TASKS

TASK: You can perform a similar study for the mul instruction as the one performed in Lab 12 for arithmetic-logic instructions: view the
flow of the instruction through the pipeline stages, analyse the control bits (remember from Appendix D of Lab 11 that there is a specific
structure type for the mul instruction called mul pkt t, and there is a signal defined in module dec_decode_ctl called mul p), etc.

Solution not provided.

TASK: Inspect the Verilog code from exu_mul_ctl and see how the multiplication is computed. Remember that RISC-V includes 4
multiply instructions (mul, mulh, mulhsu and mulhu), and all of them must be supported by the hardware.

As an optional exercise, replace the Multiply Unit with your own unit or one from the Internet.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies



imagination
university programme

.din{mp.valid),

d mul_rsl
.load mul_rs2

.en{mul ¢l el c
.en{mul_cl el c

(load mul_rsl b 55 result
b el[31:8] (load mul rs result

rsl neg el rsl sign el & a el[31];
rs2_neg_el rs2_sign_el & b_el[3]

(. .din(valid el), .dout(valid e2), .clklactive clk), .en{-freeze));

, .din{low el}, .dout(low e2}, .clklexu mul cl e2 clk) nimul cl1 e2 clken), .

.*, .din({rsl_neg el, a_el[31:0]})
.din({rs2_neg_el, b_el[31:0]})

[65:0] prod_e2;
prod_e2[65:8] b ff ez;
.din(low e2), ' 3) . exu mul c

.din(prod_e2[63:0]) .dout(pr 3[63:0]) .en{mul_cl_e3 c

out[31:0] low_e3 prod_e3[31:08] prod_e3[63:32];

- The inputs and control bits produced at the decode stage are registered in lines 72-81.

M1:

- In case of a data dependency between the multiplication and a previous load, a forwarding takes place in lines 87-88.
- Moreover, the treatment of the sign of the input operands is determined in lines 90-91. Remember that RISC-V includes three
versions of the “multiply high” operation: mulh, mulhsu and mulhu.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies



imagination
university programme

- These values are propagated to M2.

M2:
- The actual multiplication is performed in line 108.

M3:
- The low/high part is returned in cut [31:0] in line 119. The low part is selected in case of a mul instruction, whereas the high part
is selected in case of any of the three mulh instructions.

TASK: Verify that this pair of 32 bits (0x03de02b3 and 0x03ff0333) correspond to instructions mul t0,t3,t4 and mul t1,t5,t6 inthe
RISC-V architecture.

0x03de02b3 - 0000001 11101 11100 000 00101 0110011

funct7 = 0000001

rs2 =11101 = x29 (t4)
rsl1=11100 = x28 (t3)
funct3 =000

rd = 00101 = x5 (t0)
op = 0110011

0x03ff0333 > 0000001 11111 11110 000 00110 0110011

funct7 = 0000001
rs2=11111 = x31 (t6)
rs1=11110 = x30 (t5)
funct3 =000

rd = 00110 = x6 (t1)
op =0110011

From Appendix B of DDCARV:

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 3



@ imagination

university programme

31:25 24:20 19:15 14:12 11:7 6:0

funct? rs2 | rsl |funct3 rd op | R-Type

op it fone [T Imwestion _____Ibeipion ______operion ___
Hi)

0110011 (51) (000 0000001 |R mul rd, rsl, rsz multiply rd = (rsl % rs2)s

Name Register Number Use

ZEXO x0 Constant value 0

ra x1 Return address

sp x2 Stack pointer

ap x3 Global pointer

tp x4 Thread pointer

t0-2 x5-7 Temporary variables

s0/fp x8 Saved variable / Frame pointer
sl x9 Saved variable

a0-1 x10-11 Function arguments / Return values
a2-7 x12-17 Function arguments

s52-11 x18-27 Saved variables

t3-6 x28-31 Temporary variables

\ TASK: Replicate the simulation from Figure 2 on your own computer and analyse it more closely.

Solution provided in the main document of Lab 14.

