

Imagination University Programme – RVfpga Lab 16
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

TASKS

TASK: Examine the processor elements included in Figure 1 in the Verilog code and
explain how they work.
- The elements shown in the Decode stage (Register File, Instruction Register and

Control Unit) can be found in modules dec, dec_decode_ctl and dec_gpr_ctl.
- The elements shown in the EX1 stage can be found in modules exu and exu_alu_ctl.
- The elements shown in the FC1 stage can be found in modules ifu and ifu_ifc_ctl.

FC1 Stage:

- 2:1 Multiplexer: Module ifu_ifc_ctl

- 5:1 Multiplexer: Module ifu_ifc_ctl

- Adder for sequential address: Module ifu_ifc_ctl

EX1 Stage:

- Comparator: Module exu_alu_ctl

It compares the two operands:

- If they are equal: eq=1.

- If they are different: eq=0.

- Adder for the branch target address: Module exu_alu_ctl

 It computes the addition of the PC and the offset.

- LOGIC: Module exu_alu_ctl

Imagination University Programme – RVfpga Lab 16
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

actual_taken contains the resolution of the branch direction: 1 if the branch must

be taken and 0 if it must be not-taken. For example:

o If the instruction is a beq (ap.beq==1) and the two operands are equal

(eq==1)  actual_taken = 1

o If the instruction is a bne (ap.bne==1) and the two operands are different

(ne==1)  actual_taken = 1

o If the instruction is a jal (any_jal==1) the branch must be taken 

actual_taken = 1

The branch has been mispredicted (cond_mispredict=1) if it was predicted taken

(ap.predict_t = 1) and it must be not-taken (actual_taken = 0), or if it was

predicted not-taken (ap.predict_nt = 1) and it must be taken (actual_taken =

1)

The pipeline must be flushed if it was mispredicted (cond_mispredict=1), the

instruction is valid (valid_ff=1), and the pipeline is not being flushed or frozen.

TASK: Explain how signal flush_upper is generated in module exu_alu_ctl from signal

eq, control signals ap.beq, ap.predict_t and ap.predict_nt, and some other

signals.

- LOGIC: Module exu_alu_ctl

actual_taken contains the resolution of the branch direction: 1 if the branch must

be taken and 0 if it must be not-taken. For example:

o If the instruction is a beq and the two operands are equal  actual_taken =

1

o If the instruction is a bne and the two operands are different  actual_taken

= 1

o If the instruction is a jal the branch must always be taken  actual_taken =

1

Imagination University Programme – RVfpga Lab 16
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

The branch has been mispredicted (cond_mispredict=1) if it was predicted taken

(ap.predict_t = 1) and it is not actually taken (actual_taken = 0), or if it was

predicted not taken (ap.predict_nt = 1) and it is actually taken (actual_taken =

0)

The pipeline must be flushed if it was mispredicted (cond_mispredict=1), the

instruction is valid (valid_ff=1), and the pipeline is not being flushed or frozen.

TASK: Analyse in the Verilog code the effect of signals exu_flush_final,

exu_flush_upper_e2, exu_i0_flush_final and exu_i1_flush_final in EX1 and

in the stages preceding it: FC1, FC2, Align, and Decode. For this analysis, it can be useful
to use the simulations from Section 2.B, where you can include the signals that you need.

Solution not provided.

TASK: Modify Figure 1 to include the values of each signal shown in Figure 3 in cycles i,
i+1, and i+2.

==

DECODE

In
s
tr

u
c
ti

o
n

 R
e
g

is
te

r

(d
e
c
_
i
0
_
i
n
s
t
r
_
d

)

raddr0

raddr1

CONTROL

UNIT

a

b

eq

EX1

REGISTER

FILE

rd0

rd1

ap.beq

flush_upper

FC1

ifu_mem_ctl

pc_ff [31:1]

brimm_ff [12:1]

LOGIC

flush_path [31:1]

exu_flush_path_final [31:1]

ibradder

+

FC2 ALN

ifc_fetch_addr_f1 [31:1] (PC)
1

0
ifc_fetch_addr_f1_raw [31:1]

LOGIC

LOGIC

+
16

fe
tc

h
_

a
d

d
r_

b
f

[3
1

:1
]

