

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

SweRV EH1 Reference

Hierarchy, Modules, Signals, and
Types

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

This document provides extra instructions on the following topics:

- Section 1: Sigasi Studio

- Section 2: Configuration of the SweRV EH1 processor

- Section 3: RVfpga System hierarchy of modules and their most relevant signals

- Section 4: Main structures/types for grouping control bits

- Section 5: RISC-V compressed instructions

- Section 6: Real Benchmarks

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

1. SIGASI STUDIO

Sigasi Studio improves designer productivity by helping to write, inspect, and modify digital
circuit designs in the most intuitive way. This tool understands the design context. Advanced
features such as intelligent autocompletes and code refactoring make VHDL, Verilog and
SystemVerilog design easier and more efficient.

Sigasi Studio requires a fee for obtaining a license and being able to use it professionally.
Fortunately, there is a free license for educational purposes that you can easily obtain at:
https://www.sigasi.com/try-form-edu/. Once you fill in your data and your license is approved,
you will receive an e-mail with the instructions and a link for downloading
(https://www.sigasi.com/download/, see Figure 1), installing, and using Sigasi Studio. The
software is available for Windows, Linux and MacOS.

Figure 1. Link for downloading, installing, and using Sigasi Studio

Once you have installed Sigasi Studio in your system you can start using it for inspecting
RVfpga. In the following link, two years ago, Hendrik Eeckhaut published instructions for
creating and configuring a project for SweRV EH1:
https://insights.sigasi.com/tech/swerv_riscv/. Using that information as a starting point, we
next provide complete instructions for creating and configuring a project for RVfpga.

https://www.sigasi.com/try-form-edu/
https://www.sigasi.com/download/
https://insights.sigasi.com/tech/swerv_riscv/

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

1. Create a copy of the [RVfpgaPath]/RVfpga/src directory and name it
[RVfpgaPath]/RVfpga/src_SigasiStudio

2. Open Sigasi Studio by going into the downloaded directory and double-clicking on file
sigasi_internal (see Figure 2).

Figure 2. Open Sigasi Studio

3. On the Sigasi Studio window click on File → Import… A new window will open that
asks you to select the type of project that you want to add to your system. Choose
“Import a (System) Verilog project” and click next (Figure 3).

Figure 3. Import the RVfpga project

4. Now click on “Browse…” and navigate to and select the src_SigasiStudio directory

and click Open (see Figure 4) and then click on Finish.

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

Figure 4. Open the RVfpga source directory

5. The project will open with many errors (see Figure 5), most of them due to the lack of
many include files in the project configuration.

Figure 5. Initial errors in the RVfpga Sigasi Studio Project.

6. In the Project Explorer, right-click on the src_SigasiStudio project and open the
Properties window (see Figure 6).

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

Figure 6. Project properties.

7. In the Properties window (Figure 6) select the “(System)Verilog Preprocessor” and

add the following include paths (by clicking on the Add button on the right):

 [RVfpgaPath]/RVfpga/src_SigasiStudio/SweRVolfSoC/SweRVEh1CoreCompl
ex/include

 [RVfpgaPath]/RVfpga/src_SigasiStudio/OtherSources/pulp-
platform.org__common_cells_1.20.0/include

 [RVfpgaPath]/RVfpga/src_SigasiStudio/SweRVolfSoC/Interconnect/AxiInterco
nnect/pulp-platform.org__axi_0.25.0/include

 [RVfpgaPath]/RVfpga/src_SigasiStudio/SweRVolfSoC/Interconnect/AxiInterco
nnect

 [RVfpgaPath]/RVfpga/src_SigasiStudio/SweRVolfSoC/Interconnect/Wishbone
Interconnect

Once the five directories have been added, click on the Apply button.

Then, in the same window, on the bottom box (Initial preprocessor definitions), enter

the following line: `include "common_defines.vh". Click on the Apply and

Close button.

Figure 7 shows the final state.

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

Figure 7. Include directories and files

8. Finally, delete file

[RVfpgaPath]/RVfpga/src_SigasiStudio/SweRVolfSoC/BootROM/sw/boot_main.vh,
which we do not need for our project and gives some errors. You can either delete it
in your File Explorer or inside Sigasi Studio.

All the errors should have disappeared after these steps and only some warnings should
remain, that you can ignore.

You can start using Sigasi Studio for inspecting the RVfpga SoC. As a test, we next show
some functionalities of the tool:

1. On the top menu, open Window → Show View → Block Diagram, which opens a new
window on the right part of the tool that lets you navigate graphically through the
module.

2. In this lab we analyse arithmetic and logical instructions. These instructions are
executed in the ALU, which is implemented inside module exu_alu_ctl. Open that
module by double-clicking on it on the Project Explore window. You should see what
we show in Figure 8.

