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The Complete Course in Understanding Computer Architecture
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RVfpga Introduction

RISC-V FPGA (RVfpga): course that shows how to:

Target SweRV commercial RISC-V core & system-on-chip (SoC) to FPGA
Program the RISC-V SoC

Add more functionality to the RISC-V SoC

Analyze and modify the RISC-V core and memory hierarchy

The package is being developed by Imagination Technologies
and its academic and industry partners.

After completing the RVfpga Course, users will walk away with
a commercial RISC-V processor, SoC, and ecosystem that
they understand and know how to use and modify.

This section of slides covers material in the Getting Started Guide (GSG) Section 1.
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Two RVfpga Courses

Imagination Technologies offers two courses based on the
RISC-V architecture:

RVfpga: the course covered in these slides, about the RISC-V core,
memory system, and peripherals

RVfpga-SoC: a second course that shows how to:
Build a RISC-V SoC from building blocks
Install the Zephyr RTOS (real-time operating system)
Run programs on Zephyr
Run simple Tensorflow programs
(RVfpga-SoC is not covered in these slides)
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Download Material from Imagination Technologies

Both courses (RVfpga and RVfpga-SoC) are available
as separate downloads (free upon registration) at:

https://university.imgtec.com/rvipga/
This EdX course covers the RVfpga Course.
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RVfpga Audience & Track Record

Target Audience
Undergraduates and master’'s students in electrical engineering,

computer science, or computer engineering
Academics & industry professionals interested in learning the
RISC-V architecture

Imagination University Programme (IUP) Track Record:

Developed MIPSfpga Program:

Launched in April 2015

Engaged 800 universities
Winner: Elektra Best Educational Support Award, Europe 2015
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RVfpga Course

Typically 2-3 Semester Course

This section of slides covers material in
Undergraduate (Labs 1-10) the Getting Started Guide (GSG)
Master’s / upper division (Labs 11-20) Section 1.
Expected Prior Knowledge
Digital design

High-level programming (preferably C)
Instruction set architecture / assembly programming
Microarchitecture

Memory systems

This material is covered in Digital Design and Computer Architecture: RISC-V
Edition, Harris & Harris, © Elsevier 2021.

These topics are expanded on with hands-on learning throughout RVfpga course.
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Textbook

Recommended text to Digital Design and
understand before starting Computer Arshitecture
the RVfpga course: RISC-V Edition
Digital Design and

Computer Architecture:

RIS C-V Edition, Harris &
Harris, © Elsevier, 2021

Sarah L Harris

David Harris
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RVfpga System

RVfpgaNexys

DDR2, CDC, BSCAN, Clock Generator

Target: Nexys A7 Board
£ SwelkV Core.
ofd
< Core Complex Open-source core from
4 Western Digital
(C SweRV EH1
- Core 2-way superscalar core
Q. T
H>- s 9-stage pipeline
ICCM, DCCM, IS, PIC, Btus Interface,
o — In-order
m Boot ROM, UART, Ss\l/)sltcegnfr%rlml‘gfller, Interconnect,
; GPIO, PTC, additional SPTand 7-Segment Displays RV32 I M C
I_ RVfpgaSim

DDR2, CDC, BSCAN, Clock Generator
Target: Simulation
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RVfpga Required Software and Hardware

SOFTWARE HARDWARE *

Xilinx Vivado 2019.2 WebPACK

Digilent’s Nexys A7 / Nexys 4 DDR FPGA Board

PlatformlO — an extension of *Optional: All labs can be completed in simulation only; so
Microsoft’s Visual Studio Code — this hardware is recommended but not required.

with Chips Alliance platform,

which includes: RISC-V RISC-V CORE & SOC
Toolchain, OpenOCD, Verilator Core: Western Digital’s SweRV EH1**

HDL Simulator, WD Whisper — i , .
instruction set simulator (ISS) (s Gl MITEEES St

Verilator and GTKWave **0Open-source — and provided as part of RVfpga package.

All are free except the optional Nexys A7 FPGA board, which costs $265 (academic price: $199)
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Nexys A7-100T FPGA Board: Optional

USB
Connector
Pushbuttons
7-Segment
LEDs Displays
Switches

Figure of board from https://reference.digilentinc.com/

<13>
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Contains Artix-7 field

programmable gate array
(FPGA)

Includes peripherals (i.e.,
LEDs, switches, pushbuttons,
7-segment displays,
accelerometer, temperature
sensor, microphone, etc.)

Available for purchase at
digkey.com, digilentinc.com,
and other vendors

We will support the Basys3
FPGA board soon.
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Supported Platforms

Operating Systems
Ubuntu 18.04 and 20.04
Windows 10
macOS
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Introduction

The RVfpga System is an extension of Chips Alliance’'s SweRVolf
SoC, which is based on Western Digital's RISC-V SweRV EH1
core.

The source code for the SoC and core are provided with the
RVfpga download from Imagination Technologies.

The RVfpga System is also simply referred to as "RVfpga”.

This section of slides covers material in the Getting Started Guide (GSG) Section 1.

b4 RIS C ® piewz2 002 25 Qimagination




RVfpga Hierarchy

SweRV EH1 Core I Core DDR2,CESI:ECgAz,IgEiYCSinerator
Target: Nexys A7 Board
Complex &
Includes processor, memory, and 3 SweRVolfX SoC
bus interface W) SweRV EH1
Core Complex
SweRVolfX SoC &
Extended version of SweRVolf (q+] SweRV EH1
Adds peripherals _g‘i' Core
-
Rprga SyStem > ICCM, DCCMééﬁ,uI;IlCJ,nl?tusInterface,
RVfpgaNexys: SweRVolfX o
targeted to hardware (Nexys A7 m Boot ROM, UART, Ssyéslt(e:g]g%Tlgfller,Interconnect,
FPGA board, with on-board -: GPIO, PTC, additional 5Pl and 7-Segment Displays
memory, clock, etc.) - _
. RVfpgaSim
RVfpgaSim: SweRVolfX targeted DDR2, CDC, BSCAN, Clock Generator
to simulation —
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RVfpga Hierarchy

Name  |Description

SweRV EH1 Core Open-source commercial RISC-V core developed be Western Digital
(https://github.com/chipsalliance/Cores-SweRV).

SweRV EH1 Core SweRV EH1 core with added memory (ICCM, DCCM, and instruction cache),

Complex programmable interrupt controller (PIC), bus interfaces, and debug unit

(https://github.com/chipsalliance/Cores-SweRV).

SweRVolfX The System on Chip that we use in the RVfpga course. It is an extension of
(Extended SweRVoIf) [Eiibaiiiais _ -

SweRVolf (https://github.com/chipsalliance/Cores-SweRVolf): An open-source
SoC built around the SweRV EH1 Core Complex. It adds a boot ROM, UART
interface, system controller, interconnect (AXI Interconnect, Wishbone
Interconnect, and AXI-to-Wishbone bridge), and an SPI controller.

SweRVolfX: It adds 4 new peripherals to SweRVolf: a GPIO, a PTC, an additional
SPI and a controller for the 8 digit 7-Segment Displays.
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RVfpga Hierarchy

Name  |Descripton
RVfpgaNexys The SweRVolfX SoC targeted to the Nexys A7 board and its peripherals.
It adds a DDR2 interface, CDC (clock domain crossing) unit, BSCAN
logic (for the JTAG interface), and clock generator.

RVfpgaNexys is the same as SweRVolf Nexys
(https://github.com/chipsalliance/Cores-SweRVolf), except that the
latter is based on SweRVolf.

RVfpgaSim The SweRVolfX SoC with a testbench wrapper and AXI memory
intended for simulation.

RVfpgaSim is the same as SweRVolf sim,
(https://github.com/chipsalliance/Cores-SweRVolf), except that the
latter is based on SweRVolf.
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SweRV EH1 Core and SweRV EH1 Core Complex

SweRV EH1 Core Complex Open-source core from Western Digital
32-bit (RV32ICM) superscalar core, with
dual-issue 9-stage pipeline

Separate instruction and data memories

SweRVEm Core - RV32IMC g (ICCM and DCCM) tightly coupled to the
n core
m@ 4-way set-associative |$ with parity or ECC
protection

goropralll [t g bosy DM*;DS,{E‘-’E Programmable Interrupt Controller
Core Debug Unit compliant with the RISC-
V Debug specification

64- blt AXM 64- bit AXM 64- blt AXM 64- bit AXM .
AHB L|te AHB L|te AHB L|te AHB L|te SyStem BUS. AXI4 or AHB-LIte

Figure from https://github.com/chipsalliance/Cores-
SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
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SweRVolfX SoC

Open-source system-on-chip (SoC)
from Chips Alliance

SweRVolf uses the SweRV EH1
Core. SweRVolf includes a Boot
ROM, UART, and a System

Controller and an SPI controller
(SPI1)

SweRVolfX extends SweRVolf with
another SPI controller (SPI2), a
GPIO (General Purpose
Input/Output), 8-digit 7-Segment
Displays and a PTC (shown in red).
SweRV EH1 Core uses an AXI bus

=3 -
Debug Bu:

AXI Interconnect ]

@ E>R/J».IVI Memory

[ AXI-Wishbone Bridge ]

{ Wishbone Interconnect ]

Boot-ROM System-Ctrl SPI1 SPI2 PTC GPIO UART

Boot ROM 0x80000000 - 0x80000FFF

SweRVolfX Memory System Controller 0x80001000 - 0x8000103F and peripherals use a Wishbone
0x80001040 - 0x8000107F
Map D gﬁzgggggg_gﬁggggg bu.s, so the S.oC also has an AXI to
imer X - UX
0x80001400 - 0x8000143F Wishbone B”dge
UART 0x80002000 - 0x80002FFF
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RVfpgaNexys

o4 RIS C ®

1 100 MHz

Clock |
Generator
LI LT 50 MHz
SweRVolfX SoC ol
- bscan TAP
T . — CDC
AXI Interconnect } - v
i T RAM Memory Lite DRAM
[ AX|-Wishbone Bridge ] controller =)
[ Wishbone Interconnect }

N

Boot-ROM | [ system-ctrl | [ spi1 | [ spi2 | | Timer | [ GPio || UART |
+

RVfp

Imagination Technologies

—

gav2.2 © 2022 <22>

RVfpgaNexys: SweRVolfX SoC
targeted to Nexys A7 FPGA
board with added peripherals:
Core & System:
SweRVolfX SoC
Lite DRAM controller
Clock Generator, Clock Domain

and BSCAN logic for the JTAG
port

Peripherals used on Nexys A7
FPGA board:

DDR2 memory

UART via USB connection
SPI Flash memory

16 LEDs and 16 switches

SPI Accelerometer

8-digit 7-segment displays
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RVfpgaSim

- RVfpgaSim is the SweRVolfX SoC wrapped in a
testbench to be used by HDL simulators.
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RVfpga System Extensions

The SweRVolfX SoC is further extended in Labs 6-10:

Another GPIO controller to interface with the on-board Nexys A7
pushbuttons

Modification of the 7-segment displays controller

New timer modules for using the on-board tri-color LEDs
New external interrupt sources
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RVfpga Labs Overview

Part 1: Labs 1-10

Programming
Vivado Project & I/0O Systems

Part 2: Labs 11-20

RISC-V Core
RISC-V Memory Systems
RISC-V Benchmarking & Performance Monitoring

All labs include exercises for using and/or modifying the RVfpga
System to increase understanding through hands-on design. RVfpga
includes C and assembly example programs and solutions.
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RVfpga Labs 1-4: Programming

Lab 1: C Programming: Write a C program in PlatformlO, and run / debug it on
RVfpgaNexys/RVfpgaSim/Whisper. Also introduce Western Digital’'s Board
Support and Platform Support Packages (BSP and PSP) for supporting
operations such as printing to the terminal.

Lab 2: RISC-V Assembly Language: Write a RISC-V assembly program in
PlatformlO and run /debug it on RVfpgaNexys/RVfpgaSim/Whisper.

Lab 3: Function Calls: Introduction to function calls, C libraries, and the RISC-
V calling convention.

Lab 4: Image Processing: C & Assembly: Embed assembly code with C
code.
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RVfpga Labs 5-10: 1/O & Peripherals

Lab 5: Creating a Vivado Project: Build a Vivado project to target
RVfpgaNexys to an FPGA board and simulate RVfpgaSim in Verilator.

Lab 6: Introduction to 1/O: Introduction to memory-mapped I/O and the
RVfpga System’s open-source GPIO module.

Lab 7: 7-Segment Displays: Build a 7-segment display decoder and integrate
it into the RVfpga System.

Lab 8: Timers: Understand and use Timers and a Timer controller.

Lab 9: Interrupt-driven 1/O: Introduction to the RVfpga System’s interrupt
support and use of interrupt-driven 1/O.

Lab 10: Serial Buses: Introduction to serial interfaces (SPI, 12C, and UART).
Show how to use the onboard accelerometer that uses an SPI interface.
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RVfpga Labs 11-20: The RISC-V Core

Lab 11: Understanding the SweRV EH1 configuration, core structure,
and performance monitoring.

Labs 12, 13, 16: Examining instruction flow through the pipeline
(Arithmetic/Logic, Memory, Jumps, and Branches).

Labs 14-16: Understanding hazards and how to deal with them
Lab 16: Understanding and modifying the branch predictor
Lab 17: Exploring superscalar execution.

Lab 18: Adding new instructions and hardware counters.

Lab 19: Understanding the memory hierarchy and I$.

Lab 20: Enabling the ICCM and DCCM (instruction and data closely-
coupled memories) and using benchmarking to compare performance.
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Directory hierarchy of RVfpga materials

RVipga/Documents folder: Documents (GSG, Slides, Labs, ...).

Lablnstructions folder:
Instructions for each Lab + Figures used in the instructions for each lab.

RVipga/verilatorSIM folder: Sources for Verilator simulator
RVipga/src folder: Verilog sources for the SoC

RVipga/examples folder: PlatformlO projects for the GSG examples
RVifpga/lLabs folder:

Folders Lab1,..., Lab20: Resources to be used while completing the labs.

RVipgalabsSolutions folder: Exercise solutions for each of the labs.
ProgramsAndDocuments folder: Solutions for the proposed tasks and exercises.

Modified RVifpgaSystem folder: Modified RVfpga System as guided by the exercises in
Labs 6-10 and Lab 18. Solutions for the exercises + Instructions.
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Installing Tools
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RVfpga Software Tools (Section 5 GSG)

XilinxX’s Vivado IDE

View RVfpga source files (Verilog / SystemVerilog) and hierarchy
Create bitfile (FPGA configuration file) for RVfpga targeted to Nexys A7 board

Visual Studio Code (VSCode) + PlatformlO

PlatformlO: an extension of VSCode
Download the RVfpga System onto the Nexys A7 board

Compile, download, run, and debug C and assembly programs on the RVfpga
System

Verilator — an HDL (hardware description language) simulator
Simulate the RVfpga System at HDL (low) level to analyze its internal signals

GTKWave — wave viewer

This section of slides covers material in the Getting Started Guide (GSG) Sections 2 & 5.
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Installation of minimal tools (Section 2 GSG)

VSCode
Download VSCode for Linux, Windows or MacOS
Install it in your system

Install PlatformlO on top of VSCode

In Linux: Install python3 utilities
Extensions Icon: Look for PlatformlO and install it

Install Nexys A7 drivers:
Linux: Use provided folder
Windows: Use Zadig application (Appendix)
Mac OS: Not necessary

Install GTKWave following the instructions for your OS
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LEDs-Switches — Execution on the Board (Sections 6.A and 6.E of GSG)

Connect the Nexys A7 board.

Open VSCode and PlatformlO.

Click on File — Open Folder and select:
[RVipgaPath]\RVfpga\examples\LedsSwitches C-Lang

Analyse the source code of the program: src/LedsSwitches C-Lang.c.

The first time an RVfpga example opens in PlatformlO, the Chips Alliance
platform gets automatically installed. It includes the pre-built RISC-V
toolchain, OpenOCD, the Verilator simulator, etc.

Download RVfpgaNexys to the Nexys A7 board. You first have to update the
path. You may need to refresh the Project Tasks window.

Download and execute example LEDs-Switches.

This section of slides covers material in the Getting Started Guide (GSG) Sections 6-8.
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AL_Operations Example — Execution on the Board (Section 6.B of GSG)

If not opened yet, open VSCode and PlatformI|O

Click on File — Close Folder from the top file menu. Then click on
File — Open Folder and select:

[RVipgaPath]\RVipga\examples\AL Operations

Analyse the source code of the program
If necessary, download RVfpgaNexys to the Nexys A7 board.

Download, execute and debug example AL Operations.
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AL_Operations Example — Simulation in Whisper (Section 8 of GSG)

Click on File — Open File and double-click on
[RVipgaPath]/RVipga/examples/AL Operations/platformio.ini, and set
whisper as the debug tool by uncommenting line 17.

Launch the debugger as usual

You can now debug the program exactly as you did in Section 6.B,
but this time the program is running in simulation on Whisper instead
of on the Nexys A7 FPGA board.
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AL_Operations Example — Simulation in Verilator (Section 7 of GSG)

Open file platformio.ini. Establish the path to RVfpgaSim.
Run the simulation by clicking on the PlatformlO icon .

Expand Project Tasks — env:swervolf nexys — Platform and click on
Generate Trace

A few seconds after the previous step, file trace.vcd should have
been generated and you can open it with GTKWave

Add signals: click on File — Read Tcl Script File and select
[RVipgaPath]/RVipga/examples/AL Operations/test.tcl
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HelloWorld Example (Section 6.F of GSG)

Open VSCode and PlatformlO. Click on File — Close Folder. Click
on File — Open Folder from the top file menu and select:

[RVipgaPath]\RVipga\examples\HelloWorld C-Lang

Configure the system:
PlatformlO serial monitor: Use monitor _speed parameter in file platformio.ini
In Linux, add yourself to the dialout, tty and uucp groups

Download and execute example HelloWorld. When the program

starts to run, open the serial monitor, by clicking on the p/ug button
available on the bottom of VS Code.
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HelloWorld — Simulation in Whisper (Section 8 of GSG)

Click on File — Open File and double-click on
[RVipgaPath]/RVipga/examples/HelloWorld C-Lang/platformio.ini,
and set whisper as the debug tool by uncommenting line 17.

Launch the debugger as usual. You can now debug the program
exactly as you did in Section 6.B, but this time the program is running
in simulation on Whisper instead of on the Nexys A7 FPGA board.

Given that this program uses the printfNexys function in Whisper, you
should not open the PlatformlO serial monitor, as messages are
shown in the DEBUG console instead.
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RVfpga Lab 1: C Programming

Create PlatformlO project from scratch

Add example C programs to the project:

LedsSwitches
HelloWorld

Run and debug the two programs:
On the board
On Whisper

Complete the exercises at end of lab
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RVfpga Lab 1: Memory-Mapped I/O Addresses

Device ______________ Memory-Mapped I/0 Address

Switches (16 on Nexys A7 board) 0x80001400 (upper 16 bits)
LEDs (16 on Nexys A7 board) 0x80001404 (lower 16 bits)
Input/Output of GPIO (1 = output, 0 = input) 0x80001408
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RVfpga Lab 1: Example C Program

// memory-mapped I/O addresses

D e, This program writes the value of
#define GPIO_ LEDs 0x80001404 ]
#define GPIO INOUT 0x80001408 the switches to the LEDs.
#define READ GPIO(dir) (*(volatile unsigned *)dir)
#define WRITE GPIO(dir, value) { (*(volatile unsigned *)dir) = (value); }
int main ( void )
{
int En Value=0xFFFF, switches value; // Upper 16 bits are inputs, lower 16 are outputs

WRITE GPIO(GPIO INOUT, En Value);

while (1) {
switches value = READ GPIO(GPIO_ SWs); // read value on switches
switches value = switches value >> 16; // shift into lower 16 bits
WRITE GPIO(GPIO_LEDs, switches value); // display switch value on LEDs

}

Folder Location: [RVfpgaPath]\RVfpga\examples\LedsSwitches C-Lang

return (0) ;

}
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RVfpga Lab 1: Western Digital’s BSP & PSP

Western Digital provides:
PSP: platform support package
BSP: board support package

These provide common functions for a given processor

(SweRV EH1 core) and board (Nexys A7 FPGA board).
Example: printfNexys (like printf function in C)
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RVfpga Lab 1: Using UART to Print to Terminal

#if defined (D NEXYS A7)

#include <bsp_printf.h> * Add this line to platformio.ini file:

#include <bsp mem map.h> . _
#include <bsp version.h> monltor_speed =115200

felse
#endif . . .
#include <psp api.h> PlatformlO terminal by pressing this
fdefine DELAY 10000000 button in the bottom of the
int main (void) { window:
int 1, 3 = 0;
// Initialize UART
uartInit() ;
while (1) {
printfNexys ("Hello RVfpga users! Iteration: %d\n", j);
for (i=0; 1 < DELAY; i++) ; // delay between printf's
j++

Folder Location: [RVfpgaPath]\RVifpga\examples\HelloWorld C-Lang
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RVfpga Lab 1: Exercises Sample — Input/Output

Exercise 1. Write a C program that flashes the value of the switches onto the LEDs.
The value should pulse on and off slow enough that a person can view the flashing.

Exercise 2. Write a C program that displays the inverse value of the switches on
the LEDs. For example, if the switches are (in binary): 0101010101010101, then the
LEDs should display: 1010101010101010; if the switches are: 1111000011110000,
then the LEDs should display: 0000111100001111...

