TASKS

‘ TASK: Verify that these 32 bits (0x0042a303) correspond to instruction 1w t1, 4 (t0) in the RISC-V architecture.

0x0042a303 - 000000000100 00101 010 00110 0000011

imm11.0 = 000000000100
rs1 =00101 = x5 (t0)
funct3 =010

rd = 00110 = x6 (t1)

op = 0000011

From Appendix B of DDCARV:

31:25 24:20 19:15 14:12 11:7 6:0

immy g rs1 [funct3 rd op I-Type

e e e S

0000011 (010 - rd, imm(rsl) load word [Address]sy.g

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

imagination
university programme

Name Register Number Use

Zero x0 Constant value 0

ra x1 Return address

sp x2 Stack pointer

ap x3 Global pointer

tp x4 Thread pointer

t0-2 x5-7 Temporary variables

s0/fp x8 Saved variable / Frame pointer
sl x9 Saved variable

a0-1 x10-11 Function arguments / Return values
az2-7 x12-17 Function arguments

s2-11 x18-27 Saved variables

t3-6 x28-31 Temporary variables

TASK: Replicate the simulation from Figure 4 on your own computer. Follow the next steps (as described in detail in Section 7 of the

GSG):

- If necessary, generate the simulation binary (Vrvfpgasim).

- In PlatformlO, open the project provided at: [RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_DCCM.

- Correct the path to the RVfpga simulation binary (Vrvfpgasim) in file platformio.ini.

- Generate the simulation trace with Verilator (Generate Trace).

- Open the trace using GTKWave.

- Use file scriptLoad.tcl (provided at [RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_DCCM/) to open the same signals as the ones
shown in Figure 4. For that purpose, on GTKWave, click on File — Read Tcl Script File and select the scriptLoad.tcl file.

- Click on Zoom In ('i') several times and move to 18600ps.

Solution provided in main document of Lab 13.

TASK: Extend the simulation from Figure 4 to include the signals shown in Figure 6, which are explained below.

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 2

imagination
university programme

Signals
Time

38560 ps

clk

dec 10 pc d ext[31:8]
dec_1i@ instr d[31:0]
lsu p[18:8]

lsu rsl d[31:0]

exu lsu rsl d[31:0]
lsu offset d[11:0]

dec lsu offset d[11:0]
rsl dcl[31:0]
offset dcl[11:0]
full _addr dcl[31:0]
end addr dcl[31:8]
dcem_rden

dcem data lo dc2[31:0
dccm_data hi dc2[31:
dcem data lo de3[31:
dccm _data hi dec3[31:

bus read data dc3[31:
lsu 1d data corr_dc3[31:
lsu result corr dec3[31:
e4d[66:0

ed4d i@secondary

ed4d i@v

ed4d i@load

exu 18 result e4[31:0]

i0 result e4[31:8]

lsu _result corr_dc4[31:8]
]
]

]
0]
0]
0]
0]
0]
0]

]

i@ result e4 final[31:8
waddre[4:0

weno

wdB[31:8]

tl

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 3

imagination
university programme

TASK: Locate the structures and signals from Figure 6 in the Verilog files of the SweRV EH1 processor.

Solution not provided.

TASK: Include signal 1su p in the simulation from Figure 4 and analyse its bits according to this description.

See the simulation above. We can see that when the load is decoded 1su p = 0x14001:
- wvalid = 1. The instruction is valid.
- load =1 ltis aload.
- word = 1. The size of the access is word.

TASK: Analyse in the Verilog code the path followed by the two inputs to the LSU (exu 1su rsl d and dec lsu offset d)from the
sources where they are obtained. Several modules are involved in this process: dec, exu, Isu. Analyse the behaviour of these signals for
other instructions.

exu_lsu rsl d[31:0] ({32 C rs1_bypass en C gpr_i0 rs1 d[31:0])
({32 rsl bypass en C dec i1 1su d gpr_il rsl d[31:0])

rsl bypass en C i@ rs1 bypass data d[31:6])

rs1 bypass en C dec i1 lsu d il rsl bypass data d[31:0]);

dec lsu offset d[11:E
dp.load ia[31:2a8]1})
dp.lsu il dp.load i1[31:281)
dp.store i@[31:25],18[11:71})
dp.lsu © il dp.store i1[31:25],i1[11:71});

The offset comes from the 32 bits of the instruction at Way-0 or Way-1.