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

Figure 8. File exu_alu_ctl.sv: Verilog Code and Block Diagram

3. You can highlight a signal on the diagram by right-clicking on it in the Verilog code

and selecting Show In → Block Diagram. The wires associated with the signal will

highlight on the Block Diagram window, as shown in Figure 9, where the ap packet is

highlighted.

Figure 9. Highlight signal ap

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

4. You can also look for the implementation of a combinational module in the Verilog

code, by double-clicking on the module in the Block Diagram. For example, in Figure

10, the module that generates signal out is shown.

Figure 10. Highlight the Verilog code for the combinational module that generates

signal out

5. Finally, we open a module declaration on the Block Diagram by right-clicking on the

module instantiation in the Verilog code and selecting Open Declaration. Figure 11
shows module rvdffe, implemented in file beh_lib.sv.

Figure 11. Module rvdffe

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

2. CONFIGURATION OF THE SWERV EH1 PROCESSOR

A. Configure the Core Structures
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/common_defines.
vh permits the user to configure many structures of the core, such as the Instruction Cache,
the ICCM/DCCM, the Branch Predictor, etc. A default configuration is provided in the RVfpga
System, which you can change in two different ways:

- You can manually edit the parameters in file common_defines.vh.

- You can use the swerv.config script provided by Western Digital with the SweRV

EH1 package. The use of this script is described at
https://github.com/chipsalliance/Cores-SweRV/tree/branch1.8
In RVfpga you can find the swerv.config script at:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/

Once you have generated the new configuration files, you can resynthesize the SoC in
Vivado as explained in Lab 1 and obtain the new RVfpga System bitstream.

B. Disable the use of Compressed Instructions
In some cases, we may be interested in disabling the use of compressed instructions. For
that purpose, we must make two changes to our PlatformIO project:

- Include the following new lines in file platformio.ini:
build_unflags = -Wa,-march=rv32imac -march=rv32imac

build_flags = -Wa,-march=rv32ima -march=rv32ima

extra_scripts = extra_script.py

- Add file extra_script.py to the sources of the project. This file contains the following

lines:
 Import("env")

env.Append(

 LINKFLAGS=[

 "-Wa,-march=rv32ima",

 "-march=rv32ima"

]

)

In most of the examples used in Labs 11-20 we will disable the use of compressed
instructions for the sake of simplicity.

C. Enable/Disable Core Features
Table 10-1 of the SweRV EH1 Programmer’s Reference Manual
(https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-
V_SweRV_EH1_PRM.pdf) shows the mfdc register (at CSR 0x7F9) bits. This register hosts
low-level core control bits to disable specific features, such as pipelined or dual-issue
execution, the Branch Predictor, etc. Table 1 shows the nine core features that can be
controlled by this register. Setting the proper bits of the register to 0 or 1, enables or disables
each core feature. For example, you can include the following two assembly instructions in

https://github.com/chipsalliance/Cores-SweRV/tree/branch1.8
https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

your assembly program for disabling the dual-issue execution, the secondary ALU and the
pipelined execution:

li t2, 0x481

csrrs t1, 0x7F9, t2

Table 1. Feature Disable Control Register (mfdc: CSR 0x7F9)
31-11 Reserved 7 0: enable secondary ALU

1: disable secondary ALU
3 0: enable branch prediction and return

address stack
1: disable branch prediction and return

address stack

10 0: dual issue execution
1: single issue execution

6 0: side effect stores are pipelined
1: side effect stores block all subsequent bus

transactions until
store response with default value received

2 0: enable Write Buffer coalescing
1: disable Write Buffer coalescing

9 Reserved 5 0: enable non-blocking loads/divides
1: disable non-blocking loads/divides

1 Reserved

8 0: ICCM/DCCM ECC
checking enabled

1: ICCM/DCCM ECC
checking disabled

4 0: enable fast divide
1: disable fast divide

0 0: pipelined execution
1: single instruction execution

We will use different configurations in Labs 11-20 in order to compare the performance, I$
hits/misses, Branch Predictor hits/misses, etc., of SweRV EH1 when the different core
features are enabled/disabled.

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

3. MAIN MODULES AND SIGNALS OF THE SweRV EH1 CORE

The RVfpga System runs on the Artix-7 FPGA located on the Nexys A7 board, as shown in
Figure 12. The figure details the system’s hierarchy, including the names of the Verilog
modules and submodules. The RVfpga System consists of the SweRVolf core
(swervolf_core), the DRAM controller (litedram_top), the clock generation module
(clk_gen_nexys), and some interface modules. The SweRVolf core, in turn, consists of the
SweRV EH1 processor (swerv_wrapper_dmi) and additional interface modules
(wb_intercon, axi_intercon, uart_top, etc.). The top module for the SweRV EH1
processor, swerv_wrapper_dmi, instantiates the two main modules of the core: mem and
swerv. In the remainder of this document, we list the submodules and main signals of these
two modules. Note that you can find the remaining signals of each module at the interface of
the module. In Labs 11-20 we study these signals when analysing the operation of the
different processor parts.

