

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022

© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 3
Function Calls

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

Function calls are a critical part of any program because they allow for modularity and reuse
of code and, thus, make writing and debugging code easier. The C programming language
also includes standard libraries, as well as processor/board specific libraries, of commonly
used C functions, such as random number generators and common math functions. High-
level functions are translated into assembly following a Calling Convention. This lab shows
how to write and use functions in C programs – both functions written by the programmer as
well as functions contained in C libraries. It also shows how functions are implemented in
assembly language. At the end of the lab, we provide exercises on writing programs that use
functions and library calls.

2. Writing a C program that uses functions

A function – also called a subroutine or procedure – is code that is packaged into a block of
code that has a defined operation and interface (inputs and outputs). This modularity
increases efficiency by decreasing complexity and supporting reuse of code. A function can
be called from any point in the program in such a way that, when the function finishes,
program execution is resumed just after the function call. Functions may be called from
another function (which are called nested functions), or even by the same function (named
recursive calls).

To write a RISC-V program with functions, you follow the same general steps as described
in Labs 1 and 2:

1. Create an RVfpga project
2. Write a C program
3. Download RVfpgaNexys onto Nexys A7 FPGA board (remember that you can also

run these programs on simulation, using Verilator or Whisper)
4. Compile, download, and run/debug program

Refer to Lab 1 for detailed instructions for these steps. Below is a brief description of each
step.

Step 1. Create an RVfpga project
Create your project named project1 in the following folder:

[RVfpgaPath]/RVfpga/Labs/Lab03

Step 2. Write a C program
Now you will add a C program to the project. Create a new file and type or copy/paste the
following C program in the project. This program is also available in the following file:

 [RVfpgaPath]/RVfpga/Labs/Lab03/LedsSwitches_functions.c

// memory-mapped I/O addresses

#define GPIO_SWs 0x80001400

#define GPIO_LEDs 0x80001404

#define GPIO_INOUT 0x80001408

#define READ_GPIO(dir) (*(volatile unsigned *)dir)

#define WRITE_GPIO(dir, value) { (*(volatile unsigned *)dir) =

(value); }

void IOsetup();

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

unsigned int getSwitchVal();

void writeValtoLEDs(unsigned int val);

int main (void)

{

 unsigned int switches_val;

 IOsetup();

 while (1) {

 switches_val = getSwitchVal();

 writeValtoLEDs(switches_val);

 }

 return(0);

}

void IOsetup()

{

 int En_Value=0xFFFF;

 WRITE_GPIO(GPIO_INOUT, En_Value);

}

unsigned int getSwitchVal()

{

 unsigned int val;

 val = READ_GPIO(GPIO_SWs); // read value on switches

 val = val >> 16; // shift into lower 16 bits

 return val;

}

void writeValtoLEDs(unsigned int val)

{

 WRITE_GPIO(GPIO_LEDs, val); // display val on LEDs

}

Save the file into the src directory of your project and name the file

LedsSwitches_Functions.c.

Step 3. Download RVfpgaNexys onto Nexys A7 FPGA board
Download RVfpgaNexys onto the Nexys A7 board as you did in RVfpga Labs 1 and 2.

Step 4. Compile, download, and run program
Now you are ready to compile, download, and run/debug the program on RVfpgaNexys.

After pressing the Run and Start Debugging buttons, click on the Step

Over button (located in the top tool bar) or F10 twice until you get to line 19 that calls

the getSwitchVal() function. Then press the Step Into button (or F11). This will step into
the getSwitchVal() function. If it is not already viewable, expand the VARIABLES → Local
field on the left toolbar to view the val variable. The val variable may be listed as “optimized
out” at this point in the program. Step (either Step Over or Step Into) once and view the val
variable change to the value of the switches, as shown in Figure 1.

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

Figure 1. Stepping into the getSwitchVal() function

Now put a breakpoint at line 19 by clicking to the left of the line. You will see a red dot
appear to the left indicating that it is now a breakpoint, as shown in Figure 2.

Figure 2. Setting a breakpoint

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

Press the Continue button (or F5). The program will stop at line 19 once the breakpoint

is reached. This time, press the Step Over button (or F10). The function will execute,
but the debugger will not enter the function. Only the effects of the function are shown.
Particularly, the switches_val variable becomes the value of the switches, as shown in
Figure 3.