Exercise 4. Write a C program that displays the unsigned 4-bit addition of the 4
least significant bits of the switches and the 4 most significant bits of the switches.
Display the result on the 4 least significant (right-most) bits of the LEDs. The fifth bit
of the LEDs should light up when unsigned overflow occurs (that is when the carry
outis 1).
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RVfpga Lab 1: Exercises Sample — Algorithms

Exercise 5. Write a C program that finds the greatest common divisor of two
numbers, a and b, according to the Euclidean algorithm. The values aand b
should be statically defined variables in the program.

Exercise 9. Implement the bubble sort algorithm in C. This algorithm sorts the
components of a vector in ascending order by means of the following procedure:

Traverse the vector repeatedly until done.

Interchanging any pair of adjacent components if V(i) > V(i+1).

The algorithm stops when every pair of consecutive components is in order.
Exercise 10. Write a program in C that computes the factorial of a given non-
negative number, n, by means of iterative multiplications. While you should test
your program for multiple values of n, your final submission should be forn = 7.
The program should print out the value of factorial(n) at the end of the program.
n should be a variable that is statically defined within the program.
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RVfpga Lab 2: RISC-V Assembly Programming

Create PlatformlO project from scratch

Add example RISC-V Assembly program to the project:
LedsSwitches

Run and debug the program:
On the board
On Whisper

Complete the exercises at end of lab
Create a project from scratch
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RVfpga Lab 2: RISC-V Assembly Instructions

Common RISC-V Assembly Instructions & Pseudoinstructions

RISC-V Assembly

add s0, sl, s2 Add sO=s1+s2
Subtract sO=sl1-s2

addi t3, tl1, -10 Add immediate t3=t1-10
32-bit multiply t0 = t2 * t3

div s9, t5, té Division t9=t5/16
Remainder s4=5s1%s2

and t0, tl, t2 Bit-wise AND t0=t1 &t2

or t0, tl, t5 Bit-wise OR t0=t1 ]| t5

Bit-wise XOR s3 =54 s5

~8sle LN o R P 0 P A ¥ 20 Bit-wise AND immediate t1 =12 & OxFFFFFFFB
Bit-wise OR immediate t0 = t1 | 0x2C
Bit-wise XOR immediate 53 = s4 A OxFFFFFABC
Shift left logical t0 = t1 << t2

Shift right logical t0=t1>>1t5

sra s3, s4, sb5 Shift right arithmetic s3 =54 >>> 55

Shift left logical immediate tl1=1t2<<30

srli t0, tl1, 5 Shift right logical immediate t0=t1>>5
srai s3, s4, 31 Shift right arithmetic immediate s3 =s54>>>31

P4 RISC ® 2002 o’ O imagination



RVfpga Lab 2: RISC-V Assembly Instructions

Common RISC-V Assembly Instructions & Pseudoinstructions (continued)

RISC-V Assembly

lw s7, 0x2C(tl) Load word s7 = memory[t1+0x2C]

Load half-word s5 = SignExt(memory[s3+0x5A],s.,)
Load byte s1 = SignExt(memory[t4-3],.,)
Store word memory[t1+0x7C] = t2

Store half-word memory([s3+22],5., = t3,5,

Store byte memory[s4+5], = t4;

Branch if equal if (s1==s2), PC=L1

Branch if not equal if (s1!=s2), PC = Loop

Branch if less than if (t4 < t5), PC=13

Branch if not equal if (s8>=s9), PC = Done

1i sl1, OxABCDEF12 QJEELRll=lIEI= s1 = OxABCDEF12

Load address s1 = Variable A’s memory address (location)
LI Nop no operation

mv s3, s7 Move s3 =57

Not (Invert) tl="t2

Negate s1=-s3

Jump PC = Label

EEEE A jump and link PC=L7;ra=PC+4

Jump register PC =51
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RVfpga Lab 2: RISC-V Registers

32 32-bit registers
Register Number _|Use |
x0

Constant value O

x1 Return address
X2 Stack pointer

x3 Global pointer
x4 Thread pointer

x5-7 Temporary variables

\
=y
©

x8 Saved variable / Frame pointer
1 X9 Saved variable
a0-1 x10-11 Function arguments / Return values
a2-7 x12-17 Function arguments
Y BB x18-27 Saved variables
x28-31 Temporary variables
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RVfpga Lab 2: Example RISC-V Assembly Program

// memory-mapped I/0O addresses

# GPTIO_SWs = 0x80001400 This program writes the value of
# GPIO LEDs = 0x80001404 .
§ GPTO INOUT - 0x80001408 the switches to the LEDs.
.globl main
Folder Location: [RVfpgaPath]\RVfpga\Labs\Lab02
main:
11 t0, 0x80001400 # base address of GPIO memory-mapped registers
1i tl, OXFFFF # set direction of GPIOs
# upper half = switches (inputs) (=0)
# lower half = outputs (LEDs) (=1)
sw tl, 8(t0) # GPIO INOUT = OXFFFF

repeat:
1w tl, 0(t0)
srli tl, tl1, 16
SW tl, 4(t0)
] repeat

J
b4 RIS C ® piewz2 002 > QJimagination

read switches: tl = GPIO SWs

shift val to the right by 16 bits
write value to LEDs: GPIO LEDs = tl
repeat loop

H= HH= FH= H



RVfpga Lab 2: Same Exercises as in Lab 1 - Sample

Exercise 4. Write a C program that displays the unsigned 4-bit addition of the 4
least significant bits of the switches and the 4 most significant bits of the
switches. Display the result on the 4 least significant (right-most) bits of the
LEDs. The fifth bit of the LEDs should light up when unsigned overflow occurs
(that is when the carry out is 1).
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RVfpga Lab 3: Function Calls

Write C programs with function (procedure) calls

Write C programs with calls to library functions:
Use of standard libraries
Use of WD libraries, specific for RVfpga

RISC-V (Procedure) Calling Convention
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RVfpga Lab 3: Example Program with Functions

// memory-mapped I/O addresses

#define GPIO SWs 0x80001400

#define GPIO LEDs 0x80001404

#define GPIO INOUT 0x80001408

#define READ GPIO(dir) (*(volatile unsigned *)dir)

#define WRITE GPIO(dir, value) { (*(volatile unsigned *)dir) = (value); }

void IOsetup() ;
unsigned int getSwitchVal() ;
void writeValtoLEDs (unsigned int val);

int main ( void ) {
unsigned int switches val;

IOsetup() s

while (1) {
switches val = getSwitchVal();
writeValtoLEDs (switches val);

}

return (0) ;

}
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RVfpga Lab 3: Example Program with Functions

void IOsetup ()

{
int En_Value=OxFFFF;

WRITE GPIO(GPIO INOUT, En Value);
}

unsigned int getSwitchvVval ()
{

unsigned int val;

val = READ GPIO(GPIO_SWs) ; // read value on switches
val = val >> 16; // shift into lower 16 bits

return val;

}

void writeValtoLEDs (unsigned int val)

{
WRITE GPIO(GPIO LEDs, val); // display val on LEDs

}
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RVfpga Lab 3: C Libraries

Libraries
Collection of commonly used functions
Provided so that common functions are readily available (save
programming time)
Example C libraries:
math.h (math library): includes functions such as sqrt (square root), cos
(cosine), etc.
stdio.h (standard I/O library): includes functions for printing values to the
screen (printf), reading values from users (scanf), etc.
stdlib.h (standard library): includes functions for generating random
numbers (rand).
Many others... (google C libraries)

b4 RIS C ® piew2 002 <> Qimagination



RVfpga Lab 3: Example Program using C Library

#include <stdlib.h>

This program writes a random

int main (void) { number between 0 and 65535 to
unsigned int wval; the LEDs.

volatile unsigned int 1i;

IO0setup () ;
while (1) {
val = rand() % 65536;
writeValtoLEDs (val) ;
for (1 = 0; 1 < DELAY; i++)
}

return (0) ;

}
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RVfpga Lab 3: WD Libraries

We've used printfNexys in many programs

Lab 9: Use of WD functions for handling interrupts
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RVfpga Lab 3: RISC-V Calling Convention

Call a function
jJal function label

Return from a function
Jr ra
Arguments
placed in registers a0-a7

Return value
placed in register a0
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RVfpga Lab 3: RISC-V Calling Convention Example

C Code RISC-V Assembly

int main() { # vy is in sO
main:

int y =y + funcl(l, 2, 3) Tt . .
addi a0, zero, 1 # put values in argument registers

yt+s .
addi al, zero, 2
} o addi a2, =zero, 3
jal funcl # call function funcl
add s0, s0, a0 # v = y + return value
addi s0, s0, 1 # vy = y++
# sum is in sO
int funcl (int a, int b, int c) { funcl:
. add s0, a0, al # sum = a + Db
int sum; 3
sum = a + b + c; addlsO, sO, a2 # sum = a + b + ¢
. addi a0, s0, 0 # return value = sum
return sum; .
} Jr ra # return
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RVfpga Lab 3: The Stack

Scratch space in memory used to save register values
The stack pointer (sp) holds the address of the top of the stack

The stack grows downward in memory. So, for example, to make
space for 4 words (16 bytes) on the stack the following code is used:

addi sp, sp, -16

Two categories of registers:

Preserved registers: register contents must be preserved across function calls (i.e.,
contain the same value before and after a function call)

Non-preserved registers: register contents must not be preserved across function
calls (i.e., the register does not need to be the same before and after a function call)

Saved registers (s0-s11), the return address register (ra), and the stack pointer (sp)
are preserved registers. All other registers are not preserved.
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RVfpga Lab 3: Preserved / Nonpreserved Registers

Register Number [Use ~ |Preserved
x0 -

Constant value O
Return address Yes
Stack pointer Yes

)

o
XX
N

Name

zero

ra

sp

gp 2 BE Global pointer -
x4 Thread pointer -
x5=17 Temporary variables No
%8 Saved variable / Frame pointer Yes
%9 Saved variable Yes
x10-11 Function arguments / Return values  No
x12-17 Function arguments No
x18-27 Saved variables Yes
x28-31 Temporary variables No
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RVfpga Lab 3: The Stack — Revised Assembly Code

C Code RISC-V Assembly

int main() { # vy is in sO
. main:
int y =y + funcl(l, 2, 3) addi a0, zero, 1 # put values in argument registers
v+ addi al, =zero, 2
addi a2, =zero, 3
} jal funcl call function funcl

= y + return value

#
add s0, s0, a0 #
# = y++

%
addi s0, s0, 1 %

# sum is in sO

int funcl (int a, int b, int c) { funcl:addi sp, sp, -4 # make room on stack
int sum; sSwW sO0, O(sp) # save sO0 on stack
add s0, a0, al # sum = a + b
sum = a + b + c; add s0, s0, a2 # sum = a + b + ¢
return sum; addi a0, s0, 0 # return value = sum
} 1w s0, O(sp) # restore sO from stack
addi sp, sp, 4 # restore stack pointer
jr ra # return
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RVfpga Lab 3: Exercises Sample — C programs

Exercise 3. Write a C program that measures reaction time. Your program
should time how long it takes for a person to switch on the right-most switch
(SWIO0]) after all of the LEDs light up. You will use the rand() function from the
stdlib.h library to generate a random amount of time to delay between each time

the user attempts to test their reaction time.
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RVfpga Lab 3: Exercises Sample — Assembly programs

Exercise 8. Write a RISC-V assembly program called Filter.S (the program must be compliant
with the standard for function management studied before). You can use the following pseudo-

code:
#define N 6
int 1, j=0, A[N]={48,64,56,80,96,48}, B[N];
for (1=0; i< (N-1); 1i++){

1f( (myFilter (A[1i],A[1i+1])) == 1){
B[J]=A[1i]+ A[i+1] + 2;
Jt++;

}
}

Write the equivalent RISC-V assembly code, including any directives required to reserve
memory space, and declaring the corresponding sections (.data, .bss and .text). Function
myFilter returns the value 1 if the first argument is a multiple of 16 and the second is greater
than the first; otherwise, it returns a 0.

Write the assembly code of the function myFilter.
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RVfpga Lab 4: Combining C and Assembly

Example: Image processing program
Some functions written in C and some in assembly
Convert colour image to greyscale

< 4 A 4 Imagination Technologies mqglnq Ion



RVfpga Lab 4: Image Processing Program

Each pixel stored as three 8-bit colours: R =red, G = green, B = blue
Any colour can be created by varying R, G, and B values

To convert image to an 8-bit greyscale ( ), each pixel is transformed
as follows:

= (306*R + 0601*G + 117*B) >> 10

RGB weights add up to 1024 (306 + 601 + 117 = 1024), so to get back to an

8-bit range (0-255), the result is divided by 1024 (i.e., shifted right by 10
bits: >> 10)

For more details about the algorithm, see:
https://www.mathworks.com/help/matlab/ref/rgb2gray.html
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RVfpga Lab 4: Assembly Function

.globl ColourToGrey Pixel «——— .globl makesCoulourToGrey Pixel function visible
.text to all files in project

ColourToGrey Pixel:

1i x28, 300 # a0 = R * 306
mul a0, a0, x28
1i x28, 601 # al = G * 601
mul al, al, x28
11 x28, 117 # a2 = B * 117
mul aZz2, a2, x28
add a0, a0, al # grey = a0 + al + a2
add a0, a0, az
srl a0, a0, 10 # grey = grey / 1024
ret # return
-end = (306*R + 601*G + 117*B) >> 10
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RVfpga Lab 4: Structs and Arrays

typedef struct {
unsigned char R;
unsigned char G;
unsigned char B;
} RGB;

extern unsigned char VanGogh 128x128[]; // 1D array of individual RGB values
RGB ColourImage [N] [M]; // 2D array of RGB struct (colour image)
unsigned char GreyImage[N] [M]; // 2D array of greyscale image

// VanGogh 128.c

unsigned char VanGogh 128x128[] = { 157, // R (pixel [0][0])
182, // G (pixel [0]1[0])
lo1l, // B (pixel [0][0])
171, // R (pixel [0][1])
195, // G (pixel [0]1[1])
173, // B (pixel [0]1[1])
173, // R (pixel [0][2])

}
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RVfpga Lab 4: Main Function

int main (void) {
// Create an N x M matrix using the input image
initColourImage (ColourImage) ;

// Transform Colour Image to Grey Image
ColourToGrey (ColourImage, GreyImage) ;

voilid ColourToGrey (RGB Colour[N] [M], unsigned char Grey[N] [M]) {
int 1,737

for (i=0; i<N; 1i++)
for (3=0; Jj<M; Jj++)
Grey[i] [J] = ColourToGrey Pixel (Colour[i][]J].R, Colour[i][]J].G,
Colour[i] []] .B);
}
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RVfpga Lab 4: Provided project and Exercises

Exercise 1. Execute the program on a different input image.

Exercise 2. Create a C function that counts the number of close to white (>235)
and close to black (<20) elements in the VanGogh greyscale image. Print the two
numbers on the serial console.

Exercise 3. Transform the ColourToGrey Pixel assembly subroutine into a C
function, and the C function ColourToGrey into an assembly subroutine that
invokes the ColourToGrey_ Pixel C function.

Exercise 4. Apply a Blur Filter to the VanGogh colour image.
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RVfpga Lab 5: RVfpga Vivado Project

Vivado is a Xilinx tool for viewing, modifying, and synthesizing the source
(Verilog) code for the RVfpga System.
RVfpga System’s source code is in:

[RVipgaPath]/RVipga/src
In this lab, users create a Vivado project that contains RVfpga System’s
source code, synthesize RVfpgaNexys targeted to Nexys A7 board and

create a bitfile that contains information to configure the FPGA as
RVfpgaNexys.

Vivado (and Verilator) are used extensively in RVfpga Labs 6-20 for
modifying and simulating the RVfpga System.
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RVfpga Lab 6: Introduction to 1/0O

Main features of a general-purpose |/O system and the one
used in the RVfpga System

Simplified theoretical version of a generic GPIO controller

GPIO controller used in the SweRVolfX SoC:

We first analyse its high-level specification and introduce
fundamental exercises

We then analyse its low-level implementation, simulating
RVfpgaSim in Verilator, and introducing advanced exercises
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RVfpga Lab 6: Generic Processor with 1/0

CPU

Memory

< FAST INTERCONNECT (AXI) >

Bridge

< SLOW INTERCONNECT (Wishbone)

Device
—>

Controller
(includes a
series of
registers)
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RVfpga Lab 6: General-Purpose 1/0 (GPIO)

General-purpose 1/O:
Allows processor to read/write pins connected to peripherals (like switches and LEDs)
Each pin can be configured as an input or output using tri-state

Three memory-mapped registers:

Read Register: value read from pin Peripherals
Write Register: value to write to pin GPIO
Enable Register: 1 = output, 0 = input
Read Register I‘* |
Bus (Axi4, Wishbone...) ﬁ
CPU Write Register ¥ »

Enable Register /
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RVfpga Lab 6: SweRVolfX GPIO Module

GPIO Module from OpenCores

https://opencores.org/projects/gpio

Allows up to 32 GPIO pins

All pins can be individually configured as inputs (enable = 0) or outputs
(enable = 1)

Configuration can change throughout program

Memory-Mapped Address

Read Register 0x80001400
Write Register 0x80001404
Enable Register 0x80001408
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RVfpga Lab 6: Memory-Mapped Registers

Mapping LEDs & Switches to GPIO pins:

LEDS: pins [15:0] (outputs of processor)
Switches: pins [31:16] (inputs to processor)

Configure GPIO:
Enable Register = Ox0000FFFF (1 = output, 0 = input)
11 t0, 0x80001400
1i tl, OxFFFF
sw t1, 8(t0) # Enable Register = OxFFFF

Write LEDs:
Write value in [15:0] to address 0x80001404
sw t3, 4(t0) # LEDs = [t3];:.
Read Switches:

Read switches in bits [31:16] from address 0x80001400

Shift right by 16 bits to put value in lower 16 bits
figure of board from https://reference.digilentinc.com/ 1w t5, 0(t0) # [t5]41.1,

LEDs

Switches

= switch values
srli t5, t5, 16 # [t5];5., = switch values
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RVfpga Lab 6: Fundamental Exercises - Sample

Exercise 1. Write a RISC-V assembly program and a C program that
shows a block of four lit LEDs that repeatedly moves from one side of
the 16 LEDs available on the board to the other. Also include two
switches that control the speed and direction. Switch[0] changes the
speed and Switch[1] changes the direction as follows:

If Switch[0] is ON (high), the lit LEDs should move quickly. Otherwise, the lit
LEDs should move slowly. You may define what “quickly” and “slowly” mean,
but either speed must be visible, and you must be able to detect a difference

in speed just by looking at it.

If Switch[1] is ON (high), the lit LEDs should repeatedly move from right-to-left
(they start back at the right when they reach the left-most LED). Otherwise,
the lit LEDs should repeatedly move from left-to-right.
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RVfpga Lab 6: GPIO Low-Level Implementation

Divided in 3 main parts
RVfpgaNexys’s external connection to the on-board LEDs/Switches (left shaded region)
Integration of the GPIO module into SweRVolfX (middle shaded region)
Connection between the GPIO and the SweRV EH1 (right shaded region)

1 o Address
% +— Boot-ROM _\ Decoder
T = Sys-Con — Address[15:6]
s Tj Address[5:2]
+«—  SPI1-Flash  |mes— —
2 ,
‘* —  SPI2-Accel | S 1| WB-Axi | SweRV
N (el Bridge EH1
=l
Timer r——— D
x
P D)
T «—] GPIO1-LEDSSW frmes
d—b UART e
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RVfpga Lab 6: External connection

File rvfpganexys.xdc: Defines the connection of i_sw[15:0] with the on-board

switches and o _led[15:0] with the on-board LEDs

o4 RIS C

set _property
set property
set property
set property
set property
set property
set property
set _property
set property
set property
set property
set property
set property
set property
set property
set property

set property
set property
set property
set property
set property
set_property
set property
set property
set property
set property
set_property
set property
set_property
set property
set_property
set property

®

PACKAGE_PIN
PACKAGE_PIN
PACKAGE_PIN
PACKAGE PIN
PACKAGE_PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE_PIN
PACKAGE PIN
PACKAGE_PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE_PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN

PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE PIN
PACKAGE_PIN
PACKAGE PIN
PACKAGE_PIN
PACKAGE PIN

IOSTANDARD
IOSTANDARD
IOSTANDARD
IOSTANDARD
TOSTANDARD
IOSTANDARD
TIOSTANDARD
I0STANDARD
IOSTANDARD
IOSTANDARD
IOSTANDARD
IOSTANDARD
TIOSTANDARD
IOSTANDARD
IOSTANDARD
TIOSTANDARD

IOSTANDARD
IOSTANDARD
IOSTANDARD
IOSTANDARD
TI0STANDARD
IOSTANDARD
I0STANDARD
IOSTANDARD
IOSTANDARD
IOSTANDARD
IOSTANDARD
TIOSTANDARD
IOSTANDARD
TOSTANDARD
IOSTANDARD
IOSTANDARD
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LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS18
LVCMOS18
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33

LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33
LVCMOS33

<88>

[get ports
[get_ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports

[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports
[get ports

Q3 imagination
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i sw[11]
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RVfpga Lab 6: Integration into RVfpga

Flle swervolf core.v: Tri-state buffers and GPIO module instantiation

o gpio ) outp(i g ) bidir{io data[@] )};
(0_gpio[1] ) gpie[1] ) io data[l]l )};
2 i upio[ ) io data[2] ));
ir{io data[3] ));
io datal4] )); grio to o modulel
iir{io datal[5] )}; 5 (clk),

jiir{io data[6] : =
io_data[7] )); rs th__rst],

odMH[] )i i (wb m2s gpio cyc),
i ({2'b8,wb m2s gpio adr[:
iwb m25 gpin G ET
= bt : A (wb m2s uplu we),
151}, .bidiriio dat 1) \ ] (wb m2s gpio rTb|
P _]]. lo_data[16])); : twh s2m gpio dat),
L gplo[17]], "(10_data[l7])); : (wb s2m gpio ack),
_.;”j]_.j[_..]]r 0 : A = T s A Py
-gmﬂ[fljr ir(io data[12])): . (wb_s2m gpio err),
lo[20]), lo data[20])); .wh inta ¢ (gpio irg),
i ek i =
gplo[ 21}, i e T s Tk
gpio[23]), ) - - (i gpio[31
gpio[24]), : .ext d (o gpio[3]
gpio[25]), .bic ata 1); ¥t pad - f il e
gpio[26]), io dat: )Y Pahe e L S (en_gpio));
(i gpia[27]), (io data[Z
gpio[28]), io data[28]))
(1 gpic[29]), lir{io data[2¢
i _gpio[36]), io datalz
i in[31])}, (io_data[31]));
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RVfpga Lab 6: Connection with SweRV EH1

File wb_intercon.v: 7-1 Multiplexer implementation

wh_mux

rst 1),
io adr i),
io dat i),

adr_o, wb_sys adr o, 4 sp1_accel adr o, wb ptc adr o, wb gpio adr o, wb uart adr o’)
dat o, w o, wh spi flas 0, spi dat o, wb ptc dat o, wb gpio dat o, wb vart dat o)
sel o, | i flash sel o i sel o, wb ptc gpio 0, wb uart_sel o
we_o, we o, wb spi flas ; )i accel _we o, wb 0, wb gpio s wb_uart we o 1)
CYC O, W C wh 5 2]l cyc o, w yc o, wb gpio cyc o, wb uart cyc o))
sth o, 5 stb o, w 5 5 _stb_o, sth o, wb _gpio_stb o, wb_uart stb o
cti o, w 1 pi flas i 0, wb spi el cti o, wb ptc cti o, wb gplo cti_ uart_cti o

0 i i o, wb gpio 0, wb uart bte o

c dat i, wb gpio "1, wb_ uart dat 1

¢ wb gpio ack uart ack i

L i : 3 ; : gpio i, wb uart err i
({wb_rom rty i, | i, wb spi flash wb_spi ac y i, wb ptc rty i, wb gpio rty i, wb uart rty i}})
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RVfpga Lab 6: Advanced Exercises - Sample

Exercise 3. Expand RVfpgaNexys to support the five on-board
pushbuttons. The pushbuttons are shown in Figure 22. The five
buttons are named according to their location: up, down, left, right,
and center — BTNU, BTND, BTNL, BTNR, BTNC.