TASK: Compare the illustration from Figure 3 with the simulation from Figure 2 focusing on the two mul instructions. Specifically, analyse
how the two instructions are assigned to the two ways in the Align and Decode stages.
- In module ifu_aln_ctl (Align stage) the two instructions are assigned to:
-Way0: ifu i0 instr

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 4



imagination
university programme
-Way 1: ifu il instr

- In module dec_ib_ctl the two instructions are buffered from Align to Decode:
-Way0: ifu i0 instr > dec i0 instr d
-Way 1: ifu il instr 2 dec il instr d
- In module dec_decode_ctl (Decode stage) the two instructions are scheduled to the corresponding pipes if possible. Once they are
sent, they continue through the three execution stages, the Commit stage and the Writeback stage:
-Way 0: 10 _inst el —i0 inst e2— i0 inst e3— i0 inst e4— i0 inst wb
-Way 1: il inst el —il inst e2— il inst e3— il inst e4— il inst wb
We provide a .tcl file called [RVfpgaPath])/RVfpga/Labs/Lab14/MUL _Instruction/test AssignmentWays.tcl that includes all these signals.

Signals W3y

Time

5
35780 ps 35868 ps

ifu i@ instr[31:0
ifu i1 instr[31:
dec i@ instr d[31:
dec il instr d[31:
i@ inst el[31:

il inst el[31:

i@ inst e2[31:

il inst e2[31:

i@ inst e3[31:

il inst e3[31:

i@ inst e4[31:

il inst e4[31:

i@ inst wb[31:

il inst wb[31:

B3FFB333

B3FFE333

B3DEB2E3 B3FFE333 B

B3DEEZE3 |B3FFE333 00800813

B3DEGZE3 ,B3FFE333

]
]
]
]
]
]
] B3DEB2B3 |[p3FFA333 B
]
]
]
]
]
]
]

oD D D DD DD DD D D@

FALFFO6F

- Incycle i-1 (not shown in Figure 2 nor in Figure 3) the two mu1l instructions are at the Align stage: the first is assigned to Way 0
(1fu 10 instr = 0x03de02b3) and the second is assigned to Way 1 (1fu i1l instr = 0x03ff0333) at module ifu_aln_ctl.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 5



imagination
university programme

- In cycle i the two instructions have been propagated to the Decode stage at module dec_ib_ctl: the first continues in Way 0
(dec_i0 instr d = 0x03de02b3) and the second continues in Way 1 (dec_il instr d = 0x03ff0333).

- Incycle i+1 the first mul instruction has been propagated to the M1 stage at the dec_decode_ctl module (10 inst el =
0x03de02b3). However, the second mul instruction couldn’t be propagated due to the structural hazard analysed in the lab, and
thus a bubble has been inserted in the first execution stage of Way 1: i1 inst el = 0x00000013.

Moreover, given that Way 0 has been released at the Decode stage, the second mul has been reassigned to that Way:
dec 10 instr d = 0x03ff0333.

- Incycle i+2 the second mul instruction is propagated to the M1 stage, which is now free (10 _inst el = 0x03ff0333), and the first
mul instruction is propagated to the M2 stage.

- Incycles i+3 to i+6 the two mul instructions progress through the pipeline with no stalls until the Writeback stage.

TASK: Remove the nop instructions included within the loop and measure different events (cycles, instructions/multiplies committed, etc.)
using the Performance Counters available in SweRV EH1, as explained in Lab 11. Is the number of cycles as expected after analysing the
simulation from Figure 2? Justify your answer.

Now reorder the code within the loop trying to reach the ideal throughput. Justify the results obtained in the original code and in the
reordered one.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 6



imagination
university programme

TERMINAL
> Executing task: platformio device monitor <

abl i t , debug, default, direct, hexlify, log2

Ctri+H ---

IPC = 458000/ 262000 = 1.748. The IPC is a bit smaller than the ideal one because the second mul instruction must wait one cycle due to
the structural hazard, as explained in the lab.

If we reorder the code, inserting in between the two mul instructions the update of the loop index, we obtain the ideal IPC, as we fill the
bubble introduced by the structural hazard with a useful instruction.