Figure 3. Stepping over a function

3. Writing a C program with calls to library functions

High-level programming languages such as C include libraries of functions that are
commonly used by programmers. You can google “C standard libraries” to find a list of
commonly used C libraries. These libraries of functions can be used by including the header
file that gives the declaration of the included functions. This is done by adding the following
line to the top of the C program file:

 #include <libraryname>

“libraryname” is replaced by the name of the library. For example, the math library (math.h)
provides common functions such as fabs(), which computes the absolute value of a floating-
point number, fmax(), which returns the largest of two floating point numbers, etc.

Another common library is the C standard library (stdlib.h). Some of the functions included in
this library generate random numbers. For example, the program below displays a random
number on the LEDs by including the stdlib.h header file (#include <stdlib.h>) and calling the
rand() function that returns a random number. Copy and paste the program below into a
PlatformIO RVfpga project and run it on RVfpgaNexys on the Nexys A7 FPGA board.

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

#include <stdlib.h>

// memory-mapped I/O addresses

#define GPIO_SWs 0x80001400

#define GPIO_LEDs 0x80001404

#define GPIO_INOUT 0x80001408

#define DELAY 0x1000000 // Define the DELAY

#define READ_GPIO(dir) (*(volatile unsigned *)dir)

#define WRITE_GPIO(dir, value) { (*(volatile unsigned *)dir) =

(value); }

void IOsetup();

unsigned int getSwitchVal();

void writeValtoLEDs(unsigned int val);

int main(void)

{

 unsigned int val;

 volatile unsigned int i;

 IOsetup();

 while (1) {

 val = rand() % 65536;

 writeValtoLEDs(val);

 for (i = 0; i < DELAY; i++)

 ;

 }

 return(0);

}

void IOsetup() {

 int En_Value=0xFFFF;

 WRITE_GPIO(GPIO_INOUT, En_Value);

}

unsigned int getSwitchVal() {

 unsigned int val;

 val = READ_GPIO(GPIO_SWs); // read value on switches

 val = val >> 16; // shift into lower 16 bits

 return val;

}

void writeValtoLEDs(unsigned int val) {

 WRITE_GPIO(GPIO_LEDs, val); // display val on LEDs

}

This program is also available in the following file:

 [RVfpgaPath]/RVfpga/Labs/Lab03/RandomNumberLEDs.c

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

In addition to these C standard libraries, Western Digital (WD) provides, within its Firmware
Package (https://github.com/westerndigitalcorporation/riscv-fw-infrastructure), specific
libraries for the SweRV EH1 processor (PSP, which you can find in your system at

~/.platformio/packages/framework-wd-riscv-sdk/psp/) and for the Nexys A7

board (BSP, which you can find in your system at
~/.platformio/packages/framework-wd-riscv-

sdk/board/nexys_a7_eh1/bsp/). As we explained in the Getting Started Guide (Section

6.F – HelloWorld_C-Lang program), these libraries are included in the project by adding the
proper line in platformio.ini and by including the proper files at the beginning of the C
program.

These libraries provide functions and macros that allow programmers to use interrupts, print
a string, read/write individual registers, among other things. In the RVfpga Getting Started
Guide and in these labs, you will use many of these functions in the examples and
exercises.

4. RISC-V Calling Convention

This section describes the RISC-V Calling Convention, which defines how high-level
functions are translated into RISC-V assembly language. This calling convention is a part of
the Application Binary Interface (ABI). By defining a convention, functions written by
different programmers or contained in libraries can be used across programs. In RISC-V, the

jump and link instruction (jal) invokes a call to a function. For example, the following code

calls the function func1:
jal func1

This instruction both jumps to the label func1 and saves the address of the instruction after

jal into the return address register (ra = x1). The function then returns by using the return

(ret) pseudo-instruction (or jump register instruction: jr ra), which jumps to the address

stored in ra.

Functions may be called with input arguments and may also return a value to the calling
function. By RISC-V convention, input arguments are passed to the function in registers a0–
a7. If additional arguments are needed, they are placed on the stack. Again by convention,
return values are placed in registers a0 and a1. The agreement on which registers are used
to pass arguments and return values is defined by the RISC-V Calling Convention.