Exercise 5. Write a RISC-V assembly program and a C program that
displays an increasingly incrementing binary count on the LEDs,
starting at 1. Use BTNC to change the speed of the count, and BTNU
to restart the count whenever it is pressed.
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RVfpga Lab 7: 7-Segment Displays

Describes how the RVfpga System was extended to work with 7-
segment displays and shows how to modify the 7-segment display
controller.

We first describe how the 7-segment display controller works

Then we analyse the high-level specification of the 8-digit 7-segment
display controller included in the RVfpga System and provide some
fundamental exercises.

Finally, we analyse the low-level implementation of this controller,
perform a Verilator simulation and provide additional exercises where
you will modify and experiment with the controller implementation.
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RVfpga Lab 7: Overview of 7-Segment Displays

R oy I ’ 7 LED segments: A-G
: ¥ } } 1 Light up segments to
Fii o iiB v create digit
~ A ’ ’ L... ’.... 1: segments Band C
£ : C ' -.J LJ 2: segments A, B, D, E, G
D f "‘""’ ’ l 3: segments A, B, C, D, G
; LJ ’ etc.
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RVfpga Lab 7: 7-Segment Displays on Nexys A7

Enables_Reg:
Digits_Reg:

digits:

Assembly: 1i
11
1i

figure of board from https://reference.digilentinc.com/ SW
SW

8-digit 7-segment displays
Memory-mapped access:

0x80001038
0x8000103C

t0,
tl,
t2,
tl,
t2,

Enables are low-asserted
Example: Display 71 on two right-most

Enables Reg = O0xFC (0b11111100: enable
two right-most digits)
Digits_Reg = 0x71

0x80001038
OxXFC

0x71

0(t0)

4 (t0)
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RVfpga Lab 7: 7-Segment Display Hardware

Each digit is common anode (anodes of
that digit's LEDs are tied together)

Each segment for all digits is tied
together
Segments are driven low to turn them on

Time-multiplexing of ANO - AN7 signals
allows unique values to be displayed on each
digit

A digit’s AN signal (ANO - AN7) must go low
every 1-16 ms to be bright

R I S C ® RVfpgav2.2 © 2022 <96>
‘ Imagination Technologies

Anode signals act as enables (ANO - AN7) AN7 ANG ANS AN4  AN3 AN2 ANT ANO //;3
| | | | | | | |
Drive low to enable digit (ANO - AN7 go LI ]
through an inverter (not shown) before being oy S I
fed to LED) CACBCCCDCE CFCGDP  CACBCCCD CE CF CGDP EE
Eight-digit Seven i

8-Digit 7-Segment Displays

Common anode ~

Segment Display

Q3 imagination
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RVfpga Lab 7: Fundamental Exercises - Sample

Exercise 1. Write a RISC-V assembly program and a C program that
shows the value of the switches on the four right-most digits of the 7-

segment displays.

Exercise 2. Write a RISC-V assembly program and a C program that
shows the string “0-1-2-3-4-5-6-7-8" moving from the right to the left
of the 8-digit 7-segment displays.
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RVfpga Lab 7: 7-Seg. Disp. Low-Level Implementation

Three parts:

Connection to 7-segment displays

/-segment displays decoder in System Control ( ) module
SweRV EH1 bus interface
l \_ Address
f%H BOOt-ROM et Decoder
EEEEEEEEY " Sys-Con I- = Address[15:6]
\9 ~ Address[5:2]
; «—  SPI1-Flash (e =
L L g WB-Axi SweRV
" < =, o Bridge EH1
©
Timer —— ()
3

“ﬂ’ — GPIO1-LEDsSw I—
’_' UART |

_—
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RVfpga Lab 7: External connection

File rvfpganexys.xdc: Defines the connection of (called Digits_Bits]i]
in the SoC) and AN[i] with the on-board 7-segment displays

##7 segment display
set property -dict { PACKAGE PIN T1@ IOSTANDARD LYCMO:!
set property -dict { PACKAGE PIN R10O IOSTANDARD LVWCMO!
Et _property -dict PACKAGE PIN K16 IOSTANDARD LVWCMO!
t property -dict { PACKAGE PIN K13 TIOSTANDARD LVCMO
_property -dict { PACKAGE PIN P15 IOSTANDARD LYCMO:
{
{

[get ports
[get ports
[get ports
[get ports
[get ports

#I0 L24N T3 AB® D16 14 Sch=ca

#I0 25 14 Sch=cb

#I0 25 15 Sch=cc

#I0 L17P T2 A26 15 Sch=cd

#I0 L13P T2 MRCC 14 Sch=ce
[get ports #I0 L19P T3 A10 D26 14 Sch=cf

} [get ports { ; #I0 L4P TO DB4 14 Sch=cg

} [get ports }l #I0 L19N T3 A21 VREF 15 Sch=dp

} [get ports {| AN[©] #I0 L23P T3 FOE B 15 Sch=an[@]
[get ports {] AN[1] #I0 L23N T3 FWE B 15 Sch=an[1]
[get ports {] AN[2] #I0 L24P T3 AG®1 D17 14 Sch=an[2]
[get ports {| AN[3] #I0 L19P T3 A22 15 Sch=an[3]
[get ports {] AN[4] #I0 L8N T1 D12 14 Sch=an[4]
[get ports {] AN[5] #I0 L14P TL SRCC 14 sch=an[5]
[get ports {] AN[6] #ID_L:JP_TJ_JS bch=an[ﬁ]
[get ports {| AN[7] #I0 L23N T3 A2 D18 14 Sch=an[7]

Lt
Ly L

".-"'l [T RV, ] l.-"l

[FF R TV Y
Lad

Lt
WL L

L .."'I
|'"[.|

5

e
1
S5E

#5¢

_property -dict PACKAGE PIN T11 IOSTANDARD LVCMO:
_property -dict PACKAGE PIN L18 IOSTANDARD LVCMO:
t property -dict { PACKAGE PIN H15 IOSTANDARD LVCMO
_property -dict { PACKAGE PIN J17 IOSTANDARD LVCMO:!
_property -dict { PACKAGE PIN J]18 IOSTANDARD LVCMO:
_property -dict { PACKAGE PIN T9 IOSTANDARD LVCMO!
t property -dict { PACKAGE PIN ]14 IOSTANDARD LVCMOS
_property -dict { PACKAGE PIN P14 IOSTANDARD LVYCMO:
_property -dict { PACKAGE PIN T14 IOSTANDARD LVCMO:
_property -dict { PACKAGE PIN K2 IOSTANDARD LVCMO:
t property -dict PACKAGE PIN U13 IOSTANDARD LVCMOS

S il eyl il eyl lniipl gl
bl bl ] bl b f—

fom I W W g | l.-"l
[ R TV Y]
(]

L¥3]

[ 5]
(FT R Y FY R T Y

Wi

M M M

r'f ~+ r'f' r'T.l r'r H' |-+
W

I""l (¥ I ] I.."l

[

M M M I"I.'
|..."|
Wow

oL oL
I_|_. I_'_I I_I_l l_l_l LI_. I_F_I I_l_I I_l_I -
O e o [ = iy Sy Sy Sy S )

|"‘| |_||'| U‘l
W W

L 5 R

(1]

=t r"f =t |"'f'
L
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RVfpga Lab 7: Integration into SweRVolfX

File swervolf_syscon.v: 7-segment displays controller instance:

Inputs: i_clk (clock), reset (i_rst)
Memory-mapped inputs: Enables_Reg (which digits on board are enabled),
Digits_Reg (number to display)
Outputs: AN (which digit on board to drive), Digits_Bits (which segments to
assert).

reg [ 7:0] Enables Reg;
reg [31:0] Digits Reg;

SevSegDisplays Controller SegDispl Ctr(
.clk (i clk),
.rst n (i rst),
.Enables Reg (Enables Reg),

.Digits Reg (Digits Reg),

.AN {AN) ,
.Digits Bits (Digits Bits)
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RVfpga Lab 7: Advanced Exercises - Sample

Exercise 3. Modify the controller described in this lab so that the 8-
digit 7-segment displays can show any combination of ON/OFF

LEDs.

Exercise 4. Use the new controller for printing the following on the 8-
digit 7-segment displays: “I SAY HI". As usual, implement both RISC-

V assembly and C versions of the program.
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RVfpga Lab 8: Timers

Generate precise timing: Timers increment or decrement a counter at
a fixed frequency, which is often configurable, and then interrupt the
processor when the counter reaches zero or a predefined value.

More sophisticated timers can also perform other functions, such as
generating pulse-width modulated (PWM) waveforms to control the
speed of a motor or the brightness of a light.

In this lab, we first describe the high-level specification of the timer
included in the RVfpga System and then explain its low-level
implementation. Both fundamental and advanced exercises are
proposed that show how to both use and modify a timer.
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RVfpga Lab 8: Timer (PTC) Module

The Timer module used is from OpenCores: https://opencores.org/projects/ptc

Timer module (also called the PTC module) is used for:
Timer/Counter: counts clock edges (or edges of another signal, also called events)

Pulse-width modulation (PWM):
Vary high duration (called duty cycle) of an output
Used to approximate an analog voltage digitally

PWM example: 33% duty cycle (signal is high 1/3 of the time). If high level is 3 V, analog
voltage (average voltage of signal)is3V *0.33=1V

3V

ov

Period

4>

Duty Cycle =

o4 RIS C

33%

——— Average=1YV
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RVfpga Lab 8: Timer (PTC) Registers
_Name | Address |Width| Access |Descripton

0x80001200 1-32  R/W
RPTC_HRC R/W
RPTC_LRC R/W
RPTC_CTRL R/W

RPTC_CNTR: Counter (value of the counter)

Main PTC counter

PTC HI Reference/Capture register
PTC LO Reference/Capture register
Control register

RPTC_HRC: High reference capture — indicates the number of cycles (after reset)

when the output should go high in PWM mode

RPTC_LRC: Low reference capture — indicates the number of cycles (after reset)
when the count is complete in counter/timer mode; indicates the number of clock
cycles (after reset) when the output should go low in PWM mode.

RPTC_CTRL: Control register
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RVfpga Lab 8: Timer Example

Set RPTC_LRC to number of cycles to count

Set control bits (RPTC_CTRL) to configure timer:

Reset counter and clear interrupts: RPTC_CTRL = 0xCO0 (0b011000000): CNTRRST (bit
7) = 1: counter is reset (RPTC_CNTR = 0); INT (bit 6) = 1: interrupt request cleared.

Enable counter and interrupts: RPTC_CTRL = 0x21 (0b000100001): EN (bit 0) = 1:
counter is enabled, so RPTC_CNTR increments; INTE (bit 5) = 1: PTC asserts an interrupt

when RPTC_CNTR == RPTC_LRC.

Program reads interrupt bit in control register (INT is bit 6 of
RPTC_CTRL) until it is 1 (indicating that RPTC_CNTR == RPTC_LRC).

This algorithm does not use interrupts, but it does read the interrupt bit
(INT, bit 6 of RPTC_CTRL) to determine when the correct number of clock
cycles have been reached. We show how to use interrupts in Lab 9.
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RVfpga Lab 8: Fundamental Exercises - Sample

Exercise 1. Write a program that displays an ascending count on the
8-digit 7-segment displays. The value should change about once per
second and, for creating this delay, you must use the timer module.

First, write the program in RISC-V assembly language and run it on the Nexys
A7 board.

Then, perform a simulation in Verilator with the same program.
Now write the program in C and run it on the Nexys A7 board.

Simulate your C program in Verilator, as in part (b) for the RISC-V assembly
program.
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RVfpga Lab 8: Timer Low-Level Implementation

Divided in 2 main parts
(No external connection)
Integration of the Timer module into SweRVolfX (left shaded region)
Connection between the Timer and the SweRV EH1 (right shaded region)

| Address
& +—  Boot-ROM | Decoder
5 R A A E Sy s-Con Address[15:6]
Pt TJ Address[5:2]
; <«  SPI1-Flash —
: < .
‘* —  SPI2-Accel |mm———— S Ll WB-AXxi [ SweRV
Ak i =h Bridge EH1
I L
" )
T «—{ GPIO1-LEDSSW fmms

==
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RVfpga Lab 8: Integration into SweRVolfX

File swervolf _core.v: PTC module instantiation

T ptc irg;

ptc top timer ptc(
b clk i {clk),
st ] (wb_rst),

(wb_m2s ptc cyc),
({2'b0,wb m2s ptc adr[5
(wb_m2s ptc dat),
(4'b1111),

(wb m2s ptc we),
(wb_m2s ptc stb),
(wb_s2m ptc dat),
(wb s2m ptc ack),
(wb_s2m ptc err),
(ptc_irq),

. Py D {],r
.0en padoen o ()

B
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RVfpga Lab 8: Advanced Exercises - Sample

Exercise 2. Modify RVfpgaNexys for connecting the PWM output
signal of the timer (pwm_pad 0) to one of the two tri-colour LEDs
available on the Nexys A7 board.

Exercise 3. Implement a program that uses the new peripheral for
controlling the tri-colour LED, using the value provided by the 16
switches.
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RVfpga Lab 9: Interrupt-Driven |/O

Interrupt-driven I/O vs. Programmed |/O
RVfpga System’s Interrupt Controller

How to configure interrupts using Western Digital’s Platform
Support and Board Support Packages (PSP and BSP)

Interrupt Example and Exercises
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RVfpga Lab 9: Interrupt-Driven 1/O Introduction

Programmed 1/O:
Program continuously polls a value (i.e., switches)
Processor busy doing this — instead of other work
Interrupt-driven l/O:

An event (i.e., a switch asserting) makes processor jump to an
interrupt service routine (ISR, also called an interrupt handler),
which handles the event and then returns to the program.

The processor does other work between events.
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RVfpga Lab 9: Handling Interrupts

Interrupts may be caused by hardware or software
In this lab, we focus on hardware interrupts

The SweRV EH1 core handles interrupts after RISC-V’'s PLIC
(Platform-level interrupt controller) specification. It is referred
to as the Programmable Interrupt Controller (PIC). It has:

255 interrupt sources
15 priority levels
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RVfpga Lab 9: Interrupt Hardware

SweRV EH1 Core Complex

Port

o4 RIS C
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GPIO
interrupt
(gpio_irg) L
GPIO | (=) ﬁ
: Timer

Timer

interrupt

(ptc_irg)
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o4 RIS C ®

RVfpga Lab 9: WD’s PSP/BSP functions for handling interrupts

Header Description

void pspinterruptsSetVectorTableAddress(
void* pVectTable);

Prepares vector-table address

void pspExternalinterruptSetVectorTableAddress(
void* pExtintVectTable);

Prepares external interrupts vector-table
address

void bsplinitializeGenerationRegister(
u32_t uiExtinterruptPolarity)

Put the Generation-Register in its initial
state

void bspClearExtinterrupt(
u32_t uiextinterruptNumber)

Clear the trigger that generates external
interrupt

void pspExtinterruptSetPriorityOrder(
u32_t uiPriorityOrder);

Sets Priority Order (Standard or Reserved)

void pspExtinterruptsSetThreshold(
u32_t uiThreshold);

Sets the priority threshold of the external
interrupts in the PIC

void pspExtinterruptsSetNestingPriorityThreshold(
u32_t uiNestingPriorityThreshold);

Sets the nesting priority threshold of the
external interrupts in the PIC

void pspExtinterruptSetPolarity(
u32_t uilntNum,
u32_t uiPolarity);

Sets the polarity (active-high or active-low)
of a specified interrupt line

void pspExtinterruptSetType(
u32_t uilntNum,
u32_t uilntType);

Sets the type (Level-triggered or Edge-
triggered) of a specified interrupt line

void pspExtinterruptClearPendingint(
u32_t uilntNum);

Clears the indication of pending interrupt
for the specified interrupt line

void pspExtinterruptSetPriority(
u32_t uilntNum,
u32_t uiPriority),

Sets the priority of a specified interrupt line

void pspExternalinterruptEnableNumber(
u32 t uilntNum);

Enables a specified interrupt line in the PIC

void pspinterruptsEnable(
void);

Enable interrupts (in all privilege levels)
regardless their previous state

void pspinterruptsDisable(
u32_t *pOutPrevintState);

Disables interrupts and return the current
interrupt state in each one of the privileged
levels

RVfpga v2.2 © 2022
Imagination Technologies
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RVfpga Lab 9: Interrupt Example using WD’s PSP/BSP

Use interrupts to read value of Switch[0] — only on rising edge (0—>1 transition)

Steps for configuring the system using PSP/BSP functions:
Initialize the interrupt system
Initialize external interrupt line IRQ4 and connect with GPIO

Initialize the GPI1O registers for using interrupts:
RGPIO_INTE = 0x10000 (enable interrupt for Switch[0])
RGPIO_PTRIG = 0x10000 (interrupt triggered on rising-edge of Switch[0])
RGPIO_INTS = 0x0 (clears all interrupts)
RGPIO_CTRL = 0x1 (enables GPIO interrupts)

Enable global interrupts
GPIO_ISR (see next slide): Invoked when an interrupt is triggered at the GPIO
The current state of the LEDs is read
The LEDs are inverted and masked
The LEDs are written with the new value
The GPIO interrupt is cleared
The IRQ4 external interrupt is cleared

For full code, see: [RVipgaPath]/RVfpga/Labs/Lab9/LED-Switch 7SegDispl_Interrupts C-Lang.c
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RVfpga Lab 9: Example ISR to invert right-most LED when switch 021

volid GPIQ_ISR(void) {
unsigned int 1i;

/* Invert LED value */

i = M PSP READ REGISTER 32 (GPIO LEDs); // RGPIO OUT

i = 11i; // Invert the LEDs

i =1 & 0x1; // Only change right-most LED
M PSP WRITE REGISTER 32 (GPIO LEDs, 1i) // RGPIO OUT

/* Clear GPIO interrupt */
M PSP WRITE REGISTER 32 (RGPIO INTS, 0x0); // RGPIO INTS

/* Clear this interrupt (IRQ4) */
bspClearExtInterrupt (4) ;
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RVfpga Lab 9: Exercises - Sample

Exercise 1. Modify the LED-Switch 7SegDispl Interrupts C-Lang program to
include a second interrupt source, in this case generated by the timer.

Exercise 2. Modify RVfpgaNexys to include a third interrupt source coming from
the second GPIO that you designed in Lab 6 for controlling the on-board
pushbuttons (GP102).

Exercise 3. Use the extended RVfpgaNexys version that you designed in the
previous exercise to implement a C program that displays an increasingly
incrementing binary count on the LEDs, starting at 1.

Create a delay with the timer, using interrupts, for waiting between displaying each
incremented value so that the values are viewable by the human eye.