(N
e

x
t

P
C

)

5-1 Mux

exu_flush_final

2-1 Mux
aff

a_ff

bff
b_ff

pcff
pc [31:1]

MUX

MUX

fetch_addr_next [31:1]

ifu_bp_btb_target_f2 [31:1]

miss_addr [31:1]

exu_flush_path_final [31:1]

faddrf1
_ff

i0_ap

0x07DE0063 0x81084

0xFFFF

0xC4

0xFFFF

0

Cycle i Cycle i+1Cycle i+2

0xC4

0

0

0x000001F0

0x000001F0

1

TASK: Modify the program from Figure 2 to make the first branch instruction retrieve its
input operands through forwarding.

Solution not provided.

TASK: Modify Figure 1 to include the values of each signal shown in Figure 4 in cycles i,
i+1, and i+2.

Imagination University Programme – RVfpga Lab 16
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

==

DECODE

In
s

tr
u

c
ti

o
n

 R
e

g
is

te
r

(d
e
c
_
i
0
_
i
n
s
t
r
_
d

)

raddr0

raddr1

CONTROL

UNIT

a

b

eq

EX1

REGISTER

FILE

rd0

rd1

ap.beq

flush_upper

FC1

ifu_mem_ctl

pc_ff [31:1]

brimm_ff [12:1]

LOGIC

flush_path [31:1]

exu_flush_path_final [31:1]

ibradder

+

FC2 ALN

ifc_fetch_addr_f1 [31:1] (PC)
1

0
ifc_fetch_addr_f1_raw [31:1]

LOGIC

LOGIC

+
16

fe
tc

h
_

a
d

d
r_

b
f

[3
1

:1
]
(N

e
x
t

P
C

)

5-1 Mux

exu_flush_final

2-1 Mux
aff

a_ff

bff
b_ff

pcff
pc [31:1]

MUX

MUX

fetch_addr_next [31:1]

ifu_bp_btb_target_f2 [31:1]

miss_addr [31:1]

exu_flush_path_final [31:1]

faddrf1
_ff

i0_ap

0xFBCE00E3 0x81084

0xFFFF

0xFFFF

0xFFFF

1

Cycle i Cycle i+1Cycle i+2

0xFFFF

1

1

0x00000188

0x00000188

1

0x000001E8

0x1FA0

0x00000188

TASK: Analyse the operation of the two multiplexers from FC1 with the example from
Figure 2, examining the signals under different circumstances.

For example, analyse how fetch is accomplished for sequential execution (i.e. a group of
instructions with no branches). You will see that, in the SweRV EH1 processor, the
operation in this case is as follows:

 - In the even cycles, the fetch_addr_next is selected using the 5:1 multiplexer, which

contains the current Fetch Address (ifc_fetch_addr_f1) plus 16, thus reading the next

sequential 128-bit bundle of instructions (remember that an I$ read provides 128 bits).

 - In the odd cycles, the ifc_fetch_addr_f1 is selected using the 5:1 multiplexer, thus

no new instructions are fetched.
This way, four 32-bit instructions are fetched every 2 cycles, which is the same rate of
instructions needed by the Decode stage (2 instructions per cycle).
Note that in the processors from DDCARV the PC is simply incremented by four in every
cycle (for sequential execution) to fetch one instruction per cycle.

Also modify the program from Figure 2 to create new scenarios. For example, you can add
some A-L instructions after the taken branch and see how they are flushed after the
redirection.

SEQUENTIAL EXECUTION:

Using the following sources:

- Program from: [RVfpgaPath]/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory

- Tcl Script from:
[RVfpgaPath]/RVfpga/Labs/RVfpgaLabsSolutions/Programs_Solutions/Lab16/test_Seq
uentialExecution.tcl

We can obtain the following simulation in Verilator:

Imagination University Programme – RVfpga Lab 16
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

268: 000eae03 lw t3,0(t4)
26c: ffff0f13 addi t5,t5,-1
270: 00108093 addi ra,ra,1
274: 001f8f93 addi t6,t6,1
278: 00118193 addi gp,gp,1
27c: 00120213 addi tp,tp,1
280: 00128293 addi t0,t0,1
284: 00130313 addi t1,t1,1
288: 00138393 addi t2,t2,1
28c: 00140413 addi s0,s0,1

We can see that every two cycles a new 128-bit bundle is fetched.