In order to safely invoke a function from any location in the program, it is essential that the
function preserves the architectural state of the machine (i.e. the contents of those registers

than can be seen by the programmer). Suppose that we have a program with a main

function that has a loop that uses register t0 for storing the index of the loop. In the body of

the loop, a function called SortVector is invoked, and this function SortVector uses

register t0 for storing the address of vector A (see Figure 4). Thus, register t0 is overwritten

in function SortVector, which has the undesirable side effect of modifying the index of the

loop and causing its execution to be incorrect.

https://github.com/westerndigitalcorporation/riscv-fw-infrastructure

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

Figure 4. Example of the conflict in the use of a register among the main program and

a function

Obviously, this wouldn’t have happened if the programmer of the main program had

selected another register to implement the loop index (for example, t1). However, it is not

reasonable (and in some cases, not even possible) to force the programmer to know every
internal detail of the implementation of a function before calling it.

A more practical solution is for every function to create a temporary copy in memory of all
those registers that will be modified, and to restore their original values before returning to
the caller program. This solution is implemented by means of the Call Stack, which is a
memory region that is accessed using a LIFO (Last-In-First-Out) policy. This region is used
to store all the information related to the live functions of the program (i.e. those functions
that have started, but not finished their execution), and which begins at the end of the
available memory (i.e. in the higher addresses), and grows towards lower addresses.

A function is normally structured into three parts:

 Entry code (Prologue)

 Function Body

 Exit code (Epilogue)

The Prologue must create the function’s stack frame and store registers on the stack, if
needed. The stack frame is the memory region used by a function during its execution. The
Epilogue restores the architectural state of the caller program and releases the memory
space occupied by the stack frame, thus leaving the stack exactly as it was before executing
the Prologue.

Accesses to the stack are managed by means of a pointer, called the stack pointer (sp =

x2), which stores the address of the last occupied location of the stack. Before a program

begins, sp must be initialized with the address of the base of the stack (i.e. the highest

address of the stack region). In the RVfpga System, the sp register is initialized by the

_start function, which is implemented in file ~/.platformio/packages/framework-wd-riscv-

sdk/board/nexys_a7_eh1/startup.S. At initialization, the stack is empty. A second pointer, the

frame pointer (fp = x8) points to the base address (i.e. the highest address) of the active

function’s stack frame.

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

Functions use the stack frame as a private memory region, which can only be accessed
from the function itself. A part of the stack frame is devoted to save a copy of the
architectural registers that are to be modified by the function and, in some cases, it can also
be used as a way of passing parameters to the function through memory locations.

Table 1 describes the intended role that the RISC-V convention assigns to each integer
register. As also illustrated in Table 1, some registers must be preserved by a called function
whereas some others may be overwritten by the function (i.e., they are not preserved).

 If the function needs to overwrite any preserved registers, it must first make a copy of
such register in its stack frame and restore the value before returning to the caller

(i.e., the function that called it). In addition to the stack pointer (sp) and return

address register (ra), twelve integer registers s0–s11 are preserved across calls

and must be saved by the callee if used by it.

 On the other hand, the caller must be aware that some registers need not be
preserved by the callee and, thus, could be lost after the call. Note that, in addition to

the argument and return value registers (a0–a7), seven integer registers t0–t6 are

temporary registers that are volatile across calls and must be saved by the caller if
used again after the function invocation.

Table 1. RISC-V integer registers

Name Register Number Use Preserved
zero x0 Constant value 0 -
ra x1 Return address Yes
sp x2 Stack pointer Yes
gp x3 Global pointer -
tp x4 Thread pointer -
t0-2 x5-7 Temporary variables No
s0/fp x8 Saved register / Frame pointer Yes
s1 x9 Saved register Yes
a0-1 x10-11 Function arguments / Return values No
a2-7 x12-17 Function arguments No
s2-11 x18-27 Saved registers Yes
t3-6 x28-31 Temporary variables No

In the example from Figure 4, there would be two solutions according to this convention:

 The main program could use a register for the loop index that is guaranteed to be

preserved by the SortVector function (such as s0) instead of t0.