Read BTNC and use it to change the speed of the count.
Read Switch[0] and use it to restart the count whenever it is pressed.
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RVfpga Lab 10: Serial Buses

We first describe how serial buses work.
Serial buses send one bit at a time.
Parallel buses send multiple bits at once

Common serial buses
UART (universal asynchronous receiver/transmitter)
SPI (serial peripheral interface)
I12C (inter-integrated circuit protocol)

We then focus on the SPI accelerometer available on the Nexys A7 board:
Analysis of the high-level specification + fundamental exercises
Analysis of the low-level implementation + advanced exercises

More advanced exercises with UART and 12C

b4 RIS C ® ptewz2 0022 22 Q] Imagination



RVfpga Lab 10: Serial Buses — SPI

SPI Controller

SPI Peripheral

SDO » SDI
SDI [« SDO
SCK | -=------ > SCK
_uun)
L S —— » CS

Controller: sends clock, sends & receives data
Peripheral: receives clock, sends & receives data

Signals:

SDO: Serial Data Out
SDI: Serial Data In
SCK: SPI clock

CSbar: low-asserted chip select

o4 RIS C
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RVfpga Lab 10: Serial Buses — SPI

SPI Controller SPI Peripheral
SDO > SDI
SDI |« SDO
SCK F-------- » SCK
SN
[ — > CS

SCKidles

When controller sends an edge on SCK, both the controller and peripheral sample
and send data. Data is changed (sent) on falling edge and sampled on rising edge
(although this is configurable)

SCK

SDI/SDO  Bit7 | Bit6 Bii:s Bii4 Bii3 Bit 2 | Bit 1 | BitO
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RVfpga Lab 10: RVfpga System’s SPI Module

RVfpga System’s SP| module is from OpenCores
https://opencores.org/projects/simple_spi

4-entry read and write buffers

SPI Registers:

| Name | Address_widh_pccess L Descriion _

SPCR 0x80001100 R/W Control register

TS 0x80001108 8 R/W Status register

DL 0x80001110 8 R/W Data register

m 0x80001118 8 R/W Extensions register
SPCS 0x80001120 8 R/W CS register
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RVfpga Lab 10: SPI ADXL362 Accelerometer

The Nexys A7 board includes an SPI Analog Devices ADXL362
accelerometer. You can find the complete information at:

https://www.analog.com/media/en/technical-documentation/data-
sheets/ADXL362.pdf

Artix-7 FPGA ADXL 362
F14 > SDI
E15 i« SDO
FIS5F-------- » SCK
Uiy
B S P — » CS
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RVfpga Lab 10: Fundamental Exercises - Sample

Exercise 1. Create a RISC-V assembly program that reads the eight
most significant bits of the X-axis, Y-axis, and Z-axis acceleration
data and then displays those values on the 8-digit 7-Segment
Displays.
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RVfpga Lab 10: Accel. Low-Level Implementation

Divided in 3 main parts
RVfpgaNexys external connection to the on-board accelerometer (left shaded
region)
Integration of the new SPI module into SweRVolfX (middle shaded region)

Connection between the accelerometer and the SweRV EH1 (right shaded
region)

&‘—4 Boot- Rlom |_ \
\w) ’—'| SPI1-Flash b— Address(5:2]
@ —{ sPizAcel |—

| | Timer |_

¥ (2] —{ criOT-LEDsSW |t
*—'I UART |_/
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RVfpga Lab 10: External Connection

File rvfpganexys.xdc: Defines the connection of the SPI signals used in the
SoC with the corresponding on-board accelerometer pins

##Accelerometer

set property -dict { PACKAGE PIN E15 IOSTANDARD LVCMOS33 } [get ports { i accel miso }]; #I0 L11P T1 SRCC 15 Sch=acl miso
set property -dict { PACKAGE PIN F14 IOSTANDARD LVCMOS33 } [get ports { o accel mosi }]; #I0 L5N T@ AD9N 15 Sch=acl mosi
ports { accel sclk }]; #I0 L14P T2 SRCC 15 Sch=acl sclk

set:property -dict { PACKAGE PIN F15 IOSTANDARD LVCMOS33 } [get
set property -dict { PACKAGE PIN D15 IOSTANDARD LVCMOS33 } [get ports { o accel cs n }];
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RVfpga Lab 10: Integration into SweRVolfX

File swervolf_core.v: Tri-state buffers and GPIO module instantiation

(clk),
(wb rst),
(wb m2s spi accel adr[2] 3'de : wb m2s spi accel adr[5:3]),

(wb m2s spi accel dat[7:0]),
(wb m2s spi accel we),
(wb m2s spi accel cyc),
(wb m2s spi accel stb),
(spi2 rdt),
'k o (wb s2m spi accel ack),
inta o (spi2 irq),

(o accel sclk),
(o accel cs n),
. o (o_accel mosi),
.miso i (i accel miso));
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RVfpga Lab 10: Advanced Exercises - Sample

Exercise 2. The Universal Asynchronous Receiver-Transmitter (UART) is an
asynchronous serial communication protocol. First, analyse the low-level
implementation of this module in Rvfpga. Then, create a RISC-V assembly
program that prints a message to the PlatformlO shell through the serial port.

Exercise 3. Implement the three following functions in the C language:

char uart_getchar(void): This function waits for the keyboard to send a character through the
UART to the Nexys A7 board and then returns this character as an output parameter.

int uart_putchar(char c): This function receives a character as an input argument and displays
it on the serial console through the UART.

int SevSegDispl(char c): This function receives a character as an input argument and displays
it on the right-most digit of the 7-segment displays, shifting the remaining digits one position to
the left (the left-most digit is lost).
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RVfpga Labs 11-20 Overview

Labs 11-20 dive down to the microarchitectural level and
analyse how the SweRV EH1 processor and cache/memory
hierarchy work.

Each lab is divided into two parts:

Theoretical explanation of the concepts

lllustration of the concepts using figures and a Verilator simulation of an
example program to illustrate the concept.

We also provide exercises to deepen understanding of and gain
experience with the described concepts.
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RVfpga SweRVref

In addition to these 10 labs, which we describe next, the
RVfpga SweRVref document provides extra instructions on the
following topics:

Section 1: Sigasi Studio

Section 2: Configuration of the SweRV EH1 processor

Section 3: RVfpga System hierarchy of modules and their most relevant
signals

Section 4: Main structures/types for grouping control bits
Section 5: RISC-V compressed instructions
Section 6: Real Benchmarks
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Lab 11:

Organization, and
Performance Monitoring

SweRV EH1 Configuration,

\

4
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RVfpga Lab 11: The SweRV EH1 processor

In this lab we begin to analyse the SweRV EH1 processor.
Specifically:

We first describe the Verilog RTL organization and details of each
pipeline stage.

We then show how to use the SweRV EH1 performance counters to
analyse processor performance.
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RVfpga Lab 11: SweRV EH1 Verilog Modules

swerv module: CPU

mem module (memory hierarchy): instruction/data closely-coupled memories
(ICCM, DCCM) and instruction cache (1$)

v SwelRV Core.

ifu_ifc_ctl

ifu_mem_ctl

dec_gpr_ctl

Isu_bus_buffer

Isu_bus_intf

Isu_dccm_mem

ifu_compress_ctl

dec_ib_ctl

exu_alu_ctl

Isu_lsc_ctl

ifu_aln_ctl

ifu_iccm_mem

ifu_bp_ctl

‘ dec_dec_ctl

exu_mul_ctl

Isu_stbuf

dec_decode_ctl

exu_div_ctl

Isu_dccm_ctl

ifu

dec

exu

Isu

ifu_ic_mem

dbg

lib

pic_ctrl

dma_ctrl

mem

swerv

RIS C

®
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RVfpga Lab 11: The SweRV EH1 Pipeline

Stage
) Fetch 1
SwelRV Core. .
. . 3 Al

SweRV EH1 is a 32-bit 2- it

way superscalar 9-stage 4 Decode

pipelined in-order processor. Load/Store Pipe | 0Pipe | ILPipe Multiply Pipe
5 DC1 | EXx1 [ Ex1 | M1

Adder Adder

6 DC2 M2
7 Loa[gge:gsult EXS EX3 M ulll\.ARisult

. - T o I

RVfpga v2.2 © 2022
Imagination Technologies
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Divider
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Out-of-
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RVfpga Lab 11: Fetch (FC1 and FC2) and Align Stages

First three stages: two Fetch stages (FC1 and FC2) and an Align stage

FC1 FC2 ALIGN

Memory Controller
(ifu_mem_ctl)

(PC) ifc_fetch_addr_f1 [31:1]|= fetch_addr_f1 [31:1] ic_data_f2 =|ifu_fetch_data [127:0]
LOGIC I qorr | 901270
iccm_rw_addr LOGIC _
-7 3 ifu_i0_instr [31:0]
» | INSTRUCTION
ICCM g | 91012701 Aligner REGISTERS
(ifu_icem_ || (ifu_aln_ct) |_ifui1_instr [31:0] (dec_ib_ctl)
= ~ |icem_rd ==
mem _
: _data ifu|axi_rdata [63:0]
ic_rw_addr il T - '
1$ q2ff q2 [127:0]
(ifu_ic_me
m) ic_rd_data I
Lite DRAM
» Controller

ifu_axi_araddr [31:0]

I DDR External
: Memory
A




RVfpga Lab 11: Fetch (FC1 and FC2) and Align Stages

In RVfpga, the Instruction Memory consists of:

16 KiB Instruction Cache
128 MiB DDR External Memory

Fetch stages: read instructions from the Instruction Memory
FC1: Computes the instruction address (1fc fetch addr f1)
FC2: Reads instruction from the 1$ or the DDR External Memory. (The 1$ only caches memory
within the Main Memory address range.)

The Align stage performs two main tasks:

Provide two 32-bit instructions per cycle to the Decode stage: Extracts two instructions per
cycle from the 128-bit bundles provided by the Instruction Memory and assigns them to each of

the two ways available in SweRV EH1.
Uncompress instructions: The Align stage uncompresses 16-bit instructions into 32-bit

instructions.

b4 RIS C ® w2 02022 2 Q] Imagination



RVfpga Lab 11: Decode, EX1/2/3, Commit and WB Stages

The figure on the next slide shows the last six stages of the pipeline:
the Decode stage, three Execution stages, the Commit stage, and
the Writeback (WB) stage.
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DECODE STAGE

INSTRUCTION
REGISTERS
(dec_ib_ctl)

dec_i0_instr_d [31:0]

dec_i1_instr_d [31:0]

CONTROL
UNIT

(dec_decode_ctl)

CONTROL
SIGNALS

ﬂ

Control
Pipeline
Registers

EX1/DC1/M1 " EX2/DC2/M2

Control Control
Pipeline Pipeline
Registers Registers

EX3/DC3/M3

coMmmIT wWB
STAGE STAGE
Control Control
Pipeline Pipeline
Registers Registers

raddro0 [4:0]

raddr1 [4:0]

raddr2 [4:0]

racldr3 [4:0]

waddr1 [4:0]

waddr0 [4:0]

wd0 [31:0]
w1 [31:0]

rdo [31:0]—
rd1 [31:0]—
rd2[31:0]
rd3 [31:0]—

(dec_g

Register File

pr_ctl)

DCCM
Lite DRAM
Controller

ALIGN & MERGE

i0_result_e3

™\

341

result_e3

Store
Buffer for
DCCM

Lite DRAM
Controller

MUX

10-ALU-E4

31

MUX

L

s

i1_result_e3

31

-

341

MUX

MUX

Isu_result_corr_dc4

11-ALU-E4

i0result_e4_final

i1 result_ed_final

i1_result_wb :
rdd dividend
] ividen
rd2 - MUX 34-cycle Out-Of-Pipe
5 N DIVIDER
divisor (exu_div_ctl)
rd3  —mux
i0_result_wb B




RVfpga Lab 11: Decode Stage

The Decode stage performs two main tasks:

Decode the instructions and generate the control signals (performed by the
Control Unit)

Distribute the instructions and operands to the appropriate pipes:
Pipes:
Two Integer pipes: 10 and |1
Multiply pipe
Load/Store pipe (L/S)
Out-of-pipe 34-cycle Divider
Several multiplexers select among possible operands, which may come from:
Bypass logic
Immediate
Register File
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RVfpga Lab 11: Execution stages — 3 Pipes and a Divider

The SweRV EH1 processor has the following pipes:

10/I11 Pipes:

Two integer pipes which have three stages (EX1, EX2, and EX3).
EX1 performs the ALU operation.

Multiply Pipe: The multiply pipe contains a 3-cycle integer multiplier using three

stages (M1, M2, and M3).

Load/Store (L/S) Pipe: The L/S pipe executes both load and store instructions.
DC1: an adder calculates the address by adding the register base address and the offset

Divider: The divider is a non-pipelined 34-cycle integer divider.

At the end of the third execution stage (EX3/DC3/M3), the result of the instructions is
selected from the proper pipe (10/11, MUL, or L/S) using two 3:1 multiplexers, one for
each way. The Divider has its own path to the Register File.
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RVfpga Lab 11: Commit and Writeback Stages

Commit Stage: Selects the result to write back to the register file.

Writeback Stage:
Writes the results to the Register File using write ports 0 and 1.

The Control Pipeline Registers supply the register identifiers and
the enable signals (which were generated in the Decode stage).
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RVfpga Lab 11: Example Program — Verilator Simulation

11 x28, 0x1
1i x29, 0x2
11 x30, 0x4
11 x31, 0Ox1

REPEAT :
mul x28, x29, x29 # x28 = 2*¥2 = 4 (later iterations: 3*3=9, ...)
add x30, x30, x31 # x30 = 441 = 5 (later iterations: 5+1=6, ...)

INSERT NOPS 10

add x29, x29, 1 # x29 = x29 + 1
INSERT NOPS 10

beq zero, zero, REPEAT # Repeat the loop
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RVfpga Lab 11: Simulation — FC1, FC2, Align Stages

mul t3,t4,t4

add t5,t5,t6

Signals Waves
Time 0 ps 48550 ps 48568 ps 48570 ps 48580 ps 48590 ps
clk=
ifc fetch addr f1 ext[31:0]= |CEEEEER: | ) CETT i \__
ifu fetch data[127:0] =  [EEEEEEGEIE ' _/660060130000001 /01FFOF3303DEBEI3 | |
ifu i@ instr[31:0]= | _{eee0e0 \, | ©3DEBE33
ifu i1 instr[31:0]= (SN _ oee08860

B1FFBF33
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RVfpga Lab 11: Analysis of Simulation

FC1: Computes the address of the mul instruction:
ifc fetch addr f1 ext =0x000000FO0

FC2: Extracts two instructions (shown in red) from the Instruction
Memory’s 128-bit bundle:

ifu fetch data =0x000000130000001301FFOF33
Align: The two instructions are extracted and distributed to the two
ways of SweRV EH1.

Way 0: ifu i0 instr =0x (mul instruction)

Way 1: ifu i1 instr = 0x01FFOF33 (add instruction)
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el 13,58, 4 add t5,t5,t6

Time
clk
H I - o dec i@ instr d[31:0]
Simulation:
raddre[4:8]
raddri[4:8]
- Decode raddr2[4:08]
raddr3[4:8]
rde[31:6]
- EX1/2/3 rd1[31:8]
rd2{31:8]
rd3f3l:a]

- commit i6_inst e1[31:0]

i1 inst el[31:@]

. a el[31:0]
- Writeback
a_ffi3l:e]

b ff[31:0]

ie inst e2[31:8]

il inst e2[31:6]

i@ inst e3[31:8]

i1 inst _e3[31:8]

exu mul result e3[31:8]
il result e3[31:8]

i@ inst e4[31:8]

i1 inst e4[31:8]

18 result e4[31:8]

il result e4[31:8]

i@ inst wh[31:8]

i1 inst wb[31:8]

18 result wb[31:8]

il result wb[31:8]
waddre[4:8]

waddrl[4:0]

wda[31:8]

wdl[31:8]




RVfpga Lab 11: Analysis of Simulation

Decode: read operands from Register File and send to Mult and |1
pipes
EX1/2/3 and Commit: Compute result (addition and multiplication)
10 result ed =exu mul result e3 = 0x6A* 0x6A = 0x2BE4
il result e4=1il result e3 =0x6C + 0x01 = 0x6D
Writeback: Write results back to Register File

waddr0 = 0x1C wd0 = Ox2BE4
waddrl =0x1E wd1l = 0xeD
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RVfpga Lab 11: Hardware Counters

Hardware counters are a set of special-purpose registers included in
most current processors to record the metrics shown in the table.

0 Reserved 17 CSR read/write 34 Cycles SB/WB stalled

1 Cycles clock active 18 CSR write rd==0 35 Cycles DMA DCCM transaction stalled
2 I-Cache hits 19 Ebreak 36 Cycles DMA ICCM transaction stalled
o I-Cache misses 20 Ecall 37 Exceptions taken

4 Instrs commmited 21 Fence 38 Timer interrupts taken

5 Instrs commited 16-b 22 Fence.i 39 Exteranal interrupts taken

6 Instrs commited 32-b 2 Mret 40 TLU flushes

7 Instrs aligned 24 Branches commited 41 Branch error flushes

8 Instrs decoded is Branches mispredicted 42 I-bus transactions — instr

9 Muls commited 26 Branches taken 43 D-bus transactions — |d/st

10 Divs commited 27 Unpredictable branches 444 D-bus transactions misaligned

11 Loads commited 28 Cycles fetch stalled 45 I-bus errors

12 Stores commited 29 Cycles aligner stalled 46 D-bus errors

13 Misaligned loads 30 Cycles decode stalled 47 Cycles stalled due to I-bus busy

14 Misaligned stores 31 Cycles postsync stalled 48 Cycles stalled due to D-bus busy
15 Alus commited 32 Cycles presync stalled 49 Cycles interrutps disabled

16 CSR read 33 Cycles frozen 50 Cycles interrupts stalled while disabled
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RVfpga Lab 11: Use of the Performance Counters by means of Western Digital’s PSP

#if defined (D NEXYS A7) pspEnableAllPerformanceMonitor (1) ;
#include <bsp printf.h>
#include <bsp mem map.h> pspPerformanceCounterSet (D PSP COUNTERO, E CYCLES CLOCKS ACTIVE) ;
#include <bsp version.h> pspPerformanceCounterSet (D PSP COUNTER1, E INSTR COMMITTED ALL);
#else pspPerformanceCounterSet (D PSP COUNTERZ2, E BRANCHES COMMITTED) ;
PRE COMPILED MSG("no platform was defined") pspPerformanceCounterSet (D PSP COUNTER3, E BRANCHES MISPREDICTED) ;
#endif
#include <psp api.h> cyc_beg = pspPerformanceCounterGet (D PSP COUNTERO) ;
extern void Test Assembly (void); instr beg = pspPerformanceCounterGet (D PSP COUNTERL) ;

’

( )

( )
BrCom beg = pspPerformanceCounterGet (D PSP COUNTERZ) ;
int main(void) BrMis beg pspPerformanceCounterGet (D PSP COUNTER3)

{

int cyc beg, cyc_end; Test Assembly() ;

int instr beg, instr end;

’

int BrCom beg, BrCom end; ( )

instr end = pspPerformanceCounterGet (D PSP COUNTERL) ;
( )
( )

cyc_end = pspPerformanceCounterGet (D PSP COUNTERO

int BrMis beg, BrMis end;

’

BrCom end = pspPerformanceCounterGet (D PSP COUNTER2
BrMis end = pspPerformanceCounterGet (D PSP COUNTER3

/* Initialize Uart */ ;
uartInit () ;
printfNexys ("Cycles = %d", cyc end-cyc beg);
printfNexys ("Instructions = %d", instr end-instr beg);

printfNexys ("BrCom = $d", BrCom end-BrCom beg) ;

(
(
(
printfNexys ("BrMis = %d", BrMis end-BrMis beg) ;

while (1) ;
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RVfpga Lab 11: Tasks - Sample

TASK. The Register File is implemented in module dec gpr ctl
and it is instantiated in module dec. Analyse both the Verilog code
and the simulation of the main signals of module dec gpr ctlin
order to understand how it works.

TASK. Execute the program from Figure 13 on the Nexys A7 board
as explained in the GSG. Measure other events in the Hardware
Counters for this program.
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RVfpga Lab 12: Introduction

This lab analyses the flow of arithmetic and logical instructions
through the SweRV EH1 pipeline, focusing on the add

Instruction.

Two sections:
Basic analysis of an add instruction
Advanced analysis of an add instruction

The two analyses use the same example program, shown on
the next slide.
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RVfpga Lab 12: Example program

.globl main

main:

11 t3, Ox4 # £3 = 4
11 t4, 0x1 # t4 = 1

REPEAT:
INSERT NOPS 10
add t3, t3, t4 # t3
INSERT NOPS 10
beq zero, zero, REPEAT # Repeat the loop

t3 + t4

.end
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RVfpga Lab 12: Basic Analysis — Simulation

Signals
Time 15100 ps
I clk
— [==] o= — =1 =51 == ; == i —
dec _j_E]Jpc__d__ext[E.l;@] 00000168 g 00000130 /PEOOOGES

dec 10 instr d[31:0]

raddro[4:0]
[

af[31:0]
b[31:0] oooPEGe1 |oeGGGEEE
DB o rrone) O
out[31:0] [

waddre[4:0]

-

wd0[31:0]

dout[31:0]
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RVfpga Lab 12: Basic Analysis — SweRV EH1 pipeline

Decode l EX1 n EX2 n EX3 pnCommitWriteback

[add t3,t3,t4——|  CONTROL

Instruction Register UNIT
(signal (dec_decode_ctl)

dec_iO0_instr_d)

\
28 () | adaro o 2T 1 g
29 (t4) raddr1 8
out
28 (t3) | \vaddro -
wen0
! ) wdO rd1 b 1 b_ff
REGISTER %
FILE | (exu_alu_ctl) | | |
(dec_gpr_ctl) Pipeline Pipeline
Registers Registers
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RVfpga Lab 12: Basic Analysis — Simulation

Cycle i: Decode: Signal dec 10 instr d contains the 32-bit
machine instruction 0x01DEOE33. In RISC- V, the fields for the add
Instructionare: 00 | rsl1 | 000 | rd | 0110011

During this stage, control signals are generated and the Register
File is read. Moreover, the operands are propagated to the 10 Pipe.