lsu_dccm_mem

ifu_ic_mem

ifu_iccm_mem

ifu_ifc_ctl

swerv_wrapper_dmi

mem

ifu

ifu_mem_ctl

ifu_bp_ctl

ifu_aln_ctl

ifu_compress_ctl

swerv

dec_gpr_ctl

dec_ib_ctl

dec_decode_ctl

dec_dec_ctl

dec

exu_alu_ctl

exu_mul_ctl

exu

exu_div_ctl

lsu_lsc_ctl

lsu

lsu_stbuf

lsu_dccm_ctl

lsu_bus_intf

lsu_bus_buffer

dbg lib pic_ctrl dma_ctrl

wb_intercon axi_intercon uart_top swervolf_syscon gpio_top ptc_top

wb_mem_wrapper axi2wb simple_spi

swervolf_core

clk_gen_nexys axi_cdc_intf bscan_intf rvfpga.xdc

litedram_top

litedram.xdc

rvfpga

Figure 12. Hierarchy of the RVfpga System

MODULE: mem

FUNCTION: This module instantiates the three internal memories available in SweRV:
ICCM, DCCM, and I$. Table 2 lists mem’s submodules and their interface signals.

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 13

lsu_dccm_mem

ifu_ic_mem

ifu_iccm_mem

ifu_ifc_ctl

swerv_wrapper_dmi

mem

ifu

ifu_mem_ctl

ifu_bp_ctl

ifu_aln_ctl

ifu_compress_ctl

swerv

dec_gpr_ctl

dec_ib_ctl

dec_decode_ctl

dec_dec_ctl

dec

exu_alu_ctl

exu_mul_ctl

exu

exu_div_ctl

lsu_lsc_ctl

lsu

lsu_stbuf

lsu_dccm_ctl

lsu_bus_intf

lsu_bus_buffer

dbg lib pic_ctrl dma_ctrl

wb_intercon axi_intercon uart_top swervolf_syscon gpio_top ptc_top

wb_mem_wrapper axi2wb simple_spi

swervolf_core

clk_gen_nexys axi_cdc_intf bscan_intf rvfpga.xdc

litedram_top

litedram.xdc

rvfpga

Figure 13. Module mem and its submodules

Table 2. mem submodules and I/O

Unit I/O Name Description

ICCM:
ifu_iccm_m
em
(It contains
the ICCM
module
wrapper)

Input iccm_wren Write enable
iccm_rden Read enable
[`RV_ICCM_BITS-1:2]

iccm_rw_addr

Read/Write Address

[77:0] iccm_wr_data Write data

Output [155:0] iccm_rd_data Read data

I$:
ifu_ic_mem
(It contains
the
Instruction
Cache Data
& Tag
module
wrapper)

Input [3:0] ic_wr_en Write enable
ic_rd_en Read enable
[31:2] ic_rw_addr Read/Write Address
[67:0] ic_wr_data Data to fill to the

Icache. With Parity.

Output [135:0] ic_rd_data Data read from Icache.
F2 stage. With Parity.

[3:0] ic_rd_hit Hit/Miss in each way

DCCM:
lsu_dccm_
mem
(It contains
the DCCM
module
wrapper)

Input dccm_wren Write enable
dccm_rden Read enable
[`RV_DCCM_BITS-1:0]

dccm_wr_addr

Write address

[`RV_DCCM_BITS-1:0]

dccm_rd_addr_lo

Read address

[`RV_DCCM_BITS-1:0]

dccm_rd_addr_hi

Read address for the
upper (high) bank when
misaligned access

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

[`RV_DCCM_FDATA_WIDTH-1:0]

dccm_wr_data

Write data

Output [`RV_DCCM_FDATA_WIDTH-1:0]

dccm_rd_data_lo

Read data low bank

[`RV_DCCM_FDATA_WIDTH-1:0]

dccm_rd_data_hi

Read data high bank

MODULE: swerv

FUNCTION: As shown in Figure 14, swerv is the top level module for the SweRV EH1 core.
It instantiates the main modules of the core, most importantly: ifu, dec, exu and lsu. Table 3
– Table 6 list each of these unit’s submodules and interface signals. The swerv module
communicates with the mem module via the SweRV wrapper (swerv_wrapper_dmi).