 The main function could keep using t0, but then it has to preserve its contents in

the stack before calling SortVector and restore it after returning from

SortVector.

The stack expands as more memory is needed by functions’ stack frames and contracts as
those functions complete. The stack grows downwards (towards lower addresses) and the
stack pointer shall be aligned to a 16-byte boundary upon procedure entry. In the standard
ABI, the stack pointer must remain aligned throughout procedure execution.

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

Example
The following example implements a sorting algorithm, first in C (Figure 5) and then in RISC-
V assembly language (Figure 6). The input is an array A of N elements, each being an
integer greater than 0. The output is another array, B, that stores the elements of A in
decreasing order.

In C, the main function calls function SortVector, which receives the addresses of arrays

A and B, and their size (N), and stores the elements of A into B element-by-element, in

decreasing order. This SortVector function calls another function, MaxVector, which

receives the address of array A and its size, and returns the maximum value of array A and
resets that value, so that it is no longer considered in the following iterations.

#define N 8

int MaxVector(int A[], int size)

{

 int max=0, ind=0, j;

 for(j=0; j<size; j++){

 if(A[j]>max){

 max=A[j];

 ind=j;

 }

 }

 A[ind]=0;

 return(max);

}

int SortVector(int A[], int B[], int size)

{

 int max, j;

 for(j=0; j<size; j++){

 max=MaxVector(A, size);

 B[j]=max;

 }

 return(0);

}

int main (void)

{

 int A[N]={7,3,25,4,75,2,1,1}, B[N];

 SortVector(A, B, N);

 return(0);

}

Figure 5. Sorting algorithm in C language

Figure 6 illustrates the same algorithm written in assembly. We analyse the program taking
into account the concepts explained in the previous sections.

- main function
o Prologue

 First, space is reserved in the stack for storing the preserved registers

that are used in the function: add sp, sp, -16. Note that,

according to the convention, the sp register must always be kept 16-

byte aligned to maintain compatibility with the 128-bit version of RISC-
V, RV128I.

 Given that no saved register is used by this function, s0-s11 registers

need not be stored in the stack. However, register ra must be saved,

given that main calls function SortVector, which updates the value

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

stored in ra.

o Function Body

 The SortVector function is invoked using instruction jal

SortVector. Before calling the function, according to the Calling

Convention, the 3 input parameters are placed in registers a0

(address of A), a1 (address of B), and a2 (size of A and B arrays).

o Epilogue

 The register that was saved in the stack at the prologue (ra) is now

restored.

 The stack pointer (sp) is also restored to its initial position: add sp,

sp, 16.

- SortVector function
o Prologue

 First, space is reserved in the stack for storing the preserved registers

that are used in the function: add sp, sp, -32.

 Then, the saved registers used by the function (s1-s3) are stored in

the stack, one by one.

 Register ra must also be saved, because SortVector calls the

MaxVector function, which overwrites the value stored in ra.

o Function Body

 First, the input parameters (a0, a1 and a2) are moved into preserved

registers (s1, s2 and s3), so that they can be used after the execution

of function MaxVector.

 For computing vector B, a loop is implemented that, in each iteration,
computes the maximum value of A and stores it into B. For computing

the maximum value of A, the MaxVector function is invoked in each

iteration of the loop: jal MaxVector. Before calling the function,

according to the Calling Convention, the input parameters to this

function are moved into registers a0 and a1. When the function

finishes execution, it returns the maximum value of A in register a0.

 Note that the loop mostly uses the saved registers to store variables.
These registers are guaranteed by the RISC-V Calling Convention to

preserve their value after the execution of the MaxVector (i.e. the

function must preserve their values).

 Registers a0 and a1 can be modified by the function. Thus, they must

be prepared before every invocation.

 Register t1 needs to be reused after MaxVector returns. Thus, it

must be preserved in SortVector’s stack before calling the function

(sw t1, 16(sp)) and restored after executing it (lw t1, 16(sp)).

o Epilogue
 The registers that were saved in the stack during the prologue, are

now restored.

 The stack pointer (sp) is also restored to its initial position: add sp,

sp, 32.

- MaxVector function
o Prologue

 First, space is made on the stack for storing the preserved registers

that are used in the function: add sp, sp, -16.