Cycle i+1: EX1: The add instruction is executed. The result of the
addition is provided as an output of the ALU in signal out = 8.

Cycle i+5: Writeback: The result of the addition is written back to
the Register File: wd0 = 0x8, wen0 =1 and waddr0 = 0x28

b4 RIS C ® ptewz2 02022 2% Q] Imagination



RVfpga Lab 12: Advanced Analysis

Figure on next page shows a detailed diagram of add instruction
traversing the 10 pipe.
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Decode EX1 EX2 EX3 Commit Writeback

. . Pipeline Pipeline Pipeline Pipeline Pipeline
dec_i0_instr_d [31:0] i0_ap [19:0] Registers Registers Registers Registers Registers
Control Unit [ for for for for for
(dec_decode iOr [14:0] Control Control Control Control Control
_ctl) - dd [66:0] Signals Signals Signals Signals Signals
i0|ap_e1[19:0]
° e3d
=
g ALU =}
gpr_i0_rs1_d EI —| (exu_alu_ctl) o,
dec_i0_rs1_d [4:0] o -] aff ap =) o
raddr0 [4:0] i aff ® =
dec_i0_rs1 _en_d © _| 2 < -
rden0 rd0 [31:0] g o, |iOwbre
dec_10_rs2_d [4:0] | oqqr1 4:0] > out [31:0] _ = g Lsultff
dec i0_rs2_en_d rdent 1 bff 3 @, [i0e4res o
bff i % = ultff —— o
wen0 41 131:0 gpr_i0_rs2_d B 'oﬁlzt:fs}_,_‘" i0e3res| @ 2
waddr0 rd1[31:0] i0_result_e1 [31:0] = = | uithf — o o,
exu_i0_result_e1 [31:0] 3 2 3
wdO0 I ™ o
=3 —= =
© ™ [}
. N | (] Cli_)
Register File o §' o
(dec_gpr_ctl) o 2 -
: 3
i0_result_wb_raw [31:0]
dec_i0_wdata_wb[31:0] = i0_result_wb 21
MUX
- -
Detailed diagram of add dec i0_wad_whi40) = wbd 040
| ] -

——traversing-the-10-pipe
< dec_i0_wen_wb



RVfpga Lab 12: Tasks and Exercises - Sample

TASK. In the example from Figure 2, replace the add instruction with a non A-L instruction (such
as a mul instruction). Verify that the 10 ap signal has all its fields equal to 0 and that this makes
the 10 ALU not work.

TASK. Perform a simulation of a sub instruction similar to the one from Figure 7.

TASK. Analyse the Verilog implementation of the adder/subtractor implemented in module
exu alu ctl.

TASK. In the Verilog code, analyse how signals wen0 and waddr0 are generated in the Decode
stage and propagated to the Writeback stage.

Exercises 1, 3, 4, 5. Perform a similar analysis to the one presented in this lab for other
instructions such as: and, or, xor, srl, sra, sl1, slt, sltu,addi, andi, ori, xori,
srli, srai, slli, slti, and sltui.
Exercises 2, 6, 7. Exercises based on different exercises the two main reference books:
“Computer Organization and Design — RISC-V Edition”, by Patterson & Hennessy.
“Digital Design and Computer Architecture: RISC-V Edition” by S. Harris and D. Harris.
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RVfpga Lab 13: Introduction

Lab 13 analyses memory reads and writes.

Three parts:

Low-latency Loads: Examine Load/Store pipe when reading low-
latency DCCM (does not stall the processor).

Low-latency Stores: Examine stores to the DCCM.

High-latency loads and stores: Repeat previous analyses when
reading/writing the DDR main memory available on the Nexys A7
board.
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RVfpga Lab 13: Loads — Example Program

.globl main

A: .space 8

.text

main:

# Register t3
la t0, A

1i  t1, 0x2
sw tl, (t0)
add tl, tl, 6
sw tl, 4(t0)

INSERT NOPS 9

.section .midccm

8

X2
#
#
#
#
#

(register 28)
addr (A)

t0 =

o+
'_\
Il

2

8

REPEAT :
INSERT NOPS 1
1w t1, (t0)

INSERT NOPS 9

INSERT NOPS 4

lw t1, 4(t0)

INSERT NOPS 10

INSERT NOPS 4

beq zero, zero, REPEAT # Repeat the loop

.end

®
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RVfpga Lab 13: Low-latency loads — Simulation

lw t1, 4(t0)

Signals Vinias
‘ ; 18768 ps
Time -
clk
dec 10 pc d ext([31:0] pBO0O144 | DOOGO14C [ BOPAO1S4 |BEEBO1SC |0ODOO164 |0OPBOIGC |PAO6174 |BOBOO1TC

- dec i@ instr d[31:0]

lsu rsl d[31:0]
lsu offset d[11:0]

rsl dc1[31:6]

offset dcl[11:0]

- full addr dcl[31:0]

e dccm rden
_ dccm data lo dc2[31:6]
i@ result e4 final[31:0]

T T T addre(:6T

wde[31:0

t1

b4 RIS C ® ptewz2 0022 2% Q] Imagination



RVfpga Lab 13: Low-latency Loads — SweRV EH1 pipeline

Decode DC1 DC2 DC3 || Commit || Writeback
Tw t1, a(to)— | CONTROL
. - UNIT
Instruction Register
(dec_iO_instr d)
I ff t: 4

su_offset_ offset_dc1 DCCM 3

(92

5 (t0 0xF0040004 —

O] adro = full_addr_dc1 g

|

0xF0040000 <t

rd0| 8 8 8

- rs1_dc1 dccm_data_lo_dc2 2’

6 (t1) waddr0 £ 2

8 S Adder 3

wd0 = QI

dccm_rden
REGISTER Address Check
FILE - | ddrcheck |'| -
Pipeline (Isu_addrcheck) 1 Pipeline
Registers Registers
® RVfpgav2.2 © 2022 <166>

o4 RIS C

Imagination Technologies

Q3 imagination



RVfpga Lab 13: Low-latency Loads — Analysis

Cycle i: Decode: generates control signals and reads operands:
t0 = O0xF0040000
Offset = 0x004

Cycle i+1:  DC1:
Computes address: full addr dcl = 0xF0040004
Finds memory region of the access - dccm rden asserts

Cycle i+2: DC2: the DCCMisread 2 dccm data lo dc2 =0x8

Cycle i+5: Writeback: The value read from memory is written back to the register file:
wd0 = 0x8
wen0 =1
waddr0 = 0x6
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RVfpga Lab 13: Detailed low-latency Load Analysis

The figure in the next slide shows a detailed diagram of the main
elements that a 1w instruction traverses during its execution through

the 10 Pipe.

This was already illustrated in Lab 11, but the new figure focuses only
on the LSU Pipe and provides details related to the 1w instruction.

The document for Lab 13 provides deep explanations, not included
here, about each stage shown in the figure for the execution of the 1w

Instruction.

b4 RIS C ® ptewz2 02022 2% QI Imagination



Decode DC1 DC2 DC3
Isu_p [18:0] | Pipeline Pipeline Pipeline
— | Registers Registers Registers
for for _ for _
. Control Control e Control | 2
- . . ™ . ™
Slgnals LOG I — end_addr_dc1 [31:0] = Slgnals ;’ Slgna|5 ;
full_end_addr_dc1 [31:0] S, 5 g
| Z Z s
© o |offse 8 ® be}
_'g,'i'_ LOGIC 5]t DCCM g dccrr'r:i_tfifata E gl
€= = —_—
s} 5] offset_dc1[11:0] 9 9 ©
S S lsu_addr_dc1 [31:0] = (Isu_ | ¢ S |ALIGN, | g
o - ful_addr_de131:0] | deem MERGE| -,
s S rs1 Isadder —_ dccm_datal And E:
i <! - s & | CHECK
) » £, 0, MU
@2 5 9 3
S 2 ° s
@ | : . -
Address Check § §
(Isu_addrcheck) Sl El
addr_in_dccm_dc1 3 S
LOGIC deem rden bus_read_data_dc3 [31:0]
addr_external_dc1 addr_external_dc3

Detailed diagram of 1w
traversing the 10 pipe
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RVfpga Lab 13: Stores — Example program

.globl main

.section .midccm REPEAT:

A: .space 4000 sw t1, (t0)
INSERT NOPS 10

.text INSERT NOPS 4
1w t1, (t0)

main: INSERT NOPS 10

la t0, A # t0 = addr (A) add tl,tl,tl

1i t1, 0x2 # tl = 2 add t0,t0,0x04

1i t2, 1000 # t2 = 1000 add t2,t2,-1

INSERT_NOPS_2 INSERT_NOPS_lO
bne t2, zero, REPEAT # Repeat the loop
nop

nop

.end
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RVfpga Lab 13: Low-latency Store — Simulation

Signals Waves
Time 17968 ps
clk
e d_ecti@'?pc___ d__ext_[3T: COIRN co000110 60000118 06000120 |0po00128 /00060130 00000138 |6e006140
dec i0 instr d[31:0] BO62A023 00009013 |

- lsu rsl d[31:0] FOO4000C 00000000 _

Lsu offset d[11:0]

_exu lsu rs2 d[31:0] 00000016 /0PEOARRD
RS A IS U E SRV 0020008 | Fooa000C |
- offset dcl[11:0] 060

full addr dcl[31:0] FOO40008 | [FO4000C

~ 7 Tdccm wren | ]
- dcem wr addr[15:0] 6000 eeec |
dccm wr data[38:0] DOOOOOOHO (4900000010 )
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RVfpga Lab 13: Low-latency Store — SweRV EH1 pipeline

DECODE STAGE " DC1
[ sw t1, (t0) |  CONTROL dccm_wren
Instruction Register UNIT
(dec_i0 instr d) ]
0 0
offset_dc1
Isu_offset d
0xF004000C
— full_addr_dc1 dccm_wr_addr
5 (t0
) radaro Isu_rs1_d 0xF004000C
rd0 rs1_dct dccm_wr_data
Adder 20010 DCCM
6 (t1) rd exu_lIsu_ rs2 d 0x000
raddr1
REGISTER
FILE Pipeline “Pipeline
Registers Registers
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RVfpga Lab 13: Store basic analysis — Simulation

Cycle i: Decode: generates control signals and reads operands:
£0 = 0xF004000C

Offset = 0x000
t1 =0x10

Cycle i+1: DCA1:
Computes address: full addr dcl = 0xF004000C

Cycle i+6: DCCM write:

dccm wr addr = 0x000C
dccm wr data = 0x4900000010
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RVfpga Lab 13: Load to the External Memory

The figure on the next slide shows the main path the 1w instruction
traverses to read Main Memory.

The processor must stall waiting for data from the External Memory.

The External Memory is accessed through the AXI bus, which provides
the address to the Lite DRAM controller and, some cycles later, aligns
and sends the requested data to the DC3 stage.

A 2:1 multiplexer in the DC3 stage selects the data coming from the
External Memory, instead of the data coming from the DCCM.
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end_addr_dc1 [31:0] =
full_end_addr_dc1 [31:0]

DC1 STAGE

Pipeline
Registers
for
Control
Signals

Delay due to
accessing External
Memory

Isu_addr_dc1[31:0] =
full_addr_dc1 [31:0]

Bus

addr_external_dc1

External Memory
accessed through AXI

(Isu_bus_intf)

I

Lite DRAM
Controller

'

DC3 STAGE COMMIT STAGE
Pipeline Pipaiine
Pe Registers
Registers - for
for =
Contiol o, Control
) ; =
Signals %I Signals g ejg.!gsecondary
g e e4d.i0v
3 s e4d.i0load
I I
£ =
©
© g ~
=) El C)I ™~
= = | 241 g 7
e = LOGIC n =
o MUX b3
i k) 3-1 . - y
o — i0_result_e4 _final [31:0]
s L = MUX
o, 2
e ‘_| —
@ e
2 Isu_resul = %
g' t corr_dc = /
£ Isu_result_corr_dc3 [31:0] 4ff
1

addr_external_dc3
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RVfpga Lab 13: External Memory — Example program

.globl main

.data
D: .word 3,5,6,8,7,10,12,2,1,4,11,9

.text REPEAT :

main: 1w t3, (t4)
add t5, t5, -1

1i t2, 0x020 INSERT NOPS 10

csrrs tl, Ox7F9, t2 add t6, t3, t6

add t4, t4, 4

la t4, D INSERT NOPS 9
11 t5, 12 bne t5, zero, REPEAT # Repeat the loop
1i t6, 0x0

INSERT NOPS 1 INSERT NOPS 4

.end
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RVfpga Lab 13: External Memory — Simulation

Signals

Time

17160 ps

dec_i@ pc d ext[31:0]
dec i0 instr d[31:0]
lsu rsl d[31:0]
lsu offset d[11:0]
BRSNS E TN
offset dcl[11:0]
full addr dcl[31:0]
T 77 T lsuaxi arvalid
lsu axi_araddr([31:0]
lsu axi rvalid

lsu axi rdata[63:0]

waddro[4:0]
weno
wde[31:0]
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RVfpga Lab 13: External Memory — Analysis

The Decode stage computes the address, which in the fourth iteration
of the example is 0x00002204.

Then, the address is sent to the external memory through the AXI bus:
lsu axi arvalid=1
lsu axi araddr = 0x00002200

Some cycles later, the external memory returns 64-bit data read
through the AXI Bus

lsu axi rdata = 0x0000000800000006

lsu axi rvalid=1

Finally, the requested 32-bit data is extracted from the 64-bit data,
iInserted in the main pipeline path, and written into the Register File.
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RVfpga Lab 13: Tasks - Sample

TASK. Include signal 1su_p in the simulation from Figure 4 and analyse its bits.

TASK. Analyse in the Verilog code the path followed by the two inputs to the LSU
(exu 1lsu rsl d anddec 1lsu offset d)from the sources where they are obtained.
Several modules are involved in this process: dec, exu, 1su.

TASK. Analyse the implementation of the two adders from the DC1 stage, which are instantiated
in module 1su 1lsc ctl.

TASK. In the program from Figure 2, try different access sizes (byte, half-word) and unaligned
accesses. To do so, change the offset or the access type from 1w to Ib (load byte) or |h (load half-
word). For example, if you change the offset from 4 to 3, the load word instruction performs an
unaligned access to the 32-bits starting at address 0xF0040003, as shown in Figure 8. Analyse
the value of signals 1su addr dcl1[31:0](or full addr dcl[31:0])and

end addr dcl[31:0]under these different situations.

TASK. Analyse unaligned stores to the DCCM, as well as sub-word stores: store byte (sb) or
store half-word (sh).

TASK. It can also be interesting to analyse the AXI Bus implementation for accessing the DRAM
Controller, for which you can inspect the 1su bus intf module.
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RVfpga Lab 14: Introduction

Lab 14 illustrates two structural hazards (which have different

performance-cost trade-offs).

Unit conflict: two mul instructions arrive at the Decode stage in the same cycle.
The multiplier is pipelined, so the second mul instruction is only delayed by one
cycle. Hardware cost and performance degradation (only one cycle) are low.

Register File write port conflict: Three instructions arrive at the Writeback
stage in the same cycle, one of them being a non-blocking load executed several
cycles earlier. SweRV EH1 has three (instead of two) write ports. The structural
hazard is avoided (resulting in no performance loss), but it has high hardware
cost due to the extra register file port.

Note that the div instruction can also cause hazards, which is discussed In the
lab’s Appendix.
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RVfpga Lab 14: 2 mul Instructions — Example Program

.globl Test Assembly

Test Assembly:

11 t2, OXFFFF

1i t3, 0x3

1i t4, 0x2

1i t5, 0x2

1i te6, 0x2

REPEAT :
beqg t2, zero, OUT # Stay in the loop?
INSERT NOPS 9
mul t0, t3, t4 # t0
mul tl, t5, t6 # tl
INSERT NOPS 9
add t2, t2, -1

add t0, zero, zero

t3 * t4
t5 * teo

add tl, zero, zero
J REPEAT
OUT:

.end
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RVfpga Lab 14: 2 mul Instructions — Simulation

mul t0,t3,t4 mal B4 68 6

Signals
Time 35800 ps
dec i® pc d ext[31: RE Jooeee GOOBA1F4 POPOOLFC |0OGEE264 |0OEEE20C |0OORE214 10OEEE21C
_ 10 pc_a_ | : _ | _ _ _
dec i® instr d[31: 03DE02B3 J|93FFO333" 00000013 FFF38393 |00EE333
dec il instr d[31: 03FFe333" [poeeee13 : /0eee2B3 |FAIFFO6F

a[31: 00000003 000EAR02  |HABEEEO
b[31: 00000002
out[31: 06000004 /00000006 00000004 |

oo 60016160616 ?99@9995 D —
0000000 | /00060004 _
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RVfpga Lab 14: 2 mul instructions — Analysis

Cycle i: The two mul instructions arrive at the Decode stage in the same cycle. A
Structural Hazard prevents the second mul instruction from advancing.

Cycle i+1: The first mul instruction executes in the first stage of the pipelined
multiplier (M1), while the second mu1l instruction waits in the Decode stage.

Cycle i+2: The first mul instruction executes in the second stage of the pipelined
multiplier (M2) and the second mul executes in the first stage (M1).

Cycle i+3: The first mul instruction obtains the result: ocut = 0x6.
Cycle i+4: The second mul instruction obtains the result: out = 0x4.
Cycle i+6: The register file is updated with the result of the first mul (£t0 = 0x6).

Cycle i+7: The reqister file is updated with the result of the second mul (t1 =
0x4).
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RVfpga Lab 14: 2 mul Instructions — Diagram

| Cyclei | Cyclei+1 | Cyclei+2 | Cyclei+3 | Cyclei+4 | Cyclei+5 | Cycle i+6

mul £0, €3, t4 (03de02b3) | D Way0 | ML | M2 | M3 | C Way0 | WB WayO |
mul tl1, t5, t6 (03££0333) iDSt Wayli D WayO i M1 i M2 i M3 i C WayO EWB WayO
nop (00000013) | A Way0 | D Wayl | EX1 11 | EX2 11 | EX3 I1 | C Wayl | WB Wayl

| | | | | | |
nop (00000013) iAst Wayli A WayO i D WayO i EX1 I0 i EX2 IO i EX3 IO i C WayO
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RVfpga Lab 14: 3 Simultaneous Writes — Example Program

REPEAT : add x12, x12, 1 add x25, x25, 1
1w x28, (x29) add x13, x13, 1 add x26, x26, 1
add x30, x30, -1 add x14, x14, 1 add x27, x27, 1
add x1, x1, 1 add x15, x15, 1 add x31, x31, 1
add x31, x31, 1 add x16, x16, 1 add x3, x3, 1
add x3, x3, 1 add x17, x17, 1 add x4, x4, 1
add x4, x4, 1 add x18, x18, 1 add x5, x5, 1
add x5, x5, 1 add x19, x19, 1 add x6, x6, 1
add x6, x6, 1 add x20, x20, 1 add x25, x25, 1
add x7, x7, 1 add x21, x21, 1 add x26, x26, 1
add x8, x8, 1 add x22, x22, 1 add x27, x27, 1
add x9, x9, 1 add x23, x23, 1 bne x30, zero, REPEAT
add x10, x10, 1 add x24, x24, 1
add x11, x11, 1
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add x23, x23, 1
lw x28, (x29) add x24, x24, 1

Signals

Time GO20G ps 6B300 ps i-5 BEAO0 ps

dec i@ pc d ext[31:8]=
dec i@ instr d[31:8]=
dec il instr d[31:8]=!

- lsu rsl d[31:0]= 3 e -
lsu offset d[11:0]= e  Delay due to accessing External Memory.
o 1 Independent instructions keep executing.

rsl dcl[31:8]=

- offset dcl[11:0] =
full addr dcl[31:8]=

— T - Ts.u?ax_i_?rvgli_d =

lsu axi araddr[31:0] =
Llsu axi rvalid=
lsu axi rdata[63:8] =

dec n?nh_loﬁx_Tan waddr [E: B—] =

dec_nonblock load wen=l
lsu nonblock load data[31:@]=

“waddre[4:8] =
weno =
wde[31:8] =
waddrl[4:0] =
wenl=
wdl[31:8] =
waddr2[4:8] =
wen2 =i
wd2[31:08] =

Figure 6. Verilator simulation for the example from Figure 4
Three simultaneous writes to the
Register File:
- 1w writes register x28 (0x1C)
- add writes register x23 (0x17)

- add writes register x24 (0x18)



RVfpga Lab 14: 3 Simultaneous Writes — Analysis

Cycle i-17: The 1w instruction is at the Decode stage.

Cycle i-16: The effective memory address is computed and sent to the
External Memory through the AXI Bus. The 1oad instruction waits

several cycles for the External Memory to supply the data.
Cycle i-5: The two conflicting add instructions are decoded.

Cycle i: The 1w instruction and the two conflicting add instructions
proceed to the Writeback stage, where they write the register file,
which is possible because the Register File has three write ports.
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RVfpga Lab 14: 3 Simultaneous Writes — Diagram

| Cyclei-17 | Cyclei-16 ! Cyclei-15 ! Cyclei-14 | Cyclei-1 ' Cyclei

Jiigigilsiyi

| | | | | | |
| |
lw x28, (x29) (000eae03) : DECO : DC1 i Ext Mem i Ext Mem i iExt Mem i WB
| | | | | | |
add x30, x30, -1 (ffff0f13)i DECO i EX1 | EX2 | EX3 | | |
| | | | |
| | | | | | |
add x1, x1, 1 (00108093) |, ALGN , DECO | EX1 | EX2 | | |
| | | | | | |
| | | | | | |
add x2, x2, 1 (00110113) | ALGN | DECO | EX1 | EX2 | | |
| |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
: : | | | | |
add x21,x21,1 (001a8a93) | . | | : ' wWB |
| | | | | | |
| | | | | | |
add x22,x22,1 (001b0bl3) , : | | ! | WB |
| | | | | | |
| | | | | | |
add x23,x23,1 (001b8b93) ! | | | | coMMIT | | WB
| | | | | | |
| |
add x24,%24,1 (001c0c13) ! | | | l | comMIT | | WB
| | | | |
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RVfpga Lab 14: Tasks and Exercises - Sample

TASK: Inspect the Verilog code from exu mul ctl and see how the multiplication is computed. Remember
that RISC-V includes 4 multiply instructions (mul, mulh, mulhsu and mulhu), and all of them must be
supported by the hardware.