lsu_dccm_mem

ifu_ic_mem

ifu_iccm_mem

ifu_ifc_ctl

swerv_wrapper_dmi

mem

ifu

ifu_mem_ctl

ifu_bp_ctl

ifu_aln_ctl

ifu_compress_ctl

swerv

dec_gpr_ctl

dec_ib_ctl

dec_decode_ctl

dec_dec_ctl

dec

exu_alu_ctl

exu_mul_ctl

exu

exu_div_ctl

lsu_lsc_ctl

lsu

lsu_stbuf

lsu_dccm_ctl

lsu_bus_intf

lsu_bus_buffer

dbg lib pic_ctrl dma_ctrl

wb_intercon axi_intercon uart_top swervolf_syscon gpio_top ptc_top

wb_mem_wrapper axi2wb simple_spi

swervolf_core

clk_gen_nexys axi_cdc_intf bscan_intf rvfpga.xdc

litedram_top

litedram.xdc

rvfpga

Figure 14. swerv and its submodules

Table 3. ifu (Instruction Fetch Unit) I/O and submodules (including their I/O)

Unit I/O Name Description

Instruction
Fetch Unit:
ifu
(This is the
top level
module for
the Fetch of
the

Input/Output Several signals ICCM ports to/from
mem module

Several signals I$ ports to/from mem
module

Several signals IFU AXI ports

Input

exu_flush_final Flush the pipeline
[31:1]

exu_flush_path_final
Flush fetch address

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 15

Instructions,
the Prediction
from the
Branch
Predictor and
the Aligner)

Output [31:0] ifu_i0_instr Instruction 0. From Align
to Decode

[31:0] ifu_i1_instr Instruction 1. From Align
to Decode

[31:1] ifu_i0_pc Instruction 0 PC
(program counter). From
Align to Decode

[31:1] ifu_i1_pc Instruction 1 PC. From
Align to Decode

Fetch
Control:
ifu_ifc_ctl
(This module
implements
the Fetch
Pipe Control.
It generates
the next
address to
fetch from the
Instruction
Memory.)

Input exu_flush_final Flush the pipeline

[31:1]

ifu_bp_btb_target_f2

Predicted target PC

[31:1]

exu_flush_path_final

Flush path

Output

output logic [31:1]

ifc_fetch_addr_f1
Fetch address at FC1

Internal logic [31:1]

fetch_addr_next
Sequential address

Instruction
Memory (I$
and ICCM)
Control:
ifu_mem_ctl
(Instruction
Memory
Control –
Icache and
ICCM –)

Input [31:1] fetch_addr_f1 Fetch addr at FC1

(ifc_fetch_addr_f1

renamed)

 Output [127:0] ic_data_f2 Data read at FC2 from
I$ or ICCM to Align
stage

Align Control:
ifu_aln_ctl
(Instruction
Aligner)

Input [127:0] ifu_fetch_data 128-bit fetch data from
Fetch Stage

Internal logic [127:0] q2,q1,q0 3 Buffers

Output [31:0] ifu_i0_instr Instruction Way 0
[31:0] ifu_i1_instr Instruction Way 1
[31:1] ifu_i0_pc Instruction Way 0 PC
[31:1] ifu_i1_pc Instruction Way 1 PC

Branch
Predictor:
ifu_bp_ctl

Input [31:1] ifc_fetch_addr_f1 Fetch address at FC1

Output

[31:1]

ifu_bp_btb_target_f2

Predicted target PC

ifu_bp_kill_next_f2 Taken/Non-Taken
branch

Table 4. dec (Decode Unit) I/O and submodules (including their I/O)

Unit I/O Name Description

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 16

Decode Unit:
dec
(This is the top
level module for
the Decoding of
the Instructions,
the Dependency
Scoreboard and
the access to the
Register File)

Input exu_flush_final

flush the pipeline
when 1

[31:0] ifu_i0_instr,

[31:1] ifu_i1_instr

Instructions from
Align

[31:1] ifu_i0_pc

[31:1] ifu_i1_pc
PCs from Align

Output alu_pkt_t i0_ap

alu_pkt_t i1_ap

ALU control signals

lsu_pkt_t lsu_p LSU control signals
mul_pkt_t mul_p MUL control signals
div_pkt_t div_p DIV control signals
predict_pkt_t

 i0_predict_p_d

 i1_predict_p_d

prediction signals to
ALUs

[31:1] dec_i0_pc_d

[31:1] dec_i1_pc_d
Address of
instructions at
decode Stage

[31:0] gpr_i0_rs1_d
[31:0] gpr_i0_rs2_d

[31:0] gpr_i1_rs1_d
[31:0] gpr_i1_rs2_d

I0/I1 rs1/rs2 data
from register file

[31:0] dec_i0_immed_d

[31:0] dec_i1_immed_d

Immediate value

[12:1] dec_i0_br_immed_d

[12:1] dec_i1_br_immed_d

Branch offset

[31:0]

i0_rs1_bypass_data_d

[31:0]

i0_rs2_bypass_data_d

[31:0]

i0_rs1_bypass_data_e2

[31:0]

i0_rs2_bypass_data_e2

[31:0]