REPEAT:

to,
2, t2, -
t1, ts,

to,
1,
REPEAT
OUT:

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 7



imagination
university programme

exy
printfNexys (

o a1 E while(1);

E TERMINAL
> Executing task: platfon device monitor <

ize, debug, default, direct, hexlify, log2fi

1p: Ctrl+T followed by Ctrl+H ---

IPC = 458000 / 229000 = 2

TASK: Folder [RVfpgaPath]/RVfpga/Labs/Lab14/MUL _Instr_Accumul_C-Lang provides the PlatformlO project of a C program that
accumulates the subtraction of two multiplications within a loop.

- Analyse the C program.
- Perform a simulation and inspect a random iteration of the loop. Note that the C program is compiled without optimizations.

Measure different events (cycles, instructions/multiplications committed, etc.) using the Performance Counters available in SweRV
EH1 as explained in Lab 11.
Is the number of cycles as expected after analysing the simulation from Figure 2? Justify your answer.

- Create an analogous program in RISC-V assembly and compare it with the C version. Reorder the instructions trying to obtain the
best possible IPC.

- Disable the M RISC-V extension in the C program and compare the results with the original program. To do so, modify the following
line in file platformio.ini from:

build flags = -Wa, -march=rv32ima -march=rv32ima
To:

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 8



imagination
university programme

build flags = -Wa,-march=rv32ia -march=rv32ia
This avoids the use of the instructions from the M RISC-V extension and emulates them using other instructions instead.

- C program (original and disassembly):

= a*%i;
= d*i;

= 1+1;
=e + (b-c);
} while(i<65535);

returnie);

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 9



imagination
university programme

00P0BAd8 <Test C=:

PR1E6793 1i a5,1

BEEOO693 1i a3,o
78733 mul a4,a5,ad

.['.'.E..

; mul az,a5,al
BR178793 addi a5,a5,1
- 4BcT7e733 sub a4,a4,a?z
B0e686b3 add a3,a3,ad
00010737 lui a4,0x10
ffe70713 addi a4,a4,-2 # fffe < sp+Oxc386=>
fef752e3 bge a4,a5,e@ <Test (+0x8=
0eR68513 mv af,a3
QeRE8ReT ret

c
eo
e

- Simulation of the C program:

Signals Waves
Time

dec i@ pc d ext[31
dec i@ instr d[31
dec 11 instr d[31:
al31
b[31

out[3l BBEBEZ29

- HW Counters:

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 10



imagination
university programme

= pspPerformanceCounterGet(

ounterGet(

TERMIMAL

> Executing task: platformio device monitor <

by Ctrl+H ---

MulCom = 13166

IPC =524000 / 327000 = 1.6. Some cycles are lost due to RAW data hazards, that we will analyse in Lab 15.

- The Assembly program can be found at:
[RVfpgaPath])/RVfpga/Labs/RVfpgalLabsSolutions/Programs_Solutions/Lab14/MUL _Instr_Accumul_Assembly

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 11



imagination
university programme

mul t@,t

mul t1,t5,t2
addi t2,t2,1
sub t4,te,tl1
add t6,t6,t4

bne

print (
print E i r d-instr be
printfNex 1 , Com beg);

TERMINAL

> Executing task: platformio device monitor <

iterm on
--- puit. Cctrl+c

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 12



imagination
university programme

The result of the Sum is the same, as the program is the same.

The number of cycles is a bit smaller, as the assembly version programmed by hand is more efficient than the one obtained by the
compiler without optimizations.

The number of instructions is also a bit smaller.

We reorder the loop as follows:
t2,
t4,

.3.2:
t3,
t5, al, zero

REPEAT :

a2, REPEAT

, Zero

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 13



imagination
university programme

printfNe:

printf

print

while(1);

TERMINAL

> Executing task: platformio device monitor <

ze, debug, default, direct, hexlify, log2fil

The result of the Sum is the same, as the program is the same.
Number of cycles per iteration = 196800 / 65500 = 3

The number of instructions is the same. Number of instructions per iterations = 393000 / 65500 = 6
IPC =393/ 197 = 1.994. We obtain the optimal IPC.