TASK: Remove the nop instructions included within the loop from Figure 1 and measure different events
(cycles, instructions/multiplies committed, etc.) using the Performance Counters available in SweRV EH1,
as explained in Lab 11. Is the number of cycles as expected after analysing the simulation from Figure 27?
Justify your answer. Now reorder the code within the loop trying to reach the ideal throughput. Justify the
results obtained in the original code and in the reordered one.

TASK: Modify the program from Figure 1, replacing the two mul instructions for two Iw instructions to the
DCCM. You should observe a structural hazard analogous to the one analysed in this section and resolved
in a similar way.

TASK: Compare the simulation shown in Figure 6 (non-blocking load) with the simulation shown in Figure
14 of Lab 13 (blocking load).

Exercise 1. Analyse, both in simulation and on the board, the structural hazard that happens between two
consecutive memory instructions (you can analyse any combination of two consecutive memory instructions
such as loads and stores) that arrive at the L/S Pipe in the same cycle.

Exercise 2. This following exercise is based on exercise 4.22 from the book “Computer Organization and
Design — RISC-V Edition”, by Patterson & Hennessy ([PaHe]).
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RVfpga Lab 15: Introduction

Lab 15 analyses how RAW data hazards are resolved.

RAW data hazards are resolved by stalling the processor or
forwarding (also called bypassing) the value from an
iInstruction executing in a later stage.

Two scenarios analysed:

RAW data hazards resolved by forwarding to the Decode stage (using several
new multiplexers)
RAW data hazards resolved in the Commit stage using two additional ALUs
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RVfpga Lab 15: Solving Data Hazards by Forwarding

Forwarding to the Decode stage requires adding multiplexers in front of
the Functional Units (ALUs, Multiplier, Adder that computes the Effective
Address in DCA1, etc.) to select operands from either the Register File or

from subsequent stages.

The figure on the next slide shows the forwarded values in the Decode
stage. The Forwarding Logic produces bypass signals for each of the
two source operands in each of the Ways
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From
subsequent
stages

Register File
(dec_gpr_ctl)

raddr0 [4:0]  rdO [31:0]—
raddr1 [4:0]  rd1[31:0]—
raddr2 [4:0] rd2 [31:0]—
raddr3 [4:0]  rd3 [31:0]—

»

i0_rs1_bypass_data_d[31:0]

i0_rs2_bypass_data_d[31:0]

i1_rs1_bypass_data_d[31:0]

i1_rs2_bypass_data_d[31:0]

Forwarding
Logic

DECODE STAGE EX1/DC1/M1

i0_rs1_bypass_data_d

i0_rs2_bypass_data_d

i0_rs1_bypass_data_d

i1_rs1_bypass_data_d

i0_rs2_bypass_data_d

i1_rs2_bypass_data_d

i0_rs2_bypass_data_d
i1_rs2_bypass_data_d

i0_rs1_bypass_data_d
i1_rs1_bypass_data_d

i1_rs1_bypass_data_d

i1_rs2_bypass_data_d

i0_rs1_bypass_data_d o dividend
ividen
MUX
i1_rs1_bypass_data_d 92 -
Divider
rd1
i0_rs2_bypass_data_d — divisor
MUX
i1_rs2_bypass_data_d rd3
[




RVfpga Lab 15: Solving Data hazards by Forwarding — Example

.globl Test Assembly

.text

Test Assembly:

INSERT NOPS 8

td,

1i t3, 0x3
1i t4, 0x2
1i t5, Ox1
1i t6, OXFFFF
REPEAT :
add Jt4
add to,

o,

t5
=1

add t3, t3Yt4
INSERT NOPS_9

1i t3,
1i t4,
1i t5,

0x3
0x2
0x1

bne t6, zero,

T s B (e o 9 5 00000180 <REPEAT>:
- - 180:  Olee8eb3 add t4,t4,t5
B E3 = £3 + t4 (3 = 3 + 3) 184 ffff8f93 addi t6,t6,-1
188: 0l1ldeOe33 add t3,t3,t4
18c: 00300e13 li t3,3
190: 00200e93 li t4,2
194 00100f13 li t5,1
# Repeat the loop 198: fe0f94e3 bnez 16,180 <REPEAT>
® RVfpgav2.2 © 2022 <195>
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RVfpga Lab 15: Solving Data Hazards by Forwarding — Pipeline — Cycle i

DECODE STAGE . EX1 STAGE

v |
add t3,t3|t4| (Ox01deOe33) add|t4,t4,t5 (0x01lee8eb3)
i0_rs1_d [31:0
o0 310 [ =D B0 a af |
3 aff——=
] 2
Register File A ~ out [31:0] 3
(dec_gpr_ctl) ]
b bff biff
1 [31:0] gpr_i0_rs2_d [31:0] / i0_result_e1[31:0]
E » ALU
I MUX 3 (exu_alu_ctl)
3

i0_rs2_bypass_data_d[31:0]

Forwarding Logic | __




RVfpga Lab 15: Solving Data Hazards by Forwarding — Simulation

add t4,t4,t5

add t3,t3,t4

Signals Waves
Time
clk=

dec i0 instr d[31:0] = COEEENNEE :F-r--"

i@ rs2 bypass data d[31:0] = 1 )i
- i0 rs2 d[31:0] = CEEEECERA /eeeRRR6
a[31:0] =l A 160000060

b[31:0] =  CEEEEEEEY ee0ERE0

i9 inst el[31:0] = [EZ=EM |PIDEES3

a_ff [31 : 9] = 000002 .H.EI :‘u'-][-j ee——
- b ff[31:0] = [EEEEEEN oe
out[31:0] =
10 result el[31:0]=
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RVfpga Lab 15: Solving Data Hazards by Forwarding — Analysis

Instruction add t4, t4, t5 (0x01ee8eb3):

Cycle i: This add instruction is in the EX1 stage of the 10 Pipe (10 _inst el = 0x01ee8eb3d). It
computes the following addition in the ALU:

a_ff (2) + b_ff (1) = out (3)
The result is sent to the Forwarding Logic in the Decode stage.

Instruction add t3, t3, t4 (0x01de0e33):

Cycle i: This add instruction is in the Decode stage of Way-0 (dec 10 instr d=
0x01de0e33). The Forwarding Logic forwards the result from EX1 (10 result el)to the
Decode stage (10 rs2 bypass data d). Two 3:1 multiplexers produce the operands,
specifically:

Operand a = 3 (from the Register File)

Operand b = 3 (from the ALU output in the EX1 stage of the |0 Pipe, through the Forwarding Logic)
Cycle i+1: This add instruction is in the EX1 stage of the |0 Pipe (10 inst el =
0x01de0e33). It computes the correct addition in the ALU:

a_ff (3) + b_ff (3) = out (6)
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Decode EX1 EX2 EX3 Commit Writeback

5
© .
£ i0_ap_e1[19:0] =
I -
gpr_i0_rs1_d QI _ 2
— ©
[=} a ff e c
J n aff & ‘:l
rd0 [31:0] NN out [31:0] 5 34 | 9, i0wbre| i0_result_wb [31:0]
ALU _ & MUX|[ = sultff
] | S ? i0edres @
il ft | (exu_alu ) = ultff o
. L _ctl) i0e2res] ¢ 2 g -
_ gpr_i0_rs2_d it o, [ioe3 ) hd
rd1[31:0] i0_result_e1 [31:0] = u = | uits o £
i . [} — h—
dec_i0_immed_d[31:0] exu_i0_result_e1 [31:0] o ?_. o,
_IV_ - C>I o™, %
Register File . < Q'
(dec_gpr_ctl) I 3
o) ol
--------------.-----I -
i1_result_wb l
i1_result_e4_final — l
10-1 |
i1_result_e3_final — Mux |
i0_rs2_bypass_data_d[31:0] |
i1_result_e2 l
i1_result_e1 I
[
I
|
l - -
| g

forwarding logic



RVfpga Lab 15: Solving Data Hazards by Forwarding at Commit

Instructions that need several cycles to obtain the result (i.e. a multi-
cycle operation, such as a 1w, mul, and div) cannot forward to

Decode stage.

But SweRV EH1 adds an extra ALU (the Secondary ALU) in the
Commit stage of each way. This ALU recalculates the arithmetic-logic

operation with the proper inputs when necessary.

Thus, no cycles are lost due to stalling — but the cost is two extra
ALUs (one per way) as well as added control signals and logic.
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RVfpga Lab 15: Solving Data Hazards by Forwarding at Commit — Pipeline

i1_result_e4_eff [31:0]|MUX

ypass_data| e3 [31:0]

|
i0_rs2 b

I

i0_result_e4 [31:0]

EX3 Commit
Secondary ALU
Secondary ALU Forwarding Logic (exu_alu_ctl)
____________________________ ' a |1 af
i0_rs2_e3[31:0] \
exu_i0_result_e4[31:0]
t[31:0 - = -
i1_result_ wb_eff [31:0]\ > out [31:0]
2-1 {'b=i0_rs2_e3 final bff
MUX bff
—
4-1

3-1

Writeback

i0_result_e4 final [31:0] i0_result_wb [31:0]

i0_result_e3_final

Isu_result_corr_dc4 [31:0]

MUX

i0_result_e4_eff [31:0]

LOGIC

LOGIC

_____________________________

i0_result wb_eff [31:0]

® RVfpgav2.2 © 2022 <202> qj
Imagination Technologies lmGglnCﬂ'IOf\



RVfpga Lab 15: Solving Data Hazards by Forwarding at Commit — Example

.globl Test Assembly

.section .midccm REPEAT:
A: .space 4 beg t6, zero, OUT # Stay in the loop?
INSERT NOPS 9
.text lwjtl] (tO0)
add to, 6, -1
Test Assembly: add t3, t3,4¢tl # t3 = 3 + tl1
INSERT NOPS 8
la t0, A # t0 = addr (2) 1i t1, 0xO0
1i t1, Ox1 #tl =1 1i t3, 0Ox1
sw tl, (tO0) # A[0] =1 add t4, t4, O0xl1
1i t1, O0x0 11 t3, 0Ox1 11 t6, OXFFFF add t5, t5, O0xl1
J REPEAT
OUT:
.end
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RVfpga Lab 15: Solving Data Hazards by Forwarding at Commit — Pipeline

Cyclei

EX3 STAGE

add t3,t3li|

COMMIT STAGE

ALU (exu_alu_ctl)

aff

out [31:0]
bff

e
i0_rs2_e3 [31:0] 1 2]
— 2-1 b [
MUX 1 bff
— 1
41
MUX

‘ =

i0_result_e4 [31:0]

3-1

Iw(tO)

i0_result_e4_final [31:0]

i0_result_e3_final [31:0]

Isu_result_corr_dc4 [31:0]

1

i0_result_e4_eff [31:0] LOGIC

MUX

L=

Cycle i+1
1 aff
1
out [31:0]
bff
1
ALU

(exu_alu_ctl)

EX4 STAGE
add t3,t3,t1
J\‘ i0_result_e4_final [31:0]
31
MUX 2

i0_result_e4 [31:0]




RVfpga Lab 15: Solving Data Hazards by Forwarding at Commit — Simulation

1w £1,0(t0) add t3,t3,¢tl

aale al3 :
ignals Waves

clk=

dec i8 pc d ext[31:8]=

dec i@ instr d[31:8]=

dec i1 instr d[31:8]=

16 inst el[31:@]=

i1 _inst _el[31:0]=

i@ inst e2[31:8] =

i1 inst e2[31:8]=

ie inst e3[31:8]=

il inst e3[31:8]=

ie inst e4[31:8] =

i1 inst e4[31:8]=

ig inst wb[31:8]=

i1 inst wh[31:8] =

~ 11 result ed eff[31:0] =
i8 result e4 eff[3l:8]=
il result wb eff[31:0]=
i@ result wb eff[31:0]=
i@ rs2 bypass data e3[31:6] =
= dec 10 ?sz_byp_ass__en___e?zl
i0 rs2 bypass data e3[31:0] =
i@ rs2 e3[31:8] =

................................

i@ rs2 e3 final[31:8]=
== = = == el
b[31:8]=

a ff[31:8]=

b ff[31:0]=

out[31:8]=

i@ result ed4 final[31:8]=
= T T T T vaddre[:e]=
wene =

wdd[31:8] =




RVfpga Lab 15: Solving Data Hazards by Forwarding at Commit — Simulation

Trace Signals

Cycle i: the add instruction is in the EX3 stage of Way 0 (10 inst e3 = 0x006EOE33), and the 1w
instruction is in the Commit stage of the 10 Pipe (10 inst e4 = 0x0002A303).

Cycle i+1: the add instruction is in the Commit stage of Way 0 (10 _inst e4 = OXOO6EOE33).
4:1 Multiplexer
Cycle i: the result from the 1w instruction (in the Commit stage), is selected:
i0 rs2 bypass data e3 =10 result ed4 eff =0x00000001
2:1 Multiplexer
Cycle i: the bypass value is selected due to the dependency between the 1w and the add:
i0 rs2 e3 final =10 rs2 bypass data e3 =0x00000001
Commit stage ALU
Cycle i+1: the add operation is recomputed using the correct values:
out =a ff +Db ff =0x00000001 + 0x00000001 = 0x00000002
3:1 multiplexer

Cycle i+1: The Secondary ALU’s output is selected (exu i0 result e4). (When no dependency exists,
10 result e4is selected.)
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RVfpga Lab 15: Tasks — Sample

TASK: Remove all nop instructions in the example from Figure 2. Draw a figure similar to Figure
3 for two consecutive iterations of the loop, then analyse and confirm that the figure is correct by

comparing it to a Verilator simulation, and finally compute the IPC by using the Performance
Counters while executing the program on the board.

TASK: In the example from Figure 2, remove all nop instructions and move the add t6,t6,-1
instruction after the add t3, t3, t4 instruction, and then re-examine the program both in
simulation and on the board. In this reordered program, the two dependent add instructions (add
td4,t4,t5 and add t3,t3, t4)arrive at the Decode stage in the same cycle, and this has an

impact in performance. Explain the impact of these changes, using both simulation and execution
on the board.

TASK: Compare the equations for the 10:1 multiplexer in the Forwarding Logic with the ones
explained for the pipelined processor from DDCARV.

TASK: Remove the nop instructions in the example from Figure 11 and obtain the IPC using the
HW Counters.

TASK: Disable the Secondary ALU as explained in Lab 11 and analyse the example from Figure
11 both with a Verilator simulation and with an execution on the board.
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RVfpga Lab 15: Exercises — Sample

Exercise 1. Modify the program used in Section 3 by adding an extra arithmetic-logic instruction that
depends on the result of the add instruction. Analyse the Verilator simulation and explain how data hazards

are handled for the new A-L instruction. Then remove all nop instructions and analyse the results provided
by the HW counters.

Exercise 2. Analyse the same situation as the one described in Section 3 for a mul instruction followed by
an add instruction that uses the result of the multiplication. In the program from Figure 11 you can simply
substitute the Iw for a mul that writes to register t1.

Exercise 5. In the program from Section 2.C of Lab 14, replace instruction add x1, x1, 1 with add
x28, x1, 1.Thisintroduces a WAW hazard between the modified add instruction and the non-blocking
load at the beginning of the loop (1w %28, (x29)). Analyse in simulation how this hazard is handled in
SweRV EH1, for which you can look at the value of signal wen?2 in the Register File. Try to understand how
this signal is computed in the Control Unit (module dec).

Exercise 7. In the program from Section 2.C of Lab 14, replace instruction add x1, x1, 1 with add x1,
%28, 1,andinstruction add x7, x7, 1 withadd x28, x7, 1.Thiscauses both a RAW and a WAW

hazard to occur. Analyse in simulation how these two hazards are handled.

Exercise 8 - Store to Load Forwarding: This is a very interesting situation that we have not analysed in
this lab and that you will analyse in this exercise.
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RVfpga Lab 16: Control Hazards & Branches

Branch instructions calculate the address of the next instruction after its fetch.
Control hazards may:
Stall the pipeline until next instruction address is calculated, or

Predict whether the branch will be taken and fetch instructions from the
predicted path.

SweRV EH1 has two possible branch predictors (BPs) :

Naive Branch Predictor: always predicts branch not taken. Has poor
performance but at no hardware cost.

Gshare Branch Predictor: offers higher performance at the cost of extra
hardware.

This lab analyzes the execution of a beg instruction using both the naive and
Gshare BP.
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RVfpga Lab 16: Execution of a beq Instruction and PC Calculation

exu_flush_final

exu_flush_path_final [31:1] ™
]

FC1

ifc_fetch_addr_f1 [31:1] (PC)

FC2

ifc_fetch_addr_f1_raw [31:1] Q

2-1 Mux

fetch_addr_next [31:1]

16

ifu_bp_btb_target 2 [31:1]

miss_addr [31:1]

exu_flush_path_final [31:1]

5-1 Mux

ifu_mem_ctl

faddrfl
ff

F

[31 ﬂj(jext PC)

fetch_addr_bf

ALN

Instruction Register
(dec_i0 instr d)

LOGIC

i

DECODE EX1
CONTROL i0_ap
UNIT
ap.beq
raddr0 rd0 Wﬂi
raddrt _ ed | L oaic flush_upper
REGISTER
FILE rd1 Wﬁ <
pc [31:1] .
pﬂ pc_ff [31:1]
flush_path [31:1]
+
brimm_ff [12:1] A
ibradder

LOGIC




RVfpga Lab 16: Execution of a beq Instruction and PC Calculation — Example

Test Assembly:

1li t2, 0x008 # Disable Branch Predictor
csrrs tl, Ox7F9, t2

1i t3, OXFFFF

1i t4, Ox1
1i t5, 0xO
1i te6, 0xO
LOOP:

add t5, t5, 1
INSERT NOPS 7/
beq t3, t4, OUT
INSERT NOPS 7/
add t4, t4, 1
INSERT NOPS 7
beq t3, t3, LOOP
INSERT NOPS 7

OUT:

INSERT NOPS 8

.end
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RVfpga Lab 16: Execution of First beq Instruction — Simulation

beq t3,t4,0UT w university g

Signals Waves
Time
"""" exu_flush final=
exu flush path final ext[31:0] =l
ifc fetch addr fl raw ext[31:0]=
ifc fetch addr f1 ext[31:0]=
_____ dec 10 pc d ext[31:0] =
dec i@ instr d[31:0] =
dec i1 instr d[31:0] =
i0 ap[19:0] =
a[31:0] =

b ff[31:0]=

- flush upper=
pc ff ext[31:0]=
brimm ff ext[12:0]= [ _

flush path ext[31:0] = (EOECENELPRNIECIEIN




RVfpga Lab 16: Execution of First beq Instruction — Analysis

Cycle i - Decode stage for the beq instruction: The first beq (Ox07DE0063) is decoded in Way

0. Control signals are generated, the Register File is read, and the branch instruction is
routed to the 10 Pipe. Signals a and b (OxFFFF and 0xC4, respectively, in this example) contain

the inputs to the comparator used in the next stage.

Cycle i+1 - EX1 stage for the beq instruction: The beq instruction is executed. Signals a ff
and b ff are compared. The two numbers (OxFFFF and 0xC4) are different, so the branch is not

taken. In this example the Gshare predictor is disabled, thus all branches are predicted not taken
(10 _ap.predict nt =1). Thus, the branch has been predicted correctly, and the pipeline is not

flushed (f1ush upper =0).

Cycle i+2 - FC1 stage: Given that the branch was predicted and resolved as not taken, fetching
simply continues sequentially. Notice that exu flush final =0 and

ifc fetch addr fl ext[31:0] =ifc fetch addr fl raw ext[31:0] =0x000001FO.
This address points to the next sequential 128-bit bundle of instructions.
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RVfpga Lab 16: Execution of Second beq Instruction — Simulation

LJL) =g
v\b\:‘\%\g t3 tB;LOOP w UT'IIUE-SHY}

Signals Waves
Time L

exu flush final=
exu flush path final ext[31:0]=
ifc fetch addr f1 raw ext[31:0]=
ifc fetch addr f1 ext[31:0]=
----- dec 10 Pcd extTaitele
dec i@ instr d[31:0] =
dec il instr d[31:0] =
i0 ap[19:0] = |GTER
a[31:0] = |G

b[31:0] = |CEEEEiaN
_________ a f[31:0]= [CLUGELUHN 000000
b ff[31:0]= [N A i Eees)

flush_upper=
- pc ff ext[31:0]= § 000¢
brimm ff ext[12:0]= [&
flush path ext[31:0] = [EEEECITHDEE IO



RVfpga Lab 16: Execution of Second beq Instruction — Analysis

Cycle i - Decode stage for the beq instruction: The second beqg (OXFBCEOOE3) is decoded in

Way 0. Pipeline control signals are generated, the Register File is read, and the branch
instruction is routed to the 10 Pipe. Signals a and b (OXFFFF for both of them, in this example)

contain the inputs to the comparator used in the next stage.

Cycle i+1 - EX1 stage for the beq instruction: The beq instruction is executed. Signals a ff
and b ff are compared. The two numbers are equal, so the branch is taken. However, the Naive
BP predicts all branches as not taken (10 ap.predict nt =1). So, the branch has been
mispredicted, and the fetched instructions must be flushed (f1ush upper =1)..