i0_rs1_bypass_data_e3

[31:0]

i0_rs2_bypass_data_e3

I0 rs1/rs2 bypass
data

[31:0]

i1_rs1_bypass_data_d

[31:0]

i1_rs2_bypass_data_d

[31:0]

i1_rs1_bypass_data_e2

[31:0]

i1_rs2_bypass_data_e2

[31:0]

i1_rs1_bypass_data_e3

[31:0]

i1_rs2_bypass_data_e3

I1 rs1/rs2 bypass
data

Internal [31:0] dec_i0_instr_d

[31:0] dec_i1_instr_d

Instructions in
Decode stage

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 17

[31:0] dec_i0_rs1_d
[31:0] dec_i0_rs2_d
[31:0] dec_i1_rs1_d

[31:0] dec_i1_rs2_d

rs1/rs2 data

Instructions/PC to
send from Align to
Decode:
dec_ib_ctl
(Buffers for
propagating the
instructions and
PCs from the
Aligner to the
Decoder)

Input [31:0] ifu_i0_instr

[31:0] ifu_i1_instr

I0/I1 instruction from
Align

[31:1] ifu_i0_pc
[31:1] ifu_i1_pc

I0/I1 PC from Align

Output [31:0] dec_i0_instr_d

[31:0] dec_i1_instr_d

I0/I1 instruction at
Decode

[31:1] dec_i0_pc_d
[31:1] dec_i1_pc_d

I0/I1 PC at Decode

Decode
instruction and
compute bypass
values:
dec_decode_ctl
(Decode the 2
instructions and
compute the
bypass values)

Input [31:1] dec_i0_pc_d

[31:1] dec_i1_pc_d

[31:0] exu_i0_result_e1

I0/I1 PC

[31:0] dec_i0_instr_d,

[31:0] dec_i1_instr_d

instruction in Decode
stage

Output alu_pkt_t i0_a

alu_pkt_t i1_ap

ALU control signals

lsu_pkt_t lsu_p LSU control signals
mul_pkt_t mul_p MUL control signals
div_pkt_t div_p DIV control signals
predict_pkt_t

i0_predict_p_d

i1_predict_p_d

prediction signals to
ALU

[4:0] dec_i0_rs1_d

[4:0] dec_i0_rs2_d

[4:0] dec_i1_rs1_d

[4:0] dec_i1_rs2_d

I0/I1 rs1/rs2 index

[31:0] dec_i0_immed_d
[31:0] dec_i1_immed_d

Immediate value

[12:1] dec_i0_br_immed_d
[12:1] dec_i1_br_immed_d

Branch offset

[31:0]

i0_rs1_bypass_data_d

[31:0]

i0_rs2_bypass_data_d

[31:0]

i0_rs1_bypass_data_e2

[31:0]

i0_rs2_bypass_data_e2

[31:0]

i0_rs1_bypass_data_e3

[31:0]

i0_rs2_bypass_data_e3

I0 rs1/rs2 bypass
data

[31:0]

i1_rs1_bypass_data_d

[31:0]

i1_rs2_bypass_data_d

[31:0]

i1_rs1_bypass_data_e2

I1 rs1/rs2 bypass
data

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 18

[31:0]

i1_rs2_bypass_data_e2

[31:0]

i1_rs1_bypass_data_e3

[31:0]

i1_rs2_bypass_data_e3

Register File:
dec_gpr_ctl
(Register File)

Input

[4:0] raddr0, raddr1

[4:0] raddr2, raddr3
Read addresses

[4:0] waddr0, waddr1

[4:0] waddr2
Write addresses

[31:0] wd0, wd1, wd2 Write data
rden0, rden1, rden2, rden3 Read enable
wen0, wen1, wen2 Write enable

Output [31:0] rd0, rd1, rd2, rd3 Read data

Table 5. exu (Execute Unit) I/O and submodules (including their I/O)

Unit I/O Name Description

Execute Unit:
exu
(This is the
top level
module for
the Execution
of the A-L
Instructions)

Input alu_pkt_t i0_ap, alu_pkt_t i1_ap ALU control
mul_pkt_t mul_p MUL control
div_pkt_t div_p DIV control
[31:1] dec_i0_pc_d, dec_i1_pc_d PCs from