- Disable M Extension:

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 14



imagination
university programme

instr_end
MulCom end

printfNexys

printf

print lulCom end-Mu

while(1);
b

TERMINAL

> Executing task: platformio device monitor <

, debug, default, direct, hexlify,

d by Ctri+H ---

The result of the Sum is the same, as the program is the same.

The number of cycles is much higher: Around 4M vs. around 0.3M.

The number of instructions is also much higher: Around 3M vs. around 0.5M.
The CPI is better now.

There are no multiplications committed.

TASK: Modify the program from Figure 1, replacing the two mul instructions for two 1w instructions to the DCCM. You should observe a
structural hazard analogous to the one analysed in this section and resolved in a similar way.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 15



imagination
university programme

28108 ps 282008 ps

Signals Waves
Time

e |
= ~
— =

I

dec i@ pc d ext PEOEELIC |PEERE14L 914C |0BeER11E

dec i@ instr_

dec il instr_
i@ inst el
il inst el
i@ inst e2

[31
d[31
d[31
[31
[31
[31
il inst e2[31
[31
[31
[31
[31
[31
[31

e FCOREEES | BE42A30

FCABBBES

FCRBBRES

B Beeeea13

i@ inst e3
il inst e3
i@ inst e4
il inst e4
18 inst wb[3
il inst wb[3

FCOOROE3

00024303 B B BARREA1Z

FCOER0E3

Be424303  DDEODO13

e e e e e e e e e e e
Il

e o @ o o e e o e o e @

FCBE RRRRAALZ

As we can see in the simulation, the behaviour for two consecutive loads is exactly the same as in the case of two consecutive mul
instructions.

TASK: Replicate the simulation from Figure 6 on your own computer. Use file test_NonBlocking.tcl (provided at

[RVfpgaPath])/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory). Zoom In (—') several times and move to 60120ps.

Solution provided in the main document of Lab 14.

TASK: Compare the simulation shown in Figure 6 (non-blocking load) with the simulation shown in Figure 14 of Lab 13 (blocking load).
Add all of the signals needed for the comparison.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 16



imagination
university programme

Solution not provided.

TASK: Compare the illustration from Figure 7 with the simulation from Figure 6 that you have replicated on your own computer. Add
signals to extend the simulation and deepen understanding, as desired.

Solution not provided.

TASK: Measure different events (cycles, instructions/loads committed, etc.) using the Performance Counters available in SweRV EH1, as
explained in Lab 11. Is the number of cycles as expected after analysing the simulation from Figure 6? Justify your answer.
Compare these results with those obtained when loads are configured as blocking loads.

Non-blocking loads:

instr end pspPerformanceCounterGet (
MulCom end = pspPerformanceCounterGet(

printfNexys 5 %d", cyc end-cyc beqg)
printfies s = ° instr_end-instr_beg);

printfNexys("MulCo =d", Mul LCom beq) ;

while(1);

DEBUG CONSOLE  TERMINAL

Executing task: platformio device monitor <

- N
—-- Duif: Cirl+C | Me
Cycles = 1245717

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 17



imagination
university programme

The IPC obtained (IPC = 2490/ 1245 = 2) is the ideal thanks to the non-blocking load.

Blocking loads:

while(1);

TERMIMAL

> Executing task: platformio device monitor <

The number of instructions is the same, but now it takes much more cycles to execute the loop as the loads make the subsequent
instructions to stall for the data to come from memory. The simulation demonstrates it more clearly.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 18



imagination
university programme

Signals Waves

Time 63560 ps 63600 ps 63760 ps
clk= 1 1T 1 1T 1
dec_i® pc d ext[31:0]=
dec_i® instr d[31:0]=
dec i1 instr d[31:0]=
lsu_rs1 d[31:0]=
lsu offset d[11:08]= . .
rs1 de1[31:0] = Pipeline Stopped
offset dcl[11:8]=

full_addr _dcl[31:0]=
lsu_axi_arvalid=

lsu axi araddr[31:0]=

lsu_axi rvalid=

lsu_axi rdata[63:0] = [ENSEDELNEGE
dec_nonblock load waddr[4:08]=
dec_nonblock load wen=
1su_nonblock load data[31:0]=
waddr@[4:0] =

wend =

wde[31:0] =

waddrl[4:0]=

wenl=

wdl[31:08] =

waddr2[4:0] =

wen2 =l

wd2[31:08] =

EXERCISES

63800 ps

CAL1AB1EBADCABLE

1. Analyse, both in simulation and on the board, the structural hazard that happens between two consecutive memory instructions (you
can analyse any combination of two consecutive memory instructions such as loads and stores) that arrive at the L/S Pipe in the
same cycle. Test both for non-blocking and for blocking loads. You can use the PlatformlO project provided at:

