteration would be valid except for the first one, which you should try to 
avoid due to instruction cache misses. As in the examples from the main lab, the signals on 
the top (Trace Signals) help trace the instructions as they progress through the pipeline. 
Below the Trace Signals, the main signals of each multiplexer are shown. The signals from 
each multiplexer are surrounded by dashed blue lines. The control signal, inputs, and output 
of each multiplexer are illustrated, as was done in the main lab. 
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Figure 15. Simulation of the program from Figure 14 in the third iteration of the loop 
 
Figure 16 shows a diagram of the execution of the program from Figure 14 in Cycle i (as 

defined in Figure 15), when the add instruction is in the Decode stage and the lw instruction 

is in DC3. 
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Figure 16. Hardware during execution of the program from Figure 14 in the third 
iteration of the loop and in the fourth cycle shown in Figure 15 

 
 

TASK: Replicate the simulation from Figure 15 on your own computer. 

 
 
Analyse the waveform from Figure 15 and the diagram from Figure 16 at the same time. 
 

- Trace Signals shown in Figure 15: 
 

o In cycle i, the add instruction is in the Decode stage of Way 0 

(dec_i0_instr_d  = 0x006E0E33), and lw is in the DC3 stage of the I0 

Pipe (i0_inst_e3  = 0x0002A303). 

 

- 10:1 Multiplexer: In cycle i, signal i0_rs2bypass[9:0] = 0x010 (i.e. 

i0_rs2bypass[4] = 1), thus the output is connected to the value coming from the 

EX3/DC3 stage of the I0 Pipe (see Figure 16): 

i0_rs2_bypass_data_d = i0_result_e3_final = 0x00000001 

 

- 3:1 Multiplexer: In Cycle i, signal dec_i0_rs2_bypass_en_d = 1, thus the output 

is connected to the value coming from the bypass logic (see Figure 9): 

i0_rs2_d = i0_rs2_bypass_data_d = 0x00000001 
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TASK: Compare how the scenario above is handled in SweRV EH1 and in the pipelined 
processor from DDCARV. 

 
 

TASK: If you compare carefully Figure 16 and Figure 6 of Lab 13, you will see that the 

value that the lw instruction reads into the Register File in Figure 6 of Lab 13 (signal 

lsu_ld_data_corr_dc3[31:0]) is different than the value forwarded by the lw in 

Figure 16 (signal lsu_ld_data_dc3[31:0]). The difference between both values is that 

the former has been checked by the ECC logic in module lsu_ecc, whereas the latter has 

not. Explain why it is not problematic that the value forwarded by the lw is not checked for 

errors. 

 
 

TASK: In the example from Figure 14, remove all the nop instructions before the lw and 

after the add. Do not remove the 5 nops between the two dependent instructions. Analyse 

the simulation and then compute the IPC with the Performance Counters by executing the 
program on the board (it may seem awkward to keep nop instructions when measuring the 
IPC as they are useless instructions; however, the program itself is useless and our only 
aim here is to analyse data hazards and understand them). 

 
 
 


