

Imagination University Programme – RVfpga Lab 8: Timers
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 1

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 8
Timers

Imagination University Programme – RVfpga Lab 8: Timers
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

Hardware timers are common peripherals found in microcontrollers and SoCs. They are
typically used to generate precise timing. Timers increment or decrement a counter at a fixed
frequency, which is often configurable, and then interrupt the processor when the counter
reaches zero or a predefined value. More sophisticated timers can also perform other
functions, such as generating pulse-width modulated (PWM) waveforms to control the speed
of a motor or the brightness of a light.

In this lab, using a similar structure to that of previous labs, we first describe the high-level
specification of the timer included in the RVfpga System and then explain its low-level
implementation. Both fundamental and advanced exercises are proposed that show how to
both use and modify a timer.

2. HIGH-LEVEL SPECIFICATION OF THE TIMER INCLUDED IN THE
RVfpga SYSTEM

In this section, we first analyse the high-level specification of the timer used in the RVfpga
System and then we propose one exercise that uses this peripheral.

A. Timer high-level specification

The timer module used in the RVfpga System has been obtained from OpenCores
(https://opencores.org/projects/ptc). If you download the package, a document is provided
that describes the high-level specification of the module (and which we provide at:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/ptc/docs/ptc_spec.pdf). We summarize
the main operation and features of the timer module here; however, the complete
information can be found in the above document.

The timer module has the following main features:

- Uses a Wishbone Interconnection
- 32-bit counter/timer facility
- Single-run or continuous run of PWM/Timer/Counter (PTC)
- Programmable PWM (Pulse-width modulation) mode
- System clock and external clock sources for timer functionality
- HI/LO Reference and Capture registers
- Three-state control for PWM output driver
- PTC functionalities can cause an interrupt to the CPU

Section 4 of the timer module specification document describes the control and status
registers available inside the timer module, each of which is assigned to a different address
(see Table 1). The base address for the timer in the RVfpga System is 0x80001200.

Table 1. Timer Registers

Name Address Width Access Description
RPTC_CNTR 0x80001200 1-32 R/W Main PTC counter

RPTC_HRC 0x80001204 1-32 R/W PTC HI Reference/Capture register

RPTC_LRC 0x80001208 1-32 R/W PTC LO Reference/Capture register

RPTC_CTRL 0x8000120C 9 R/W Control register

https://opencores.org/projects/ptc

Imagination University Programme – RVfpga Lab 8: Timers
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

The RPTC_CNTR register is the actual counter register, and it is incremented at every
counter/timer clock cycle. The RPTC_CTRL register is used for controlling the timer module;
Table 2 shows the function of each of its bits. RPTC_HRC and RPTC_LRC are used as
reference/capture registers.

Table 2. RPTC_CTRL bits

Bit Access Reset Name & Description
0 R/W 0 EN

When set, RPTC_CNTR increments.

1 R/W 0 ECLK
Selects the clock signal: external clock, through ptc_ecgt (1), or
system clock (0).

2 R/W 0 NEC
Used for selecting the negative/positive edge and low/high
period of the external clock (ptc_ecgt).

3 R/W 0 OE
Enables PWM output driver.

4 R/W 0 SINGLE
When set, RPTC_CNTR is not incremented after
it reaches value equal to the RPTC_LRC value. When cleared,
RPTC_CNTR is restarted after it reaches value in the
RPTC_LCR register.

5 R/W 0 INTE
When set, PTC asserts an interrupt when RPTC_CNTR value is
equal to the value of RPTC_LRC or RPTC_HRC. When the
signal is cleared, interrupts are masked.

6 R/W 0 INT
When read, this bit represents pending interrupt. When it is set,
an interrupt is pending. When this bit is written with ‘1’, interrupt
request is cleared.

7 R/W 0 CNTRRST
When set, RPTC_CNTR is reset. When cleared, normal
operation of the counter occurs.

8 R/W 0 CAPTE
When set, RPTC_CNTR is captured into RPTC_LRC or
RPTC_HRC registers. When cleared, capture function is
masked.

TASK: Locate the declaration of registers RPTC_CNTR, RPTC_HRC, RPTC_LRC and
RPTC_CTRL in the timer module, as well as the definition of their addresses (0x80001200,
0x80001204, 0x80001208 and 0x8000120C respectively). The timer module is available
inside folder [RVfpgaPath]/RVfpga/src/SweRVolfSoC/Peripherals/ptc.

R
The timer can operate in different modes (we next briefly describe the modes that you will
use in this lab; see Section 3 of the timer module specification document for more details):

- Timer/Counter mode: In this mode, the system clock or external clock reference
increments register RPTC_CNTR if the counter is enabled (RPTC_CTRL[EN]=1).
When RPTC_CNTR equals the RPTC_LRC, if RPTC_CTRL[INTE] is set,
RPTC_CTRL[INT] goes high.

- PWM mode: A Pulse Width Modulation (PWM) Signal is a method for generating an
analog signal using a digital source. A PWM signal consists of two values that define
its behaviour: the duty cycle and frequency. The duty cycle describes the amount of
time the signal is high as a percentage of the total time of it takes to complete one
cycle. The frequency is how often that cycle repeats. By cycling a digital signal off and

Imagination University Programme – RVfpga Lab 8: Timers
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

on at a fast enough rate, and with a certain duty cycle, the output will appear to behave
like a constant voltage analog signal when providing power to devices. For example, a
signal with a 50% duty cycle (half the cycle time it is high) and a high voltage of 3.3 V
would appear to an analog load as 1.67 V (the average voltage across the cycle). The
same signal with a 33% duty cycle would appear to be 1.1V. To operate in PWM
mode, RPTC_CTRL[OE] should be set. Registers RPTC_HRC and RPTC_LRC should
be set with the value of high and low periods of the PWM output signal: the PWM
signal should go high RPTC_HRC clock cycles after reset (of RPTC_CNTR); and the
PWM signal should go low RPTC_LRC clock cycles after reset (of the RPTC_CNTR).

3. FUNDAMENTAL EXERCISE

Exercise 1. Write a program that displays an ascending count on the 8-digit 7-segment
displays. The value should change about once per second and, for creating this delay, you
must use the timer module.

a. First, write the program in RISC-V assembly language and run it on the Nexys A7
board.

b. Then, perform a simulation in Verilator with the same program. You can add the
following signals: system clock, the processor register that stores the value to
show in the 8-digit 7-segment displays, and the timer registers RPTC_CNTR,
RPTC_LRC, RPTC_HRC and RPTC_CRTL.

c. Now write the program in C and run it on the Nexys A7 board.
d. Simulate your C program in Verilator, as in part (b) for the RISC-V assembly

program.

4. TIMER LOW-LEVEL IMPLEMENTATION

In this section, we first describe the low-level implementation of the timer module in the
RVfpga System and then propose some exercises where you will first modify the module
and then use it in a program for controlling the tri-colour LEDs available on the Nexys A7
board.

A. Low-level implementation of the timer

Similarly to the scheme that we followed in previous labs, we divide the analysis of the timer
module into phases.

1. Integration of the new module in the SweRVolfX SoC (left shadowed region in Figure
1)

2. Connection between the new module and the SweRV EH1 Core (right shadowed
region in Figure 1).

Note that, as opposed to previous labs, this peripheral (the timer) is not connected physically
to the Nexys A7 board. The timer is internal to SweRVolfX.

Imagination University Programme – RVfpga Lab 8: Timers
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

Figure 1. Timer module analysis in 2 phases

i. Integration of the timer module in the SoC

In lines 361-379 of module swervolf_core
([RVfpgaPath]/RVfpga/src/SweRVolfSoC/swervolf_core.v) the timer module is instantiated
(see Figure 2).

Figure 2. Integration of the timer module (file swervolf_core.v).

As usual, the interface of the module can be divided in two blocks: Wishbone signals (Table
3) and External I/O signals (Table 4). The Wishbone signals allow the SweRV EH1 Core to
communicate with the timer using a controller/peripheral model. The External I/O signals,

Imagination University Programme – RVfpga Lab 8: Timers
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

connect the timer module with external devices; for example, pwm_pad_o provides the PWM
output signal when operating in the PWM mode described above (you will have to use this
signal in Exercise 2 to connect the timer modules with the tri-colour LEDs).

Table 3. Wishbone Signals

Port Width Direction Description
wb_cyc_i 1 Inputs Indicates valid bus cycle (core select)

wb_adr_i 15 Inputs Address inputs

wb_dat_i 32 Inputs Data inputs

wb_dat_o 32 Outputs Data outputs

wb_sel_i 4 Inputs Indicates valid bytes on data bus (during
valid cycle, this signal must be 0xf)

wb_ack_o 1 Output Acknowledgment output (indicates
normal transaction termination)

wb_err_o 1 Output Error acknowledgment output (indicates
an abnormal transaction termination)

wb_rty_o 1 Output Not used

wb_we_i 1 Input Write transaction when asserted high

wb_stb_i 1 Input Indicates valid data transfer cycle

wb_inta_o 1 Output Interrupt output

Table 4. External I/O Signals

Port Width Direction Description
gate_clk_pad_i 1 Input External clock / Gate input

capt_pad_i 1 Input Capture input

pwm_pad_o 1 Output PWM output

oen_padoen_o 1 Output PWM output driver enable (for three-
state or open-drain driver)