Cycle i+2 - FC1 stage: Execution must continue at the branch target address. exu flush final
=1and ifc fetch addr fl ext=exu flush path final ext =0x00000188. This
address corresponds to the branch target address, which is the address of the first instruction of
the loop.
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RVfpga Lab 16: The Gshare Branch Predictor used by SweRV EH1

ifc_fetch_addr_f1_raw [31:1]

FC1 FC2
e | |
i |

|
Gshare BP . . _ |
fghr_ns [4:0] (Global History) Branch History ifu_bp, Kill_next_f2 "
: Table (BHT) :
| - From Return !
: Hashing Il Address Stack !
. modules 2-1 Mux l
| Branch Target offset [11:0] !
| Buffer (BTB) |
: dout [31:1] :
| |
| |
| pc [31:1] |
: LOGIC ifu_bp_btb_target|f2 [31:1] :
| predtgt_addr |
b s an oon o oon o o e e e e e e e e e e e e e e e R G R R R D R D S S e e e s G | e e G G G G G G G G G G G G G G G G G G G G G e G . . - - .- - - —
exu_flush_path_final [31:1]
1\‘ ifc_fetch_addr_f1 [31:1] (PC)
0
1 Mux

5-1 Mux
2- ifu_mem_ctl
+ fetch_addr_next [31:1]
16
ifu_bp_btb_target f2 [31:1] [faddrf1]
fetch_addr bf[31:1]  L__ff |
miss_addr [31:1] (Next PC)
exu_flush_path_final [31:1]

—

(

\— LOGIC




RVfpga Lab 16: The Gshare Branch Predictor for the Second beq

Signals

Time

42600 ps

ifc fetch addr f1 ext[31:0] 0G99G1EG  00GGO1FD |0OGGO1S8 (00GEE199  |000GOLAD |0EGEO1BE |000801CH
wayhit f2[7:0] ' : e |
pc ext[31:0] BOEOR1DE |POOOO1EE |BBOOB1BE [BBEEBI9E /BOEBE1AE | BEBEOLBE |BEEBE1CE
offset ext[12:0] ; =
ifu bp btb target 2 ext[31:0] BBOOB1DE |POGBO1EE 38 | OOAO1BE |BBOAOISE /BOGBOIAE | POPBO1BE (BBBEOLCE
ifu bp kill next f2
fetch addr bf ext[31:0] 6000O1E0 90OOO1FE |0660618E | 196C BO06B1AD |0DOBO1EE |066081Ce
dec 10 pc d ext[31:0] BBBBBLAC B4 |POBOO1EC |0OBEE1CA [BOGOOLCC |BEAGO1D4 POBOBLES |
dec i@ instr d[31:0] 060613 ) _ L 1 |

dec il instr d[31:0] _ 3 Jeeieseoy jpoeeels [FBCEGGE3

flush upper
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RVfpga Lab 16: The Gshare Branch Predictor for the second beq

Cycle i: The address of the bundle that contains the second branch is provided to the Instruction
Cache: ifc fetch addr fl ext =0x000001EO0. The Branch Target Buffer (BTB) is read using

this address.

Cycle i+2: A hit takes place in the BTB: wayhit £2 = 0x20. The address of the branch (pc ext =
0x000001E8) is added to the offset provided by the BTB (offset ext = 0x1FAQ, which is a
negative value), which results in the predicted target address (1 fu bp btb target f2 ext=
0x00000188). Given that the branch is predicted taken by the BHT (ifu bp kill next £2=1),
it is used as the Next Fetch PC (fetch addr bf ext =0x00000188).

Cycle i+3: The Fetch Address is the predicted target address of the branch, which was computed
in the previous cycle: ifc fetch addr f1 ext =0x00000188.

Cycle i+7: The branch is decoded in Way 1 (dec i1 instr d = 0xFBCEOOES3).

Cycle i+8: The branch executes. The prediction was correct, so no flush needs to be triggered
(flush upper =0).

Cycle i+9: Execution continues normally through the branch target address given that the
prediction was correct.
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RVfpga Lab 16: Tasks and Exercises - Sample

TASK: In Lab 15, we analysed how RAW data hazards are resolved in the Commit stage by
means of the Secondary ALUs. Similar to the A-L instructions that we studied in that lab, a
conditional branch instruction can have a RAW data hazard with a previous multi-cycle operation
that must be resolved at commit time. If the branch is determined to have been mispredicted, the
pipeline must be flushed and redirected from the Commit stage. Analyse this situation using a
slightly modified version of the program from Figure 2.

TASK: In the example from Figure 2, remove all the nop instructions and analyse the simulation.
Then compute the IPC with the Performance Counters by executing the program on the board.
Enable the branch predictor used in SweRV EH1 (by commenting out the two initial instructions
in Figure 2) and analyse the simulation and the execution on the board. Compare the two
experiments and explain the results.

TASK: Explain how the Global History Register is updated at module 1fu bp ctl.

Exercise 1) Implement a Bimodal Branch Predictor and compare its performance to the Gshare
BP.

Exercise 2) This exercise is based on exercise 4.25 from the book “Computer Organization and
Design — RISC-V Edition”, by Patterson & Hennessy ([HePal).
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RVfpga Lab 17: Introduction

Western Digital's SweRV EH1 processor is a 9-stage pipelined 32-bit 2-
way superscalar core.

A superscalar processor contains multiple copies of the datapath
hardware to execute multiple instructions simultaneously.

The latency of executing a single instruction is the same as a scalar
processor, but the processor can execute and commit more instructions
per cycle, thus improving its throughput.

SweRV EH1 does not include support for dynamic instruction
scheduling with out-of-order execution, except for the non-blocking
loads. However, it is possible to statically reorder the code in order to
better exploit the resources, including the two ways of the pipeline.
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RVfpga Lab 17: Introduction

SweRV EH1 is a 2-way superscalar processor.
It fetches, executes, and commits up to two instructions per cycle.

The multi-ported register file reads up to four source operands and writes two
values back in each cycle (plus one more value coming from a non-blocking load,
as analysed in Lab 15).

Each way contains independent pipes: two Integer pipes, one Multiply pipe, one
Load-Store pipe, and one non-pipelined Divider.

|deally, in a 2-way superscalar processor, throughput (IPC) doubles compared
to a single-issue processor. Unfortunately, actual programs typically exhibit
performance improvements of 1.3x-1.5x when going from 1- to 2-way
processors; however, adding the second way requires much more hardware.

In this lab, we analyse two simple programs, comparing the behaviour when
using single-issue and dual-issue configurations of SweRV EH1.
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RVfpga Lab 17: Four Independent A-L Instructions — Example — Single-Issue

.globl Test Assembly

.text REPEAT:

Test Assembly: add t0, tO0, 1
INSERT NOPS 10

1i t2, 0x400 # Disable Dual-Issue Execution INSERT NOPS 4

csrrs tl, Ox7F9, t2 add t3, t3, tl1
sub t4, t4, tl

1i t0, 0x0 or t5, t5, ti1

1i t1, Ox1 xor t6, t6, tl

1i t2, 0x1 INSERT NOPS 10

1i t3, 0x3 INSERT NOPS_3

1i t4, 0x4 bne t0, t2, REPEAT # Repeat the loop

1i t5, 0x5

1i t6, 0x6

lui t2, OxF4

add t2, t2, 0x240
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RVfpga Lab 17: Four Independent A-L Instructions — Simulation — Single-Issue

signais

Time

39300 ps

i e e e clk=
dec-ﬂa i_rasts:j[ﬁ_:lﬂ]: 0BAEe01 BOGEDEI3
dec i@ decode d= |

i@ inst el[31:0] =

a ff[31:0] =

WAYO0 EX1 (10 Pipe) b ff[31:8] =

out[31:8] =

Decode

waddre[4:0] = (B 1C 11D
Writeback vent = N -
[== r=— == = — —_— EE @[ilﬂ] = .:E; T:.-FFFFFFF? S

dec i1 instr d[31:0] = [EEEEDE 3 |4B6EBEB3
dec i1 decode d=
il inst el[31:0] =

a ff[31:0] =

WAY1 EX1 (11 Pipe) b ff[31:0] =
out[31:08] =

waddrl[4:0] =

Writeback wenl =i
wdl[31:0] = [EEEEEENE]

Decode




RVfpga Lab 17: Four Independent A-L Instructions — Simulation — Single-Issue

The instructions are received in both ways at decode time, but they are only sent to execution in
Way 0, because Way 1 is disabled.
Way 0:
Signal dec i0 decode dis always 1 in our example; specifically, it is 1 for the four AL instructions under analysis.
The instruction in the Decode Stage is propagated to the 10 Pipe (10 _inst e1[31:0])

Way 1:
Signal dec_il decode dis always 0 in our example; specifically, it is O for the four AL instructions under analysis.
The instruction at the Decode Stage is NOT propagated (11 inst e1[31:0]) to the Execution Stage.

Accordingly, only the ALU from the |0 Pipe is used (see signals aff, bff and out in both ways)
and only write port 0 of the Register File is used (see signals waddr, wen and wd in both ways).
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RVfpga Lab 17: Four Independent A-L Instructions — Diagram — Single-Issue

| |
Cyc3 | Cyc4d | Cyc5 | Cycé

| | | | | |
Cycl | Cyc2 i Cyc7 | Cyc8 | Cyc9
| | | l | [ | |
Decode | add : sub : or ||| xor : : | | I
| | | |
________ e K [ [ [ e I I
EX1 Il add || sub [0 | or |!1] xor |! | | |
| | | l | [ | |
________ r---1T - - -~ -r-——_—~"“~“"r—_~—"—"“‘1~"~ -~ ~"“r-—"""°%3°~" """/ "~ —=77=°
EX2 ' Il add [ " | sub | '] or [ 1] xor |! I |
| | I l | I | |
________ r---,A--—/T—"_—_"~-""-"rT"—TTrT T --"-=-r--"-T-=-=-"r-===
EX3 | ! I'{add | ! sub || or | 1] xor || |
| | | l | | | |
________ r---mI|~-~-~—=—-|,----r-_~-" "1 =-"-"-""r-~""~""-"7T-"_ """ ~-"===-
Commit : : : : add : sub : or | I | xor ||
| |
________ r---A-=-----r-——~r-rU—"——,Ma-_---r---T-"-"=-"="r--==r
Writeback : : : : : add : sub : or : Xor
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RVfpga Lab 17: Four Independent A-L Instructions — Example — Dual-Issue

.globl Test Assembly

.text REPEAT:

Test Assembly: add t0, tO0, 1
INSERT NOPS 10

# 11 t2, 0x400 # Disable Dual-Issue Execution INSERT NOPS 4

# csrrs tl, O0x7F9, t2 add t3, t3, tl
sub t4, t4, tl

1i t0, 0x0 or tb, t5, tl

1li tl1, Ox1 xor to, t6, tl

1i t2, O0xl INSERT NOPS 10

1i t3, 0x3 INSERT NOPS 3

1i t4, 0x4 bne t0, t2, REPEAT # Repeat the loop

1i t5, 0x5

1i t6, 0x6

lui t2, OxF4

add t2, t2, 0x240
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RVfpga Lab 17: Four Independent A-L Instructions — Simulation — Dual-Issue

clk=

_Qg';ﬁ Siwdec 16 instr d[31:8]=

—_—— dec 10 decode d=

i@ inst el[31:0]=

WAYO EX1 (10 Pipe) a_ff[31:0]=
b ff{31:0] =

out[31:8] =

waddre[4:08] =

Writeback e

R L TR I |1yl o wde[31:0] =
dec i1 instr d[31:0] =

dec il decode d

il inst el[31:0]
WAY1 S a ff{31:@i
]

1

b ff[31:0

|
1
|
|

FFFFFFDD

out[31:0 : -
waddri[4:0] = EE ' . =
Writeback wenl= : ..

wdl[31:0] = [CEEEED - IrrrrrroD pooeose7 |poo




RVfpga Lab 17: Four Independent A-L Instructions — Analysis — Dual-Issue

In each cycle, two instructions are decoded, one in each way, and two instructions
are sent to the Execute stages, one through the 10 pipe and the other through I1.
Way 0:
Signal dec 10 decode dis always 1 — being true for two of the four A-L instructions of our
example (th_e other two A-L instructions are decoded in Way 1).
The instruction in the Decode stage is propagated to the |0 Pipe (10 inst e1[31:017).
Way 1.
Signal dec il decode dis always 1 — being true for two of the four A-L instructions of our
example (the other two A-L instructions are decoded in Way 0).
The instruction in the Decode stage is propagated to the 11 Pipe (11 inst e1[31:01]).

Thus, the ALUs in both pipes (I0 and 1) are used (see signals aff, bff, and out
in both ways), and both Register File write ports are used (see signals waddr, wen
and wd in both ways).
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RVfpga Lab 17: Four Independent A-L Instructions — Diagram — Dual-Issue

Cyc 1 : Cyc 2 : Cyc 3 : Cyc4 : Cyc 5 : Cyc6 : Cyc 7
10 11 | 10 11 1 10 11 |1 10 11 | 10 11 | 10 11 | 10 11
| l l | | |
Decode | add || sub [ or xor || I | | |
___________ S P R [ S R
| l l | | |
EX1 I| add [| sub |I| or xor || | I I
___________ I D [N [ S R
| l l | | |
EX2 I il add || sub |1f or [| xor ]I I I
___________ N e R (S [ R
| l l | | [
EX3 I I Il add sub [I| or xor |I |
___________ R P eyl Rl RN R
| l l | | |
Commit I I I I| add || sub |I] or xor |I
___________ N D I b R R
| l l [ | [
Writeback l | l | I| add || sub [i| or || xor
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RVfpga Lab 17: Two mul Instructions Interleaved with Two A-L Instructions — Example — Dual-Issue

.globl Test Assembly

.text
Test Assembly: REPEAT :
# 1i t2, 0x400 # Disable Dual-Issue Execution add t0, tO0, 1
# csrrs tl, Ox7F9, t2 INSERT NOPS 10
INSERT NOPS 4
1i £3, 0x3 mul t3, t3, tl
1i t4, 0x4 add t4, t4, ti1
1i t5, 0x5 mul t5, t5, tl1
1i te, 0x6 sub t6, t6, tl
1i t0, 0x0 INSERT NOPS 10
lui tl, OxF4 INSERT NOPS 3
add t1, tl, 0x240 bne t0, tl, REPEAT # Repeat the loop

.end
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RVfpga Lab 17: Two mul Instructions Interleaved with Two A-L Instructions — Simulation — Dual-Issue

Signals Waves
Tine 49966 ps
=] L == E— == L] — c-l_k =
dec_ia___in;ﬁ'_ml ?] =
Decode dec i@ decode d=
10 inst el[31:0] =
a ff el[31:0]=

EX1 (Multiply
Pipe; b ff el[31:0] = L — —
out[31:0] = [N e
waddro[4:0] = (R ke :
Writeback weno= [N

T T dec il instr d[3170] =  [EDCENE o .
Decode dec i1 decode d=
il inst el[31:8] =

a ff[31:0] = [HlEE |FFFFFFCC_ 2000
EX1 (11 Pipe) b ff[31:0] = [EEEGEEE E00000

out[31:0]= [B

waddrl[4:0] =

Writeback wenl =l

wdl[31:0] =  EEEEEd POBOBBIF |FFFFFFCE | 00OBOBRE

006060 \FFFFFFCB




RVfpga Lab 17: Two mul Instructions Interleaved with Two A-L Instructions — Analysis — Dual-Issue

The instructions are received in both ways at decode time and are sent to the
execution stages in both ways.
Way 0:
Signal dec_10 decode dis always 1 —for two of the four instructions analysed in our
example (the other two instructions are decoded in Way 1).
The instruction in the Decode stage is sent to the Multiply pipe (10 inst e1[31:01])
Way 1.
Signal dec il decode dis always 1 — for two of the four instructions analysed in our
example (the other two instructions are decoded in Way 1).
The instruction in DECODE (dec i1 instr d[31:0])is propagated to the |1 Pipe
(11 inst el1[31:0])
Thus, the ALU from the |1 pipe and the Multiplier are used (see signals a ff el,
b ff el,and out andsignals a ff,b ff, and out), and both Register File
write ports are used (see signals waddr, wen, and wd in both ways).
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RVfpga Lab 17: Tasks and Exercises - Sample

TASK: Remove all the nop instructions within the body of the loop from Figure 2. Repeat the
simulation from Figure 3. What is the expected IPC for this program? Execute the program on the
board and verify that the IPC obtained is the one that you expected.

Exercise 2) Analyse the differences between the (dual-issue) SweRV EH1 processor and the
example superscalar processor proposed in Section 7.7.4 of the textbook by S. Harris and D.
Harris, “Digital Design and Computer Architecture: RISC-V Edition” [DDCARV] (shown in Figure 1
for convenience).

Exercise 3) Analyse the program from Figure 7.70 in Section 7.7.4 of DDCARYV, which is
provided in a PlatformlO project. Run the program on SweRV EH1, both in simulation and on the
board (for the latter remove the nop instructions). Explain the results. If necessary, reorder the
program trying to obtain the optimal IPC. Next, disable the dual-issue execution as explained in
this lab — and in SweRVref.docx (Section 2). Compare the simulation and the results obtained on
the board when compared to when the dual-issue feature is enabled.

Exercises 5, 6 and 7) These exercises are based on exercises from the books:
“Computer Organization and Design — RISC-V Edition”, by Patterson & Hennessy.
“Digital Design and Computer Architecture: RISC-V Edition”, by S. Harris and D. Harris.
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RVfpga Lab 18: Adding Instructions & Features

In this lab, you will apply the knowledge acquired in previous labs to
modify the SweRV EH1 processor to add the following new features:

Add A-L instructions: Add Arithmetic-Logic instructions from the new bit
manipulation extension available in the RISC-V architecture.

Add floating-point instructions: Add three floating point instructions: add,
multiply, and divide. Then use them to compute the bisection algorithm.

Add counter: Add a new hardware counter that counts the number of I-Type
instructions executed.
In some of these exercises we guide you through the process of
modifying the core, and in others you will figure out on your own what
needs to be done.
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RVfpga Lab 19: Introduction

This lab describes and explores the memory system of the RVfpga
System. RVfpga’s Memory System has the following elements:
External DDR Main Memory

Cache for instructions (19)

Two Scratchpad memories (also called closely-coupled memories), one for data
(DCCM) and one for instructions (ICCM). The ICCM is disabled in the default

system.
In this lab, we first describe how data are read from and written to the
DDR External Memory, and then we delve into the operation and
management of the 1$ available in the RVfpga System.
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RVfpga Lab 19: Data read and write to Memory — Example

.data
D: .space 40000

REPEAT:

.text

1w t3, (t4)
Test Assembly: add t3, t3, t5
1i t2, 0x000 sw t3, (t4)
csrrs tl, Ox7F9, t2 add t4, t4, 4
la t4, D bne t4, t6, REPEAT
11 t5, 50
11 t0, 40000
la t6, D

add teo, to, tO
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RVfpga Lab 19: Data read and write to Memory — Simulation

The example illustrates a program that includes a load instruction
followed by a store instruction

s
su_axi_araddr[31:0] =
lsu axi rvalid=i

lsu axi rdata[63:e]=
3=

lsu axi awvalid=
lsu_axi_awaddr[31:8] =
lsu axi wvalid=

lsu axi wdata[63:0] = [E
lsu axi bvalid=

lsu_axi bresp[l:0]= |

Cycle i — j+8: The processor reads data from the DDR External Memory (yellow
square) into t 3, through the bus.

Cycle i+16 — i+21: The processor writes the value of £ 3 to the DDR External
Memory (red square), through the bus.



RVfpga Lab 19: IS Configuration and Operation

ic_rw_addr [31:2] (Fetch Address)

20 bits 6 bits 4 bits 2 bits
TAG SET OFF.SET
‘ WAY 0 WAY 1 WAY 2 WAY 3
adr_ff 20 bits 64 Bytes 20 bits 64 Bytes 20 bits 64 Bytes 20 bits 64 Bytes
(Register) 1 + Parity + Parity 1 + Parity + Parity 1 + Parity + Parity 1 + Parity + Parity
SET 0

ic_rw_addr| ff [31:12] > SET 1

ic_tag_valid [3:0]

1

SET 62
SET 63
TagWay0
TagWay2
TagWay3
Tt i e [T T A | 1 DataWay0 DataWay1 DataWay2 |DataWay3
— T T T T i 4-1 Multiplexer

ic_rd_data[135:0] (ic_rd_data_only[127:0] + Parity)

ic_rd_hit [3:0]




RVfpga Lab 19: IS Miss and Hit Management — Example

Test Assembly: REPEAT:
INSERT NOPS_ 3 add t6, te, =1
INSERT NOPS 8
- - add t0, t0, tO
INSERT NOPS 8
. — = add t1, t1, tl
1i te6, 0x10000 add t2, t2, t2
add t3, t3, t3
add t4, t4, t4
add t5, t5, t5 INSERT NOPS 8
add t6, t6, t6 INSERT NOPS 8
s ity g il INSERT NOPS 8
add t0, t0, tO - -
INSERT NOPS 8
add t2, t2, t2 — -
add t1, t1, t1 INSERT NOPS 8
add t3, t3, t3 INSERT NOPS 8
add t4, t4, t4 bne t6, zero, REPEAT
add t6, t6, t6
add t5, t5, t5
add a7, a7, a7
® RVfpgav2.2 © 2022 <243>
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RVfpga Lab 19: IS Miss Management - Simulation

ife fetch addr f1 ext[31:8]=
ic act hit f2=

ic_act miss f2=

ifu axi arvalid=

ifu axi araddr[3l:8]=

clk

ifc fetch addr fl ext[31:0]
ic act hit f2

ic act miss f2

ifu axi arvalid

ifu axi araddr[31:0]

ifu axi rvalid

ifu axi rdata[63:0]

ic wr _en[3:0)

ifu wr data new[63:8] } ; i | C B1i B ¢ ABIEEA i J CA11ABLEBADCABIE

ifu byp data first half[63:0] : 1 [ ; [
ifu byp data second half[63:0]
ic premux data[127:0]

ifu fetch data[127:8]
qe[127:0]

ql[127:8]

q2[127:8]

ifu i@ instr[31:8]

ifu i1 instr[31:8]
dec_ie_instr d[31:@]

dec 11 instr d[31:0]

ifu axi rvalid=i

ifu axi rdata[63:8] =

ic wr_en[3:08]=

ifu wr data new[63:8]=

ifu byp data first half[63:8]=
ifu_byp data second half[63:0]=




RVfpga Lab 19: IS Miss Management - Analysis

The simulation shows the fetch of the 16 add instructions the first time they are
executed. Given that these instructions are not in the I$ yet, a miss is triggered in
the I$ and the instructions must be copied from the DDR External Memory into the

1$.