Decode
[31:0] gpr_i0_rs1_d

[31:0] gpr_i0_rs2_d

[31:0] gpr_i1_rs1_d

[31:0] gpr_i1_rs2_d

I0/I1 rs1/rs2

[31:0] dec_i0_immed_d
[31:0] dec_i1_immed_d

Immediate
values

[12:1] dec_i0_br_immed_d

[12:1] dec_i1_br_immed_d

Branch offsets

[31:0] i0_rs1_bypass_data_d

[31:0] i0_rs2_bypass_data_d

[31:0] i0_rs1_bypass_data_e2

[31:0] i0_rs2_bypass_data_e2

[31:0] i0_rs1_bypass_data_e3

[31:0] i0_rs2_bypass_data_e3

I0 rs1/rs2 bypass
data

[31:0] i1_rs1_bypass_data_d

[31:0] i1_rs2_bypass_data_d

[31:0] i1_rs1_bypass_data_e2

[31:0] i1_rs2_bypass_data_e2

[31:0] i1_rs1_bypass_data_e3

[31:0] i1_rs2_bypass_data_e3

I1 rs1/rs2 bypass
data

Output exu_flush_final flush pipeline
when 1

[31:0] exu_i0_result_e1

[31:0] exu_i1_result_e1

primary ALU
result

[31:0] exu_i0_result_e4
[31:0] exu_i1_result_e4

secondary ALU
result

[31:0] exu_mul_result_e3 MUL result
[31:0] exu_div_result DIV result
[31:0] exu_lsu_rs1_d Load/Store

address

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 19

[31:0] exu_lsu_rs2_d store data

ALU:
exu_alu_ctl
(Arithmetic
Logic Unit)

Input [31:0] a A operand
[31:0] b B operand
[31:1] pc for pcnext

calculations (i.e.,
pc+2 or pc+4)

[12:1] brimm branch offset
alu_pkt_t ap ALU control

Output [31:0] out ALU result
flush_upper branch flush
[31:1] flush_path Target PC
[31:1] pc_ff

Multiplier:
exu_mul_ctl

Input [31:0] a A operand
[31:0] b B operand
mul_pkt_t mp MUL control

Output [31:0] out MUL result

Divider:
exu_div_ctl

Input [31:0] dividend numerator
[31:0] divisor denominator
div_pkt_t dp DIV control

Output [31:0] out DIV result

Table 6. lsu (Load/Store Unit) I/O and submodules (including their I/O)

Unit I/O Name Description

Load/Store
Unit:
lsu
(This is the
top level
module for
the
Load/Store
Unit of the
Instructions)

Input/Output

Several signals DCCM ports to/from
mem module

Several signals DMA slave

Several signals LSU AXI ports

Input [31:0] exu_lsu_rs1_d

Load/Store address

[31:0] exu_lsu_rs2_d store data
[11:0] dec_lsu_offset_d address offset
lsu_pkt_t lsu_p LSU control

Output [31:0] lsu_result_dc3 LSU read data

Address
computation:
lsu_lsc_ctl
(LSU Control
and compute
Load/Store
Address)

Input [31:0] exu_lsu_rs1_d Load/Store address
[31:0] exu_lsu_rs2_d store data
[11:0] dec_lsu_offset_d address offset
lsu_pkt_t lsu_p LSU control

Output [31:0] lsu_addr_dc1

[31:0] end_addr_dc1
Initial/Final address

DCCM
Control:
lsu_dccm_ctl
(DCCM
Control)

Input [`RV_DCCM_FDATA_WIDTH-

1:0]

dccm_rd_data_lo

read data (lo bank)

[`RV_DCCM_FDATA_WIDTH-

1:0]

dccm_rd_data_hi

read data (hi bank)

Output dccm_wren write enable
dccm_rden read enable
[`RV_DCCM_BITS-1:0]
dccm_wr_addr

write address

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 20

[`RV_DCCM_BITS-1:0]
dccm_rd_addr_lo

read address (lo)

[`RV_DCCM_BITS-1:0]

dccm_rd_addr_hi
read address (hi):
needed for
misaligned loads

[`RV_DCCM_FDATA_WIDTH-

1:0]

dccm_wr_data

write data

Store Buffer:
lsu_stbuf
(Store Buffer)

Input lsu_addr_dc3 address
[`RV_DCCM_DATA_WIDTH-1:0]

store_ecc_datafn_hi_dc3
write data (hi)

[`RV_DCCM_DATA_WIDTH-1:0]

store_ecc_datafn_lo_dc3

write data (lo)

Output [`RV_LSU_SB_BITS-1:0]

stbuf_addr_any

store buffer address

[`RV_DCCM_DATA_WIDTH-1:0]

stbuf_data_any

store buffer data

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 21

4. STRUCTURES AND TYPES FOR GROUPING CONTROL BITS

Below is a summary of the main structure types defined in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/swerv_types.sv
and used in the SweRV EH1 processor for grouping the control signals.

 dec_pkt_t: This is the main control structure type and it contains the processor main

control signals, such as alu (1 if an arithmetic-logic instruction is executed, 0

otherwise), load (1 if a load instruction is executed, 0 otherwise), legal (1 if the

instruction is legal, 0 if it is not), rs1 (1 if the instruction obtains the first input operand

from the Register File, 0 otherwise), imm12 (1 if the instruction uses a 12-bit immediate

as an input operand, 0 otherwise), etc.