[RVfpgaPath]/RVfpga/Labs/Labl14/TwoConsecutiveLW_Instructions.
Two consecutive loads:

210: 0002a303 1w t1,0(t0)
214: 0042a303 1w t1l,4(t0)

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 19

63908 ps




imagination
university programme

- Simulation:

. Yat=
Signals waves

Time 64988 ps

o
= —~
— =

"

dec 18 pc d ext[31
dec i@ instr d[31
dec il instr d[31
i@ inst el[31

il inst el[31

i@ inst e2[31

il inst e2[31:
[31

[31

[31

[31

[31

FFFEBEL3

FFFEBE13

i@ inst e3
il inst e3
10 inst e4
il inst e4
10 inst wb
il inst wb[31:
waddre[4:8] =
weng =l

wde[31:0] =

BB42A303

FFFEBEL3 18

BEEZA303 i Jeeeeal3

._.._._.._.._.._.._.._.._.._.._.._.
u

[T - T - T - T - TR - TR - TR - B - N~ R~ N <~}

FFFEBE13

Due to the structural hazard in the L/S Pipe, the second lw must stall for 1 cycle, similarly to the Mult Pipe handling two consecutive mul
instructions.

- Execution on the board:

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 20



imagination
university programme

TERMINAL

> Executing task: platformio device monitor <

ri+T | Help J

IPC=262/196 =1.33

Two consecutive stores:

210: 0062a023 SW tl,0(t0)
214: 0062a223 SwW tl,4(t0)
- Simulation:

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 21



imagination
university programme

V5

o
-
7]
._'.-,

: 58400
Time

MY
o~
— =

I

dec i@ pc d ext|
dec i@ instr d
dec il instr d
i@ inst el
il inst el
i@ inst e2
il inst e2

[
[
[
[
[
[
i@ inst e3[
[
[
[
[
[

FABEI4E3
FFFEBE13 B 013

FFFEBE13

FABEL4E3
FFFEGE13 |E

il inst e3
i@ inst e4
il inst e4
10 inst wb
il inst wb

FABE14E3 Al

FFFEBEL13

FABE14E3 | ] pEEEEe13
FFFEBE13

31
31
31
31
31
31
31:
31
31
31
31
31
31

oD D D D D D D D @D @ @
e e b et et b b b b b b
1]

Due to the structural hazard in the L/S Pipe, the second sw must stall for 1 cycle, similarly to the Mult Pipe handling two consecutive mul
instructions.

- Execution on the board:

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 22



imagination
university programme

pspPerforman nterGet(
ounterGet(
MulCom beg = pspPerformanceCounterGet (

sembly();
nd = pspPerformanceCounterGet(

nd = pspPerfor eCounterGet(
1iceCounterGet (

E TERMINAL

> Executing task: platformio device monitor <

ze, debug, default, direct, hexlify, log2fi

ed by Ctrl+H ---

IPC =262/196 =1.33

2. (The following exercise is based on exercise 4.22 from the book “Computer Organization and Design — RISC-V Edition”, by
Patterson & Hennessy ([HePa]).)
Consider the fragment of RISC-V assembly below:
sd x29, 12(x16)
1d x29, 8(x106)
sub x17, x15, x14
begz x17, label
add x15, x11, x14
sub x15, x30, x14
Suppose we modify the SweRV EH1 processor so that it has only one memory (that handles both instructions and data). In this
case, there will be a structural hazard every time a program needs to fetch an instruction during the same cycle in which another
instruction accesses data.
a. Draw a pipeline diagram to show where the code above will stall in this imaginary version of the SweRV EH1 processor.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 23



imagination
university programme

b. In general, is it possible to reduce the number of stalls/nops resulting from this structural hazard by reordering code?
c. Must this structural hazard be handled in hardware? We have seen that data hazards can be eliminated by adding nops to
the code. Can you do the same with this structural hazard? If so, explain how. If not, explain why not.