An 1$ miss is signalled at around 29ns (ic act miss £2 = 1), which triggers the request of
the block through the AXl bus (ifu axi arvalid=1).

The eight 64-bit chunks that make up the target block are requested sequentially through the
AXI bus.

Signal 1fu axi arvalid goes high for 27 cycles. This signal indicates that the channel is
signalling valid read address and control information.

During these 27 cycles where i fu axi arvalid = 1 the initial addresses of the eight 64-
bit chunks are provided sequentlally through the AXI bus using signal ifu axi araddr,
which provides the 8 addresses that must be read from the DDR Memory.
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RVfpga Lab 19: IS Miss Management - Analysis

The middle figure shows the eight 64-bit chunks arriving sequentially to the
processor through the AXI| bus in signal ifu axi rdata.
Signal ifu axi rvalid, which indicates that the channel is signalling the
required read data, goes high for one cycle every 7 cycles.

Each of the eight 64-bit chunks (each containing two instructions) is
provided in signal ifu axi rdata.

The two bottom figures show that each of the eight 64-bit chunks is written into
the 1% right after their arrival to the cache controller.

Finally, you can see that the four instructions are bypassed from the 1$
controller to the pipeline so that it can restart execution as soon as possible
after the 1$ miss. Several cycles later, the four instructions arrive at the Decode
Stage.
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RVfpga Lab 19: IS Hit Management - Simulation

34768 ps

clk

ifc fetch addr f1 ext[31:8]
ic_rw addr[31:2]

ic rw addr ff[31:4]
TagWay®[19:0]
TagWayl[19:0]
TagWay2[19:0]
TagWay3[19:0]

ic tag valid[3:0]

ic rd hit[3:8]

ic act hit f2

ic_act miss T2
Dataway®[127:8]
DataWayl[127:8]
DataWay2[127:8]
DataWay3[127:08]

ic rd data only[127:8]
ic data f2[127:0]

ifu fetch data[127:8]
q0[127:0]

ql[127:0]

q2[127:0]

ifu i® instr[31:8]
ifu i1 instr[31:8]
dec i@ instr d[31:8]
dec i1 instr d[31:@]




RVfpga Lab 19: IS Hit Management - Analysis

In the previous simulation you can see a hit in the 1$.

Cycle i: The address of the first add instruction (add t0, t0, t0) is given in signal

ifc fetch addr f1 ext. This signal is passed to the 1$ except for its two least significant bits, which
are not needed because instructions are 4-byte (32-bit) aligned. Thus, ic _rw addr = 0x0000070. The
Tag and Data Arrays use a subset of the Fetch Address.

Cycle i+1: The four tags, one per cache way, are in signals TagWay0-TagWay3. These are compared to
the TAG field of the Fetch Address. In this case, all tags are the same as the TAG field, however only one
way (Way 0) is valid (1c_tag wvalid =0001), thus a hitis signalled in Way 0: ic _rd hit =0001. Also,
four 128-bit bundles are in signals DataWay0-DataWay3:ic rd data only=
0x01ce0e33007383b300630333005282b3

Cycle i+2: The first and second add instructions are extracted in the Align stage from buffer g1:

ifu i0 instr =0x005282b3 and ifu il instr =0x00630333

Cycle i+3: The third and fourth add instructions are extracted in the Align stage and, at the same time, the
first and second add instructions are decoded: ifu 10 instr =0x007383b3, ifu il instr =
0x01ce0e33, dec i0 instr d=0x005282b3 and dec i1 instr d=0x00630333

Cycle i+4: Finally, the third and fourth add instructions are decoded: dec i0 instr d=0x007383b3
and dec i1 instr d=0x01ce0e33
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RVfpga Lab 19: IS Replacement Policy

Most associative caches have a least recently used (LRU) replacement policy.
However, tracking the least recently used way becomes complicated, thus
approximate LRU policies (usually called Pseudo LRU) are often used and are good
enough in practice.

SweRV EH1 uses an approximate policy called Binary Tree Pseudo LRU.

It requires N-1 bits per set (which we call LRU State) in an N-way associative cache. This
translates into 3 bits per set in SweRV EH1’s 13.

Block Replacement LRU State Updating

LRU State | Way to replace Written Way Next LRU state
Way 0 Way 0 -11
Way 1 Way 1 01

DT way?2 Way 2 1-0
 1xl

Way 3 ZE 0-0

P4 RISC ® W20 e O] imagination



RVfpga Lab 19: IS Replacement Policy — Example

The example below accesses five different |$ blocks inside an infinite loop. All five
blocks map to the same 1$ set: SET = 8.

The infinite loop contains five j (jump) instructions, where each pair of j instructions
is separated by 1023 nops. The 7 instruction plus the nops occupy 4 KiB, which is
equal to the size of each Way in the 1$.

Set8 Blockl: j Set8 Block2 # This j instruction is at address 0x00000200
INSERT NOPS 1023

Set8 Block2: j Set8 Block3 # This j instruction is at address 0x00001200
INSERT NOPS 1023

Set8 Block3: j Set8 Block4 # This j instruction is at address 0x00002200
INSERT NOPS 1023

Set8 Block4: j Set8 Block5 # This j instruction is at address 0x00003200
INSERT NOPS 1023

Set8 Blockb5: j Set8 Blockl # This j instruction is at address 0x00004200
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SET 8 after execution of the first j instruction at 0x200

<
-3
5

Tag Data
1 00000000000000000000

SET 8 after execution of the second j instruction at 0x1200

1 00000000000000000000

1 00000000000000000001

— Evolution of SET 8 of the IS

> SET 8 after execution of the third j instruction at 0x2200
2
3 1 00000000000000000000
o 1 00000000000000000001
)
c 1 00000000000000000010
QEJ
3
© SET 8 after execution of the fourth j instruction at 0x3200
Q.
Q 1 00000000000000000000
o 1 00000000000000000001
>
- 1 00000000000000000010
L
g} 1 00000000000000000011
Ko
S SET 8 after execution of the fifth j instruction at 0x4200
(L)
b 1 00000000000000000100
& 1 00000000000000000001
E 1 00000000000000000010
1 00000000000000000011

WAY 0
WAY 1
WAY 2
WAY 3

WAY 0
WAY 1
WAY 2
WAY 3

WAY 0
WAY 1
WAY 2
WAY 3

WAY 0
WAY 1
WAY 2
WAY 3

WAY 0
WAY 1
WAY 2
WAY 3

LRU STATE = 011

LRU STATE = 001

LRU STATE =100

LRU STATE = 000

LRU STATE =011



RVfpga Lab 19: IS Replacement Policy — 15t Jump

Signals
Time

clk
ifu axi arvalid
ifu axi araddr[31:0]
way_status mb_ff[2:0]
tagv mb ff[3:0]
replace way mb any[3:0]
ic wr en[3:0]
ic rw addr q[11:4]
ic wr datal[31:0]
ic wr data2[31:0]
ic tag wr data[20:0]
way status new([2:0]

The first jump’s address (0x200) maps to Set 8 of the 1$. That set is initially empty, thus, the new
block must be written in Way 0: replace way mb any=1ic wr en =0001. The LRU state of

Set 8 is updated as follows: way status new = 011.

The I$ block is read from the DDR Memory and written into the I$ in 64-bit chunks. The figure
illustrates the write of the tag and the two first instructions of the new block into SET 8:

ic rw addr g[11:4] =00100000 (SET 8)

ic tag wr data[19:0] =0x0

ic wr datal[31:0] =0x0000106F (7 Set8 Block2)

ic wr data2[31:0] =0x00000013 (nop)



RVfpga Lab 19: IS Replacement Policy — 2" Jump

Signals
Time
clk=
ifu axi arvalid=

way status mb ff[2:0]= [N

tagv mb ff[3:0]= [

replace way mb any[3:0] =

ic wr en[3:0] =

ic rw addr g[11:4] =

ic wr datal[31:0]=l

ic wr data2[31:8]= [d3BEIHIS
ic_tag wr data[2e0:0]= &I

way status new[2:8]=

The second jump’s address (0x1200) also maps to Set 8 of the 1$. Only way 0 is valid in that set:
tagv _mb ff =0001. Thus, the new block must be written in Way 1: replace way mb any =
ic_wr en =0010. The LRU state of Set 8 is updated as follows: way status new = 001.

The I$ block is read from the DDR Memory and written into the I$ in 64-bit chunks. The figure
illustrates the write of the tag and the two first instructions of the new block into SET 8:

ic rw addr g[11:4] =00100000 (SET 8)

ic tag wr data[l19:0] =0x1

ic wr datal[31:0] =0x0000106F (7 Set8 Block3)

ic wr data2[31:0] =0x00000013 (nop)



RVfpga Lab 19: IS Replacement Policy — 5" Jump

Signals
Time

clk=
ifu axi arvalid=
ARITREVS Tl [ B RICY RN 00004210 (00004200 (66064208 [00004210 00684218 |00684220 06004228
way status mb ff[2:0]= | |
tagv mb ff[3:0]=
replace way mb_any[3:0] =
ic wr en[3:0]=
ic rw addr g[11:4]=
1=
]=
1=
]=

()

N 6:0CA51E
CA11ABl E

ic wr datal[31:8
ic wr data2[31:0
ic tag wr data[20:©
way status new[2:0

|
| Bea

The fifth jump’s address (0x4200) also maps to Set 8 of the 1$. However, in this case the set is full:
tagv_mb ff =1111. Thus, the new block must be written to Way 1: replace way mb any =

ic wr en =0001. The LRU state of Set 8 is updated as follows: way status new =011.

The I$ block is read from the DDR Memory and written into the I$ in 64-bit chunks. The figure
illustrates the write of the tag and the two first instructions of the new block into SET 8:

ic rw addr g[11:4] =00100000 (SET 8)

ic tag wr data[l19:0] =0x4

ic wr datal[31:0] =0x800fc06f(; Set8 Blockl)

ic wr data2[31:0] =0x00008067 (ret)



RVfpga Lab 19: Tasks and Exercises — Sample

TASK: Using the HW Counters, measure the number of cycles, instructions, loads and
stores in the program from Figure 2. How much time in total (both for reading and
writing) does it take to access the DDR External Memory?

TASK: Use the example from

[RVfpgaPath]/RVfpga/Labs/Lab19/LW Instruction ExtMem to estimate the DDR
External Memory read latency using the HW Counters.

TASK: A quite complex but very interesting exercise is to analyse the Memory Controller
used in the RVfpga System. Remember that you can find the modules that make up this
controller in folder [RVfpgaPath]/RVfpga/src/LiteDRAM, and that the top module is
implemented in file litedram_top.v inside that folder. You can start with the simulation
from Figure 3 and add and analyse some signals from the LiteDRAM controller.

Exercise 4) Analyse in simulation and on the board other I$ configurations, such as an
I$ with a different block size. Recall that the number of ways cannot be modified.

Exercise 5) Analyse the logic that checks the correctness of the parity information from
the Data Array and from the Tag Array.
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RVfpga Lab 20: ICCM, DDCM & Benchmarking

Scratchpad memories:

Instruction Closely-Coupled Memory (ICCM)
Data Closely-Coupled Memory (DCCM)
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RVfpga Lab 20: Address Space (Instructions)

o4 RIS C

0x00000006 ~
1 cycle Instruction = 22 cycles
Cache >
(onchip)
AN
N
\\
\\
N
N
\\
O0x07FFFFFF
0xEE000000
1 cycle
OxEEO7FFFF
® RVfpgav2.2 © 2022 <258>
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Memory
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RVfpga Lab 20: Address Space (Data)

0x00000000

= 22 cycles

External memory (~22 cycles):
0x00000000 - OxO7FFFFFF

On-chip memory (DCCM, ~1 cycle): ' N
0xF0040000 - OxFOO4FFFF

0xF0040000

1 cycle

0XFOO04FFFF
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RVfpga Lab 20: ICCM Configuration and Operation

From the DC1 stage adders From the Store Buffer
Isu_addr_dc1 [31:0] end_addr_dc1 [31:0] stbuf_addr_any [15:0] { stbuf_ecc_any [6:0] , stbuf data_any [31:0] }
dcem_rd_addr_lo [15:0] dcem _rd _addr_hi [15:0] dcem_wr_addr [15:0] dcecm_wr_data [38:0]
11 bits 3 bits 2 bits 11 bits 3 bits 2 bits 11bits 3 bits 2 bils 7 bits 32 bits
Addr | Bank |off| [ Addr [ Bank [ot] [ Addr  [Bank [ofr] [ Parity | Data |
] |
deem_rd_addr_lo [4:2] dcem_rd_addr_hi [4:2] decm. wr. addr [4:2)
¥ L4 ¥ 1' I r
Address Enable Bank for Enable Bank for
computation reading writing
. wren_bank [7:0
rden_bank [7:0] B [7:0] S
rden_bank[0] l | l l l l

:_ BANK 0 BANK 1 BANK & BANK 7 :
| 39 bits 39 bits 39 bits 39 bits |

addr_bank[7:0][10:0] I 0 [

-1 [ 1 -

I | deem_wr_data [38:0]
| ] L} - L ] |
| : : amwm : : |
| |
| |
| |
| |

S Py ——

dcem _rd data lo [38:0] dcem_rd_data hi [38:0]

|

dccm_data lo dc2 [31:0] dccm _data hi_dc2 [31:0]



RVfpga Lab 20: Accessing the ICCM — Example

//
la
1i
1i
la

11

Access array
td4, D

t5, 50

t0, 1000

te, D

add te6, te6, tO

t5, 1

REPEAT Access:
lw t3, (t4)
add t3, t3, t5
sw t3, (t4)
add t4, t4, 4
INSERT NOPS 10
INSERT NOPS 10

bne t4, t6, REPEAT Access

o4 RIS C
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RVfpga Lab 20: Accessing the ICCM — Example

Signals
Time
clk

dec i pc d ext[31:08] : B BBBOG1CA (8 & 36 BEOGE1ES B E8 BOBE1FE
dec i® instr d[31:0] 3
dec il instr d[31:0]
dccm rden
rden_bank[7:8]

lsu addr dcl[31:8]

end addr dc1[15:8]
dcem rd addr lo[15:0]
dcem rd addr hi[15:8]
dcem rd data lo[38:0]
dcem rd data hi[38:0]
dcem data lo dc2[31:0)
dccm data hi dc2[31:8]
dccm wren

wren _bank[7:8]

dcem wr addr[15:0]
dccm wr data[38:8]




RVfpga Lab 20: Accessing the ICCM — Example

Cycle i: The 1w instruction is decoded in Way 1: dec il instr d = 0x000eae03.

Cycle i+1: The address is generated in the DC1 stage and provided to the DCCM.
As a result of the address check, reading the DCCM is enabled: dccm rden = 1.

This signal is provided to the DCCM and, along with the 3-bit Bank field of the
address, determines the bank that must be read.

Cycle i+2: The read data is obtained from the DCCM and provided to the core.

Cycle i+8: After adding 1 (the immediate) to the read value (0x00000009 + 1 =
0x0000000A) and traversing the Store Buffer, as explained in Lab 13, the data and
address are provided to the DCCM, and writing of the correct bank is enabled.
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RVfpga Lab 20: Benchmarking

Benchmarks:
Run set of programs on processor
Compare processors

Two common benchmarks:
CoreMark
Dhrystone

Benchmarks use hardware counters (HW Counters) to measure
events (such as number of instructions, number of cycles).
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RISC-V Hardware Counters

Special-purpose registers to record performance and other metrics

(shown below).

Reserved

CSR read/write

Cycles SB/\WB stalled

Cycles clock active

CSR write rd==0

Cycles DMA DCCM transaction stalled

I-Cache hits

Ebreak

Cycles DMA ICCM transaction stalled

I-Cache misses

Ecall

Exceptions taken

Instrs commmited

Fence

Timer interrupts taken

Instrs commited 16-b

Fence.i

Exteranal interrupts taken

Instrs commited 32-b

Mret

TLU flushes

Instrs aligned

Branches commited

Branch error flushes

Instrs decoded

Branches mispredicted

I-bus transactions — instr

0
1
2
3
4
5
6
7
8
9

Muls commited

Branches taken

D-bus transactions — |d/st

Divs commited

Unpredictable branches

D-bus transactions misaligned

Loads commited

Cycles fetch stalled

I-bus errors

Stores commited

Cycles aligner stalled

D-bus errors

Misaligned loads

Cycles decode stalled

Cycles stalled due to I-bus busy

Misaligned stores

Cycles postsync stalled

Cycles stalled due to D-bus busy

Alus commited

Cycles presync stalled

Cycles interrutps disabled

CSR read

Cycles frozen

Cycles interrupts stalled while disabled

Table 7-2 in SweRV EH1 Programmer’s Reference Manual: https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf
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How to Use and Initialize Hardware Counters

Include Western Digital’s PSP (Platform Support Package):
#include <psp api.h>

Enable counters:
pspEnableAllPerformanceMonitor (1) ;

Set counters to measure various metrics:
pspPerformanceCounterSet (D PSP COUNTERO, E CYCLES CLOCKS ACTIVE);
pspPerformanceCounterSet (D PSP COUNTER1, E INSTR COMMITTED ALL);

Read metrics:
cyc end = pspPerformanceCounterGet (D PSP COUNTERO) ;
instr end = pspPerformanceCounterGet (D PSP COUNTERI) ;

Print metrics:
printfNexys ("Cycles = $d", cyc end - cyc beq);

printfNexys ("Instructions = %d", instr end - 1nstr begqg);
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Example Program with Hardware Counters

// Also include board support package (bsp) header files) - see Lab 20 files
#include <psp api.h>
int main (void) {

int cyc beg, cyc end, instr beg, instr end;

vartInit () ;
pspEnableAllPerformanceMonitor (1) ; // enable counters

pspPerformanceCounterSet (D PSP COUNTERO, E CYCLES CLOCKS ACTIVE); // assign
pspPerformanceCounterSet (D PSP COUNTER1, E INSTR COMMITTED ALL); // counters

cyc beg = pspPerformanceCounterGet (D PSP COUNTERO) ; // read counters
instr beg = pspPerformanceCounterGet (D PSP COUNTERI) ;

Test Assembly();

cyc _end = pspPerformanceCounterGet (D PSP COUNTERO) ; // read counters
instr end = pspPerformanceCounterGet (D PSP COUNTERI) ;

printfNexys ("Cycles = %d", cyc end-cyc beg); // print values
printfNexys ("Instructions = $d", instr end-instr begq);

}
b4 RIS C ® piewz2 0202 2 Q] Imagination



RVfpga Lab 20: Metrics

CoreMark Metrics
CoreMark runs multiple iterations of a loop.

CoreMark Score (CM): The number of iterations it completes per second (i.e., the
iterations/second).

CM/MHz: CM divided by the clock frequency in MHz (also called Iterat/Sec/MHz or
iterations/second/MHz).

Recall, ideal IPC (instructions per cycle) is 2 for SweRV EH1 because it
IS 2-way superscalar.
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RVfpga Lab 20: CoreMark Performance

Compiler = debug Compiler = debug Compiler = optimized

Transactions

External Memory DCCM DCCM
CM/MHz 0.47 1.88 3.47
# Instructions ~0.5 million ~0.5 million 0.309 million
# Cycles ~2 million ~0.5 million 0.288 million
IPC (instructions/cycle) 0.25 ~1 ~1
Data Bus ~133,000 0 0

(all go to external (due to DCCM) (due to DCCM)
memory)

Instruction Bus
Transactions

392 392 392
(due to IS) (due to IS) (due to IS)

o4 RIS C
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RVfpga Lab 20: Tasks and Exercises — Sample

TASK: Using the instructions provided in Lab 1, implement a new RVfpga System that includes a
64 KiB ICCM.

TASK: Simulate an unaligned read to the DCCM and analyse how it is handled inside the DCCM.
TASK: Simulate a DCCM bank conflict by modifying the program from Figure 4.

TASK: Modify file platformio.ini to use both the DCCM for storing most data and the ICCM for
storing the instructions. Execute the CoreMark benchmark and compare the results with the ones
obtained in this section.

TASK: Modify the compilation optimization to -O3 and explain the results.

Exercise 1) Do the same analysis as was done for CoreMark but this time using the Dhrystone
benchmark.

Exercise 2) Do the same analysis as was done for CoreMark but this time for the
ImageProcessing application from Lab 4.

Exercise 3) Enable/disable various core features. Compare the performance results. Run all
three programs (CoreMark, Dhrystone, and ImageProcessing) on these modified RVfpga
Systems on the Nexys A7 board.
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