This structure type is used inside module dec_decode_ctl for generating many other

control signals. Four signals of this type are declared (Way-0: i0_dp_raw, i0_dp. Way-

1: i1_dp_raw, i1_dp) and are used for generating the control bits of other structures

defined in file swerv_types.sv.

These bits are assigned inside module dec_dec_ctl, a module that is automatically
generated using open-source tools (coredecode and espresso) and that can be found at
the end of file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/dec/dec_decode_ctl.s
v.

 alu_pkt_t: This structure type contains the control signals related with the ALU

operation, such as valid (1 if an arithmetic-logic instruction is executed, 0 otherwise),

add (1 if an add instruction is executed, 0 otherwise), beq (1 if a beq instruction is

executed, 0 otherwise), etc. Two signals of this type, called i0_ap and i1_ap, are

defined inside module dec_decode_ctl.

These bits are assigned inside module dec_decode_ctl (implemented at:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/dec/dec_decode_ctl.s

v), based on the bits from structure dec_pkt_t (see lines 711-770 of dec_decode_ctl).

 reg_pkt_t: This structure type contains the identifiers of the two source registers

(fields rs1 and rs2) and the destination register (field rd). Two signals of this type,

called i0r and i1r, are defined inside module dec_decode_ctl. These signals are

assigned from the proper fields of the Instruction Register inside module
dec_decode_ctl (see lines 1121-1127 of this module).

 dest_pkt_t: This structure type contains control bits used in the Write-Back stage,

which we will analyse in a forthcoming section. A signal of this type, called dd, is defined

inside module dec_decode_ctl.

 rets_pkt_t, br_pkt_t, br_tlu_pkt_t, and predict_pkt_t: These

structure types are related with branch instructions and the Branch Predictor.

 lsu_pkt_t: This structure type contains the control signals related with the Load/Store

Unit, such as half (1 if a half word is read/written, 0 otherwise), load (1 if a load

instruction is executed, 0 otherwise), valid (1 if the instruction is valid, 0 otherwise),

etc. One signal of this type, called lsu_p, is defined inside module dec_decode_ctl.

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 22

 mul_pkt_t: This structure type contains the control signals related with the Multiply

Unit, such as rs1_sign and rs2_sign (that determine if the input operands are treated

as signed or unsigned), valid (1 if the instruction is valid, 0 otherwise), etc. One signal

of this type, called mul_p, is defined inside module dec_decode_ctl.

 div_pkt_t: This structure type contains the control signals related with the Divide

Unit, such as unsign (1 if the operation is unsigned, 0 otherwise), valid (1 if the

instruction is valid, 0 otherwise), etc. One signal of this type, called div_p, is defined

inside module dec_decode_ctl.

TASK: Open file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/swerv_types.sv
and analyse it during the next descriptions of the structure types that group together the
control bits.

TASK: Take a quick look at modules dec_decode_ctl and dec_dec_ctl to see how the
fields of the control signals are assigned based on the 32 bits of the instruction. These two
modules are very extensive and quite complex, so the idea is not to analyse them in detail.
Moreover, see that module dec_dec_ctl is created automatically as explained in lines 2482-

2495 of dec_decode_ctl.sv.

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 23

5. COMPRESSED INSTRUCTIONS

Even though in most of the experiments that we include in the labs we disable the use of
compressed instructions for the sake of simplicity, in this section we describe and analyse
RISC-V’s compressed instruction extension (RVC) and the execution of compressed
instructions in SweRV EH1. Obviously, you are free to enable the use of compressed
instructions in the experiments and extend the analysis on your own.

NOTE: Before starting this lab, we recommend reading Section 6.6.5 of the book by S.
Harris and D. Harris, “Digital Design and Computer Architecture: RISC-V Edition”, Morgan
Kaufmann [DDCARV]. Some of this section’s contents are inspired by that book.

The RVC extension reduces the size of common integer and floating-point instructions to 16
bits by reducing the sizes of the control, immediate, and register fields and by taking
advantage of redundant or implied registers. This reduced instruction size decreases cost,
power, and required memory – all of which can be crucial for hand-held and mobile
applications. Our assembly programs can use a mix of compressed and 32-bit instructions,
given that SweRV EH1 includes the RVC.