Solution not provided.

APPENDIX A —= TWO SIMULTANEOUS DIV INSTRUCTIONS IN THE DECODE STAGE

TASK: You can perform a similar study for the div instruction as the one performed in Lab 12 for arithmetic-logic instructions: view the
flow of the instruction through the pipeline stages, analyse the control bits (remember from Appendix D of Lab 11 that there is a specific
structure type for the div instruction called div_pkt t, and there is a signal defined in module dec_decode_ctl called div p), etc.

Solution not provided.

TASK: Inspect the Verilog code from exu_div_ctl to understand how the division is computed. Also analyse the effect of signals
div_stall, finish early, and finish. As an optional exercise, replace the Divide Unit with your own unit or one from the Internet.

Solution not provided.

TASK: Verify that this pair of 32 bits (0x03de42b3 and 0x03ff4333) correspond to instructions div t0,t3,t4 anddiv t1,t5,t6 inthe
RISC-V architecture.

0x03de42b3 - 0000001 11101 11100 100 00101 0110011

funct7 = 0000001

rs2 = 11101 = x29 (t4)
rs1=11100 = x28 (t3)
funct3 =100

rd = 00101 = x5 (t0)
op =0110011

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 24



imagination
university programme

0x03ff4333 - 0000001 11111 11110 100 00110 0110011

funct7 = 0000001
rs2=11111 = x31 (t6)
rsl1=11110 = x30 (t5)
funct3 = 100

rd = 00110 = x6 (t1)
op =0110011

From Appendix B of DDCARV:

31:25 24:20 19:15 14:12 11:7 6:0
funct? rs2 | rsl |funct3 rd op | R-Type

o e ney s lcion _____Docrpion ______Jopewin_____

0110011 (51) |100 0000001 |R diwv rsl, divide (signed) = rsl / rs?

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 25



©

imagination
university programme

Name Register Number Use

Zero x0 Constant value 0

ra x1 Return address

sp x2 Stack pointer

ap x3 Global pointer

tp x4 Thread pointer

t0-2 x5-7 Temporary variables

s0/fp x8 Saved variable / Frame pointer
sl x9 Saved variable

a0-1 x10-11 Function arguments / Return values
az2-7 x12-17 Function arguments

s2-11 x18-27 Saved variables

t3-6 x28-31 Temporary variables

TASK: Replicate the simulation from Figure 9 on your own computer and analyse it in detail.

Solution provided in the main document of Lab 14.

TASK: Compare the illustration from Figure 10 and the simulation from Figure 9 that you have replicated on your own computer. Add
signals to extend the simulation and deepen understanding, as desired.

Solution not provided.

TASK: Measure different events (cycles, instructions/divisions committed, etc.) using the Performance Counters available in SweRV EH1,
as explained in Lab 11. Is the number of cycles as expected after analysing the simulation from Figure 97 Justify your answer.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

26




imagination
university programme

Test_Assembly.S x

REPEAT:

TERMINAL

> Executing task: platformio device monitor <

, default, direct, hexlify, log2fi

CPI =4910000 / 393000 = 12. Taking into account that each division takes around 34 cycles to execute and that the other instructions take
Y cycle each, this is approximately what we could expect: an approximate theoretical computation could be: 6 instructions executed in 34 +
34+%+Y%+Y%+Ycycles > CPI=70/6=11

TASK: Try different dividends and divisors and see how the number of cycles for computing the result depends on their value. View the
experiment both in simulation and with the HW Counters.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 27



imagination
university programme

globl Test_Assembly
Test_Assembly:

li t2, BxFFFF

zero, REPEAT

Signals
Time
clk=
dec 10 pc d ext[31:0] =  [EEEEIGE
dec i@ instr d[31:0]=  [ENZF:E
dec_il instr d[31:0]= [EEEEEE]
div stall=
i@ block d=
il block d=

dividend[31:0] =
divisor[31:8] =
out[31:0] =

to=

t1=

Now the divisions are computed in only around 5 cycles.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 28



imagination
university programme

TERMINAL

> Executing task: platformio device monitor <

The CPI decreases a lot (around 2 per cycle) given that the time for computing each division decreases a lot too.