As shown in line 365 of Figure 2, bits [5:2] of the address provided by the core in the
Wishbone bus signal (wb_m2s_ptc_adr[5:2]) are used for selecting one among the 4
available registers (Memory Mapped I/O). Thus, we can access register RPTC_CNTR at
address 0x80001200, register RPTC_HRC at address 0x80001204, register RPTC_LRC at
address 0x80001208, and register RPTC_CTRL at address 0x8000120C.

ii. Connection between the timer and the SweRV EH1 Core
As explained in previous labs, the device controllers are connected with the SweRV EH1
Core through a Multiplexer (Figure 1). Remember that the 7:1 multiplexer (Figure 3) is
instantiated in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon.v.
Then, the wb_intercon module is instantiated in lines 104-205 of file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/Interconnect/WishboneInterconnect/wb_intercon.vh
. This latter file is included in line 145 of the swervolf_core module located here:
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/swervolf_core.v.

Imagination University Programme – RVfpga Lab 8: Timers
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

Figure 3. 7-1 multiplexer that selects the peripheral connected with the CPU (file
wb_intercon.v)

The multiplexer selects which peripheral to read or write, connecting the CPU (wb_io_*
signals – lines 115-126 of Figure 3) with the Wishbone Bus of one peripheral (lines 127-138
of Figure 3), depending on the address (lines 110-111). For example, if the address
generated by the CPU is in the range 0x80001200-0x8000123F, the timer module is
selected, and thus signals wb_io_* are connected with signals wb_ptc_*.

5. ADVANCED EXERCISES

Exercise 2. Modify RVfpgaNexys for connecting the PWM output signal of the timer
(pwm_pad_o) to one of the two tri-colour LEDs available on the Nexys A7 board. It is
recommended that you add this new capability to the updated RVfpgaNexys system that you
modified in Labs 6 and 7.

 Digilent provides the following information about the tri-colour LEDs available on
the Nexys A7 board: https://reference.digilentinc.com/reference/programmable-
logic/nexys-a7/reference-manual

 To summarize the above document, the board contains two tri-colour LEDs. Each
tri-colour LED has three input signals that drive the cathodes of three smaller
internal LEDs: one red, one blue, and one green. Driving one of these high will
illuminate the respective internal LED. The tri-colour LED will emit a colour
dependent on the combination of internal LEDs that are currently being
illuminated. For example, driving red and blue high will emit a purple colour.
Digilent strongly recommends the use of pulse-width modulation (PWM) when
driving the tri-colour LEDs. Driving any of the inputs to a steady logic ‘1’ will result
in the LED being illuminated at an uncomfortably bright level. You can avoid this
by ensuring that none of the tri-colour signals are driven with more than a 50%
duty cycle. Moreover, using PWM also greatly expands the potential colour
palette of the tri-colour LED. Individually adjusting the duty cycle of each colour
between 50% and 0% causes the different colours to be illuminated at different
intensities, allowing virtually any colour to be displayed.

 Create three new timer modules based on the one already included in
SweRVolfX. Each colour (red, blue and green) should be driven by a different
timer module, so that each one can receive a different voltage.

https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual

Imagination University Programme – RVfpga Lab 8: Timers
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

 Use the following address ranges for mapping the registers for each new timer to
memory:

i. Timer-2: 0x80001240-0x8000127F
ii. Timer-3: 0x80001280-0x800012BF
iii. Timer-4: 0x800012C0-0x800012FF

Note that in this case you must add 3 new entries to the multiplexer that selects
the peripheral (Figure 1).

 You must modify the constraints file taking into account that the 3 colours are
connected to the following board pins:

iv. LED16_B  PIN R12
v. LED16_G  PIN M16
vi. LED16_R  PIN N15

Exercise 3. Implement a program that uses the new peripheral for controlling the tri-colour
LED, using the value provided by the 16 switches. Use the 5 right-most switches for
adjusting the duty cycle of the blue colour, the next 5 switches for adjusting the duty cycle of
the green colour, and the next 5 switches for adjusting the duty cycle of the red colour. (The
left-most switch will be unused.)

a. First, write the program in RISC-V assembly.
b. Next, write the program in C.