In SweRV EH1 there is a module specifically devoted to uncompressing instructions:
ifu_compress_ctl. This module receives a compressed 16-bit instruction and outputs the
corresponding uncompressed 32-bit instruction. In Figure 15 we show the Align Stage with a
bit more detail than in Lab 11 (we still leave some black boxes that you can analyse by
yourself). Three ifu_compress_ctl modules are instantiated inside module ifu_aln_ctl,

which receive a compressed instruction from signal aligndata[63:0] and return the

corresponding uncompressed instruction in signals uncompress0[31:0],

uncompress1[31:0] and uncompress2[31:0]. If the instructions are already in their

uncompressed format, they are directly provided from the aligndata[63:0] signal.

q1ff

q0ff

q2ff

q0 [127:0]

q1 [127:0]

q2 [127:0]

ALIGN

LOGIC1

ifu_i0_instr [31:0]

ifu_i1_instr [31:0]

aligndata [63:0]

Aligner (ifu_aln_ctl)

LOGIC2

ifirst [31:0]

isecond [31:0]

ithird [31:0]

LOGIC3

ifu_compress_ctl
uncompress0 [31:0]

uncompress1 [31:0]

uncompress2 [31:0]

ifu_compress_ctl

ifu_compress_ctl

Figure 15. Align Stage

The code illustrated on the top part of Figure 16 shows the simple C program from Chapter 6
– Code Example 31 – DDCARV. The code illustrated on the bottom part of Figure 16 shows

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 24

the assembly code generated when the C program is compiled in PlatformIO with the RVC
extension enabled (note that the assembly code is slightly different to the one shown in
[DDCARV]). We highlight in red the instructions that make up the loop body, which are a
combination of 16-bit and 32-bit instructions.

int scores[200];

int main(void) {

 int i;

 for (i = 0; i < 200; i = i + 1){

 scores[i] = scores[i] + 10;

 }

 return(0);

}

00000088 <main>:

 88: 6789 lui a5,0x2

 8a: 12078793 addi a5,a5,288 # 2120 <scores>

 8e: 32078693 addi a3,a5,800

 92: 4398 lw a4,0(a5)

 94: 0791 addi a5,a5,4

 96: 0729 addi a4,a4,10

 98: fee7ae23 sw a4,-4(a5)

 9c: fed79be3 bne a5,a3,92 <main+0xa>

 a0: 4501 li a0,0

 a2: 8082 ret

Figure 16. Example of compressed instructions

Figure 17 shows the Verilator simulation of a whole iteration of the loop from Figure 16. Note

that when instruction addi a5,a5,4 is at the align stage (highlighted in red in the first

cycle of the figure), the instruction is extracted from the 64-bit bundle (aligndata[63:0])

and decompressed from a 16-bit instruction (0x0791) into a 32-bit instruction (0x00478793).
(The code is provided at [RVfpgaPath]/RVfpga/Labs/Lab11/Compressed_C-Example so that
you can execute your own Verilator simulation.)

- In RISC-V, the opcode for the 16-bit c.addi instruction is (see Appendix B of

[DDCARV]):
000 | imm(1-bit) | rd/rs1 | imm(5-bits) | 01

So you can easily verify that 0x0791 (0000011110010001) corresponds to: c.addi

a5,4 (remember that a5=x15).

 Imm = 000100

 rd = rs1 = 01111 (x15)

- In RISC-V, the opcode for the 32-bit addi instruction is (see Appendix B of

[DDCARV]):
imm(12-bits) | rs1 | 000 | rd | 0010011

So you can easily verify that 0x00478793 (00000000010001111000011110010011)

corresponds to: addi a5,a5,4 (remember that a5 = x15).

 Imm = 000000000100

 rs1 = 01111 (x15)

 rd = 01111 (x15)

In the second cycle shown in Figure 17, the sw instruction is aligned. Given that this

instruction lacks the corresponding compressed version in RISC-V architecture, it needs no
uncompressing and it is selected and propagated to the Decode Stage directly from the

aligndata[63:0] signal.

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 25

Figure 17. Simulation of the code shown in Figure 16

TASK: Analyse the remaining instructions from the loop body in terms of
compressed/uncompressed instructions.

TASK: Take a look inside module ifu_compress_ctl and try to get an idea about how it
works.

Imagination University Programme – RVfpga SweRVref
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 26

6. REAL BENCHMARKS

In folder [RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks we provide three real
applications that you will use in Lab 20 for testing the different features of our SweRV EH1
processor. In that lab you can find further description about these three benchmarks and the
different versions that we provide for each of them.

- CoreMark: In folder
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/CoreMark_HwCounters you can
find a PlatformIO project that contains the CoreMark benchmark for running on
RVfpgaNexys. We’ve used the sources provided at
https://github.com/chipsalliance/Cores-SweRV and adapted them to our RVfpga
System.

- Dhrystone: In folder
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/Dhrystone_HwCounters you can
find a PlatformIO project that contains the Dhrystone benchmark for running on
RVfpgaNexys. We’ve used the sources provided at
https://github.com/chipsalliance/Cores-SweRV and adapted them to our RVfpga
System.

- Image Processing: In folder

[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/ImageProcessing_HwCounters
you can find a PlatformIO project that contains the application that we used in Lab 5
for transforming an RGB image into grayscale.

https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV