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

 Then, the saved register used by the function (i.e., register s1) is

stored in the stack: sw s1, 0(sp). Note that, if this register were not

saved by this function, the execution of the caller function

(SortVector) would fail, as it is also using this register for storing the

address of vector A.
 Because this function does not invoke another one (it is a leaf

function), ra needs not be saved in this case.

o Function Body

 The function uses s1 and some temporary registers to calculate the

maximum value of array A.
o Epilogue

 The function must prepare the return value before returning to the

caller: mv a0, t2.

 The register that was saved on the stack during the prologue (s1), is

now restored.

 The stack pointer (sp) is also restored to its initial position: add sp,

sp, 16.

.globl main

.equ N, 8

.data

A: .word 7,3,25,4,75,2,1,1

.bss

B: .space 4*N

.text

MaxVector:

 add sp, sp, -16

 sw s1, 0(sp)

 mv s1, zero

 mv t2, zero

 loop2:

 beq s1, a1, endloop2

 lw t1, (a0)

 ble t1, t2, else2

 mv t2, t1

 mv t3, a0

 else2:

 add a0, a0, 4

 add s1, s1, 1

 j loop2

 endloop2:

 sw zero, (t3)

 mv a0, t2

 lw s1, 0(sp)

 add sp, sp, 16

 ret

SortVector:

 add sp, sp, -32

 sw s1, 0(sp)

 sw s2, 4(sp)

 sw s3, 8(sp)

 sw ra, 12(sp)

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 13

 mv s1, a0 # Address of vector A

 mv s2, a1 # Address of vector B

 mv s3, a2 # Size of vectors A and B

 mv t1, zero

 loop1:

 beq t1, s3, endloop1

 mv a0, s1

 mv a1, s3

 sw t1, 16(sp)

 jal MaxVector

 lw t1, 16(sp)

 sw a0, (s2)

 add s2, s2, 4

 add t1, t1, 1

 j loop1

 endloop1:

 lw s1, 0(sp)

 lw s2, 4(sp)

 lw s3, 8(sp)

 lw ra, 12(sp)

 add sp, sp, 32

 ret

main:

 add sp, sp, -16

 sw ra, 0(sp)

 la a0, A

 la a1, B

 add a2, zero, N

 jal SortVector

 lw ra, 0(sp)

 add sp, sp, 16

 ret

.end

Figure 6. Sorting algorithm in assembly language

Figure 7 illustrates the state of the stack at the point of executing the body of the

MaxVector function.

- The stack frame of the main function is shown in blue, and it includes the returning

address (ra) for that function.

- The stack frame of the SortVector function is shown in green, and it includes the

saved registers used by this function (s1-s3), register t1, and ra.

- Finally, the stack frame of the MaxVector function, which is the active stack frame

(the stack frame of the function that is executing), is shown in yellow, and it includes

the saved register used by this function (s1).

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

Figure 7. Stack state at the body of function MaxVector for the assembly program

from Figure 6.

TASK: The assembly program from Figure 6 is provided in a Platformio project available
at: [RVfpgaPath]/RVfpga/Labs/Lab03/SortingAlgorithm_Functions. Execute this program
on the board (or on the ISS simulator) using the step-by-step debugger option for analysing

the value stored in the various registers (s, ra, a, etc.) as well as the values stored in the

stack, according to the RISC-V Calling Convention.
 - File .pio/build/swervolf_nexys/firmware.dis, generated by PlatformIO after compilation of
your program, can be useful in order to know the addresses of each instruction in your
program.
 - You can use the Memory Console for analysing the evolution of the stack as well as the
contents of arrays A and B.
 - In this project we use a tuned link.lds script in which the sp register is forced to be 16-
byte aligned. You can find the script at
[RVfpgaPath]/RVfpga/Labs/Lab03/SortingAlgorithm_Functions/ld/link.lds. Alignment of the

sp register is forced using the ALIGN() command:
 .stack :

 {

 _heap_end = .;

 . = . + __stack_size;

 /* Force 16-B alignment of SP register */

 . = ALIGN(16);

 _sp = .;

 } > ram : ram_load

sp

ra value (return address for main)

ra value (return address for SortVector)

t1 value

s3 value

s2 value

s1 value

s1 value

High addresses

Low addresses

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 15

5. Exercises
Now create your own C/Assembly programs that include function calls by completing the
following exercises.

Remember that if you leave the Nexys A7 board connected to your computer and powered
on, you do not need to reload RVfpgaNexys onto the board between different programs.
However, if you turn off the Nexys A7 board, you will need to reload RVfpgaNexys onto the
board using PlatformIO.

Remember as well that you can run these programs on simulation, using Verilator or
Whisper.

Exercise 1. Write a C program that displays the inverse of the switches on the LEDs. Name
the program DisplayInverse_Functions.c.

For example, if the switches are (in binary): 0101010101010101, then the LEDs should
display: 1010101010101010; if the switches are: 1111000011110000, then the LEDs should
display: 0000111100001111; and so on. Include a getSwitchesInvert() function that returns
the inverted value of the switches. The function declaration is:

 unsigned int getSwitchesInvert();

Exercise 2. Write a C program that flashes the value of the LEDs onto the switches. Name
the program FlashSwitchesToLEDs_Functions.c

The value should pulse on and off about every two seconds. Include a function called delay()
that causes a delay of num milliseconds. This can be done empirically and does not need to
be exact. The function declaration looks like this:

 void delay(int num);

Exercise 3. Write a C program that measures reaction time. Your program should time how
long it takes for a person to switch on the right-most switch (SW[0]) after all of the LEDs light
up. You will use the rand() function from the stdlib.h library to generate a random amount of
time to delay between each time the user attempts to test their reaction time. Name the
program ReactionTime.c.

The program should work as follows.

1. The user toggles the right-most switch off (down) to indicate they’d like to begin.

2. The program turns off all of the LEDs, then waits for a random amount of time (but no
longer than about 3 seconds). You will want to use the delay() function from Exercise 2.

3. Then all the LEDs turn on and the program begins counting the number of milliseconds
until a user switches the right-most switch on.

4. When the user toggles the right-most switch (SW[0]) on, the number of milliseconds it
took to toggle the switch up (on) is displayed in binary on the LEDs and in decimal on the
serial console.

5. The game then repeats by the user toggling the right-most switch down (off).

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 16

Exercise 4. One issue with the rand() function is that it uses a predictably random sequence
of numbers. That is, each time you run the program it will start with the same random
number and follow the same sequence of random numbers. Run your program from
Exercise 3 several times to see that it starts with the same random number and follows the
same random sequence.

However, if you use the srand() function first, it will seed the rand() function with a random
starting point. The only issue is that srand() must be given an input argument, an unsigned
integer, that itself is random. Give srand() a random number, for example, the number of
milliseconds until the user toggles the switch off to begin the game.

Rewrite Exercise 3 to produce a truly random sequence of times before the LEDs turn on.
Use functions when possible. Name the program ReactionTimeTrulyRandom.c.

Exercise 5. Rewrite Exercise 4 so that the LEDs display a growing bar of LEDs, proportional
to reaction time. This way, the person viewing their reaction time can more easily tell if they
are getting faster – without having to interpret the binary representation of the number of
milliseconds. You may choose the range of reaction times corresponding to each range of lit
LEDs. For example, for quick reaction times, only a few LEDs on the right should light up. An
increasing number of LEDs to the left should light up as reaction times increase. A very slow
reaction time would light up all of the LEDs. Name the program ReactionTimeBar.c.

Exercise 6. Write a C program that implements a “Simon says” game. The following should
happen:
1. The program blinks a pattern on the three right-most LEDs and waits for the user to

press the corresponding sequence of switches using the three right-most switches.
Switches[2:0] correspond to LED[2:0], with LED[0] being the right-most LED and
Switches[0] being the right-most switch.

2. The random patterns should start by lighting 1 LED, then 2 LEDs, then 3, etc.

3. The user then tries to repeat the sequence using the three right-most switches. The
corresponding LED should light up as the user toggles the switches up (and turn off
when the user toggles the switch back down).

4. If the user enters the correct sequence, after a pause, the next pattern should display,
with one more LED in the sequence.