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 4

imagination
university programme

TASK: Analyse the implementation of the two adders from the DC1 stage, which are instantiated in module Isu_Isc_ctl. We provide
guidance in Figure 7 below by showing the implementation of these adders.

File beh_lib.sv:
rvlsadder

8] rs1,
8] offset,

cout;
sign;

rsl inc;
rsl dec;

cout,dout[11:8] 1'b0,rs1[11:8] 1'bd,offset[11:6]
rsl inc[31:12] = rs1[31:12]
rsl dec[31:12] = rs1[31:12]

sign = offset[11];

dout[31:12] ({201 sign cout
[{20{ ~sign cout
sign cout

File Isu_Isc_ctl.sv:

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 5

imagination
university programme

addr offset dcllz:.0] ({3{1su pkt dcl.half 3'b0] 3{1su pkt dcl.word 3'b11} ({3{lsu_pkt dcl.dword
end addr offset dcl[12:0] offset dcl[11],offset dcl @ 0,addr offset dcl

;
TULL ena_aaar _acl[31l:u] rFS1_aci[31:u] na_aaar _OTTSET acl|LlZ] ;,ena_aaar oTrrtset acl[1l2:0]};
end addr dcl[31:0] full end addr dcl[31:0];

TASK: In the program from Figure 2, try different access sizes (byte, half-word) and unaligned accesses. To do so, change the offset
or the access type from 1w to 1b (load byte) or 1h (load half-word). For example, if you change the offset from 4 to 3, the load word
instruction performs an unaligned access to the 32-bits starting at address 0xF0040003, as shown in Figure 8. Analyse the value of
signals 1su addr dcl1[31:0] (or full addr dcl[31:0])and end addr dcl[31:0] under these different situations.

In Lab 20 we analyse this situation from the internals of the DCCM.

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 6

Signals
Time

clk
dec 10 pc d ext[31:8]
dec_i@ instr d[31:0]
lsu p[18:8]
lsu rsl d[31:8]
exu lsu rsl d[31:0]
lsu offset d[11:8]
dec_lsu offset d[11:0]
rsl dcl[31:0]
offset dcl[11:0]
full _addr dcl[31:0]
end addr dcl[31:0]
dcem_rden
dcem data lo dc2([31:0]
dcem data hi de2[31:0]
dcem _data lo dc3[31:0]
dcem data hi de3[31:0]
bus read data dc3[31:0]
lsu ld data corr_dc3[31:8]
lsu_result corr dc3[31:0]
e4d[66:0]
e4d i@secondary
edd i@y
ed4d i@load
exu 10 result e4[31:0]
10 result e4[31:0]
lsu_result corr dc4[31:0]
10 result e4 final[31:0]
waddre[4:0]
wen@
wde[31:8]
tl

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

imagination
university programme

385088 ps

001606008

imagination
university programme

The values of signals 1su addr dc1[31:0] and end addr dcl[31:0] communicate to Memory the starting and final address of the
access: 0xF0040003 and 0xF0040007. Two words are read (0x00000002 and 0x00000008) and the final word is extracted in the Aligner
(0x00000800).

TASK: In the program from Figure 2, compare the value of signals dccm data lo dc2[31:0] and dccm data hi dc2[31:0] when
doing a 1w to address 0xFO0040004 and to address OxF0040003.

Above you can see the two simulations.

- 1w to address 0xF0040004

dccm data lo dc2[31:0]:0x00000008
dccm data hi dec2[31:0]:0x00000008

Both signals contain the value read from the requested address.
- 1w to address 0xF0040003

dccm data lo dc2[31:0]:0x00000002 (value from address 0xF0040000)
dccm data hi dc2[31:0]: 0x00000008 (value from address 0xFO040004)

TASK: Analyse the Align, Merge, and Error Check logic used in the Verilog code in modules Isu_dccm_ctl and Isu_ecc.

Solution not provided.

TASK: In the program from Figure 2, compare the value of signal 1su result corr dc3[31:0] when doing a 1w to address
0xF0040004 and to address 0xFO040003.

Above you can see the two simulations.

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 8

imagination
university programme

- 1w to address 0xF0040004

lsu result corr dc3[31:0]:0x00000008

It contains the value read from the requested address.
- 1w to address 0xF0040003

lsu result corr dc3[31:0]:0x00000800

It contains the value read from the requested address. Take into account that RISC-V is little-endian.

TASK: Analyse in the Verilog code how signal addr external dcl was computed in the DC1 stage in module Isu_addrcheck.

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 9

imagination
university programme

Gen dccm enable

. E{ RV DCCM S)) start addr dccm ran
art addr dcl[31:E
tart addr in dccm del),
region dcl)

) end addr

gelend addr in dccm dcl),
.in_region(end_addr_in m_region_dcl)

Gen d
start addr in dc
start addr in
end addr in
end_addr_in_dccm_region_dc

M _ENABLE 1) check
addr in ice (start addr

addr in (1

ige(start_addr_in _pic_dcl]),
ion{start_addr_in pic region_dcl)

.addr{end adar_d ;
.in range({end addr in p cl),
i region dcl)

addr in dcom dc (start addr in dccm dcl & end addr in dee
addr_in_pic 1 (start_addr_in pic dcl & end_addr_in_pic

addr external dcl (addr_in m dcl | addr in pic dcl)

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 10

imagination
university programme

Module rvrangecheck is used to check the requested address:
- If it is within the DCCM/ICCM address range (lines 80-107), in which case signal addr in dccm dcl =1
- If it is within the PIC address range (lines 108-123), in which case signal addr in pic dcl=1
- Ifitis not in any of these address ranges, then it is at the DDR External Memory, in which case: addr external dcl =
1

TASK: Verify that these 32 bits (0x0062a023) correspond to instruction sw t1, 0 (t0) in the RISC-V architecture.

0x0062a023 = 0000000 00110 00101 010 00000 0100011

imm11.0 = 000000000000
rs2 =00110 = x6 (t1)
rs1 =00101 = x5 (t0)
funct3 =010

op = 0100011

From Appendix B of DDCARV:

31:25 24:20 19:15 14:12 11:7 6:0

iIMMyq.5 rs2 | rs1 |[funct3 | immyg op S-Type

) S S

0100011 (rs?, imm(rsl) |store word [Address]s;.p= rs2

TASK: Replicate the simulation from Figure 12 on your own computer. Follow the next steps (as described in detail in Section 7 of the
GSG):
- If necessary, generate the simulation binary (Vrvfpgasim).

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 11

imagination
university programme

- Open in PlatformlO the project provided at: [RVfpgaPath]/RVfpga/Labs/Lab13/SW_Instruction_DCCM.

- Update the path to the RVfpga simulation binary (Vrvfpgasim) in file platformio.ini.

- Generate the simulation trace with Verilator (Generate Trace).

- Open the trace on GTKWave.

- Use file scriptStore.tcl (provided at [RVfpgaPath]/RVfpga/Labs/Lab13/SW_Instruction_ DCCMY/) to display the same signals as the
ones shown in Figure 4. For that purpose, in GTKWave, click on File — Read Tcl Script File and select the scriptStore.tcl file.

- Click on Zoom In (—') several times and move to 17900ps.

Solution provided in the main document of Lab 13.

TASK: Analyse in the simulation the load instruction that follows the store to verify that the value has been correctly written to the DCCM.
You will need to add some of the signals from Figure 4 and Figure 6 to analyse the load.

- —= WAL 3
Signals waves

Time 17960 ps 16100 ps

clk=

(EIB I I = sd VRN I cocoo110 (popoolls |Poe0R120 |P000128 ,pROGR130 PA00R13E [000DR140 /PED0G145 ODOO1S0 |DORGLSE 000160 PO0G1GE |OGGE170 @00e0178 (0000180
dec i@ instr d[31:8]=
lsu_rsl d[31:8]=
lsu offset d[11:8]=
exu_lsu _rs2 d[31:8]=
rsl dcl[31:0]=
offset_dcl[11:8]=
full addr dcl[31:8]=
dcem_wren=|

deem wr_addr[15:8] =

dcem wr_data[38:0] =
dcem_rden=l

dcem_data lo_dc2[31:8]=
i@ result e4 fipal[31:8]=
waddre[4:0] =

wene =i

wd0[31:0] = (eI N 1T (T e

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 12

imagination
university programme

TASK: Extend the basic analysis performed in this section for the sw instruction in a similar way as the advanced analysis performed for
the 1w instruction in Section 2.B.

Solution not provided.

TASK: Analyse unaligned stores to the DCCM, as well as sub-word stores: store byte (sb) or store half-word (sh).

Solution not provided.

TASK: Replicate the simulation from Figure 17 on your own computer. Use file test_Blocking.tcl (provided at

[RVfpgaPath])/RVfpga/Labs/Labl13/LW_Instruction_ExtMemory). Zoom In ('i') several times and move to 16940ps.

Solution provided in the main document of Lab 13.

TASK: Modify the program from Figure 15 in order to analyse an unaligned load access that needs to send two addresses to the
External Memory through the AXI Bus.

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 13

Signals

Time

dec_i@ pc_d ext[31
dec_i@ instr d[31:0]=
lsu rsl d[31
1su_offset _d[11:8]=
rsl dcl[31:8]=
offset_dcl[1l:8]=
full_addr decl[31:8]=
lsu_axi_arvalid=
lsu_axi_araddr[31:0] =
lsu_axi_rvalid=
lsu_axi_rdata[63:0] =
bus_read data dc3[31:0]=
i@ result e4 final[31l:0]=
waddre[4:8] =
weno =
wdB[31:8] =i
3=
te=

imagination
university programme

17260 ps 17380 ps 17480 ps

CA11ABI1EBADCABLE AL1AB1EBADCABIE

17508 ps

E A11ABLEBADCAELE

17600 ps

TASK: Add to the simulation the signals that control the multiplexers (in the DC3 and Commit stages in Figure 16) that select the data
provided by the DDR External Memory. You can find these multiplexers at the following lines of the Verilog code:
- 2:1 Multiplexer: Line 264 of module Isu_Isc_ctl.

- 3:1 Multiplexer: Line 2277 of module dec_decode_ctl.
A .tcl file that you can use is provided at: [RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_ExtMemory/test Blocking_Extended.tcl

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 14

imagination
university programme

Signals

Time

dec_i@ pc d ext[31:0]
dec_i@ instr_d[31:0]
lsu_rsl d[31:0]
lsu_offset _d[11:0]
0]

0]

0]

B1FEGFB3

rsl dcl[31:
offset_dcl[11
full_addr_dcl[31:
lsu_axi arvalid
1su_axi araddr[31:0]
lsu_axi rvalid
1su_axi rdata[63:0] CAT1ABIEBADCABIE
addr_external_dc3
bus_read data dc3[31:0]
e4d[66:0]
e4d i@secondary
edd iev
e4d i@load
i@ result e4 final[31:0]
waddre[4:8]
wend
wde[31:0]
3
t6

TASK: It can also be interesting to analyse the AXI Bus implementation for accessing the DRAM Controller, for which you can inspect the
Isu_bus_intf module.

Solution not provided.

TASK: Replicate the simulation from Figure 18 on your own computer. Use file scriptStoreBuffer.tcl (provided at

[RVfpgaPath]/RVfpga/Labs/Lab13/SW_Instruction_DCCM). Zoom In ('i') several times and move to 17900ps.

Solution provided in the main document of Lab 13.

\ TASK: Modify the program from Figure 11 in order to have two outstanding stores and perform a similar analysis to the one from Figure

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 15

imagination
university programme

| 18.

Solution not provided.

Imagination University Programme — RVfpga Lab 13
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 16