TASK: Folder [RVfpgaPath]/RVipga/Labs/Lab14/DIV_Instr_Accumul_C-Lang provides the PlatformlO project of a C program that
accumulates the subtraction of two divisions within a loop.

- Analyse the C program.

- Perform a simulation and inspect a random iteration of the loop. Note that the C program is compiled without optimizations.

- Measure different events (cycles, instructions/divisions committed, etc.) using the Performance Counters available in SweRV EH1,
as explained in Lab 11.

Is the number of cycles as expected after analysing the simulation from Figure 9? Justify your answer.

- Create an analogous program in RISC-V assembly and compare it with the C version.

- Disable the M RISC-V extension in the C program and compare the results with the original program. To do so, modify the following

line in file platformio.ini from:
build flags = -Wa, -march=rv32ima -march=rv32ima

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 29



imagination
university programme
To:

build flags = -Wa,-march=rv32ia -march=rv32ia

This avoids the use of the instructions from the RISC-V M extension and emulates them using other instructions instead.

- C program (original and disassembly):

0pOBEE0d8 <Test C=:

dg8: ee1ee793 1i as,1

dc: 0000693 1i a3,oe

e@: 02154733 div a4,ad,a5

ed: P2f5cE33 div a2,al,as

ed: @B178793 addi ab5,a5,1

ec: 48c7e7 sub ad,ad4,a?

f0: 00eBBE add a3,a3,ad

f4: 0801073 lui a4,0x10

f8: ffe7071 addi a4,a4,-2 # fffe < sp+Oxc386>
fc: bge a4,a5,e@ <Test C+0xB>
186: 080685 mv af,a3

184: GOOO8067 ret

Wb W o~ I

-

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 30



imagination
university programme

- Simulation of the C program:

Signals Waves
Time 47200 ps i s 47480 ps B ps 1 E - 5 1 5 5 48 ns 48100 ps ; ST -z . T S— . -
clk=
dec_16_pc_d ext[31:6]= powopoRs  Jooeoers
dec i0 instr d[31:0] = |PEENrECIEE S - R S = = T
dec_il instr d[31:@]=
div_stall=l
10 block d=
il block d=

dividend[31:0] =
divisor[31:0]=
out[31:0] =

- HW Counters:

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies

31



imagination
university programme

TERMINAL

> Executing task: platformio device monitor <

debug, default, direct, hexlify, log2fil

FLEHE ===

- The Assembly program can be found at:
[RVfpgaPath])/RVfpga/Labs/RVfpgaLabsSolutions/Programs_Solutions/Lab14/DIV_Instr_Accumul_Assembly

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 32



imagination
university programme

= pspPerformanceCounte
pspPerformar
= pspPerfor

TERMINAL

- wa=cUting task: platformio device monitor <

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 33



imagination
university programme

The result of the Sum is the same, as the program is the same.

The number of cycles is a bit smaller, as the assembly version programmed by hand is more efficient than the one obtained by the
compiler without optimizations.

The number of instructions is also a bit smaller.

- Disable M Extension:

nterGet(
unterGet(

printfNe
print
print
print
while(1);

i
I

TERMINAL
> Executing task: platformio device monitor <

debug, fault, direct, hex

by Ctrl+H ---

The result of the Sum is the same, as the program is the same.

The number of cycles is much higher: Around 18M vs. around 4M.

The number of instructions is also much higher: Around 20M vs. around 0.5M.
The CPI is better now.

There are no divisions commited.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 34



imagination
university programme

TASK: In SweRV EH1, div instructions are blocking. Modify the processor to allow non-blocking di v instructions.

Then add a second divider to the SweRV EH1 processor, so that two div instructions of the example from Figure 8 are allowed to
execute in parallel.

Solution not provided.

Imagination University Programme — RVfpga Lab 14
Version 2.2 — 9th May 2022

© Copyright Imagination Technologies 35