5. If the user enters the wrong sequence, the LEDs stay lit and no new sequence is played.

6. The game is reset by pushing the left-most switch (Switches[15]) up (on) and then down
(off).

Use functions of your choice to modularize the program and make it easier to write, debug,
and understand. Remember to use standard C libraries as desired to write your program.
Name the program SimonSays.c.

Exercise 7. Given a vector, A, of 3*N elements, we want to obtain a new vector, B, of N
elements, so that each element of B is the absolute value of the sum a triplet of consecutive
elements of A. For example:

B[0] = |A[0]+A[1]+A[2]|, B[1] = |A[3]+A[4]+A[5]|, ...

Write a RISC-V assembly program called Triplets.S (the program must conform to the
RISC-V calling convention):

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 17

- The main program implements the computation of B, according to the following high-

level pseudo-code:

#define N 4

int A[3*N] = {a list of 3*N values};

int B[N];

int i, j=0;

void main (void)

{

for (i=0; i<N; i++){

B[i] = res_triplet(A,j);

j=j+3;

}

}

- Function res_triplet returns the absolute value of the sum of 3 consecutive

elements of the vector V, starting at position p. It is implemented according to the
specification given by the following high-level pseudo-code:

int res_triplet(int V[], int pos)

{

int i, sum=0;

for (i=0; i<3; i++)

sum = sum + V[pos+i];

sum=abs(sum);

return sum;

}

- Function abs(int x) returns the absolute value of its input argument.

Exercise 8. Write a RISC-V assembly program called Filter.S (the program must be
compliant with the standard for function management studied before). You can use the
following pseudo-code:

#define N 6

int i, j=0, A[N]={48,64,56,80,96,48}, B[N];

for (i=0; i<(N-1); i++){

if((myFilter(A[i],A[i+1])) == 1){

B[j]=A[i]+ A[i+1] + 2;

j++;

}

}

- Write the equivalent RISC-V assembly code, including any directives required to

reserve memory space, and declaring the corresponding sections (.data, .bss and

.text). Function myFilter returns the value 1 if the first argument is a multiple of 16

and the second is greater than the first; otherwise, it returns a 0.

- Write the assembly code of the function myFilter.

Imagination University Programme – RVfpga Lab 3: Function Calls
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 18

Exercise 9. We want to build a RISC-V assembly program called Coprimes.S (the program
must be compliant with the standard for function management studied before), such that
given a list of pairs of integers (>0) finds which pairs are composed of coprime (or mutually
prime) numbers. It is understood that two numbers are coprime if the only common divisor
they have is 1.

We assume that the input data are contained in an array, D, of the form:

D=(x0, y0, c0, x1, y1, c1, ... , xN-1, yN-1, cN-1)

Each triplet (xi, yi, ci) is interpreted as follows: xi and yi represent a pair of numbers,

and ci is initially 0. After running the program, the value of each ci must have been modified
in such a way that ci = 2, if xi and yi are coprime; and ci = 1, otherwise.

For example:

For the following input vector: D = (3,5,0, 6,18,0, 15,45,0, 13,10,0, 24,3,0, 24,35,0)
The final result should be: D = (3,5,2, 6,18,1, 15,45,1, 13,10,2, 24,3,1, 24,35,2)

- Write a RISC-V assembly program that traverses the array D and generates the result

according to the specification given in the left box below. The program calls the function

check_coprime (int D [], int i), whose input arguments are the starting

address of D and the number of the pair that we want to check (from 0 to M-1). The
function checks if the numbers of the i-th pair of array D are coprime and stores the
result in the corresponding memory location.

- Write the code for the functions check_coprime, according to the specification given

in the right box below. Remember that function gcd(int a, int b) was

implemented in Lab 2 according to the Euclidean algorithm, and it returns the greatest
common divisor (gcd) of the two input arguments. If the gcd is 1, then the numbers are
coprime.

#define M 6
int D[]= {a list de M*3 int values}
void main () {
 int i;
 for (i=0; i<M; i++)
 check_coprime(D,i);
}

void check_coprime (int A[], int pos) {
 int res;
 res= gcd(A[3*pos], A[(3*pos)+1]);
 if (res == 1)
 A[(3*pos)+2]=2;
 else
 A[(3*pos)+2]=1;
}