TASK: In Lab 15, we analysed how RAW data hazards are resolved in the Commit stage
by means of the Secondary ALUs. Similar to the A-L instructions that we studied in that lab,
a conditional branch instruction can have a RAW data hazard with a previous multi-cycle
operation that must be resolved at commit time. If the branch is determined to have been
mispredicted, the pipeline must be flushed and redirected from the Commit stage. Analyse
this situation using a slightly modified version of the program from Figure 2, provided at
[RVfpgaPath]/RVfpga/Labs/Lab16/BEQ_Instruction_HazardCommit, and the .tcl file
provided in that same folder.

Code generated:

Imagination University Programme – RVfpga Lab 16
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

Verilator Simulation:

The beq instruction (0xf85e0ce3) is decoded, goes through EX1 (where it executes on the

wrong operands), goes through EX2 and EX3, and then it goes through Commit where it

executes again on the correct operands, triggering a flush and redirection (flush_upper =

exu_flush_final = 1).

TASK: In the example from Figure 2, remove all the nop instructions and analyse the

simulation. Then compute the IPC with the Performance Counters by executing the
program on the board.

Enable the branch predictor used in SweRV EH1 (by commenting out the two initial
instructions in Figure 2) and analyse the simulation and the execution on the board.

Compare the two experiments and explain the results.

Naïve Branch Predictor:

Imagination University Programme – RVfpga Lab 16
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

IPC = 262 / 393 = 0.67

Gshare Branch Predictor:

Imagination University Programme – RVfpga Lab 16
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

IPC = 262 / 131 = 2

The IPC is ideal when using the Gshare BP but it is far from ideal when using the Naïve BP
due to the flush and redirect caused by the second branch instruction.

TASK: Analyse all these hashing modules and try to get an idea of how they work and how
they are used in the Gshare BP structures.

Solution not provided.

TASK: Analyse how the access to these two structures is performed.

Solution not provided.

TASK: Analyse how select signal of the 5:1 multiplexer is computed.

Solution not provided.

TASK: Analyse how the predicted target address (ifu_bp_btb_target_f2) is obtained

from the value read in the BTB (btb_rd_tgt_f2[11:0]) and the Fetch Address at FC2

(ifc_fetch_addr_f2[31:4]).

Module ifu_bp_ctl:

Imagination University Programme – RVfpga Lab 16
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 9

TASK: Analyse the RAS implemented in the SweRV EH1 processor. An internet search will
also give additional information about the operation of this structure (for example
http://www-classes.usc.edu/engr/ee-
s/457/EE457_Classnotes/ee457_Branch_Prediction/EE560_05_Ras_Just_FYI.pdf).

Solution not provided.

TASK: Analyse how the Global History Register is updated.

Solution not provided.

EXERCISES

1) Implement a Bimodal Branch Predictor and compare its performance with respect to
the Gshare BP.

Solution not provided.

2) (The following exercise is based on exercise 4.25 from the book “Computer
Organization and Design – RISC-V Edition”, by Patterson & Hennessy ([HePa]).)
 Consider the following loop:
 LOOP: lw x10, 0(x13)

 lw x11, 4(x13)

 add x12, x10, x11

 add x13, x13, -8

 bnez x12, LOOP

Assume that perfect branch prediction is used (in the case of SweRV EH1, we can
emulate this behaviour by simply avoiding the first iteration), that the pipeline has full
forwarding support (again, this is the case in SweRV EH1), and that branches are
resolved in the EX1 stage.

a. Show a simulation for the second and third iterations of this loop. Explain the
behaviour obtained. You can use the program provided at
[RVfpgaPath]/RVfpga/Labs/Lab16/HePa_Exercise-4-25.

http://www-classes.usc.edu/engr/ee-s/457/EE457_Classnotes/ee457_Branch_Prediction/EE560_05_Ras_Just_FYI.pdf
http://www-classes.usc.edu/engr/ee-s/457/EE457_Classnotes/ee457_Branch_Prediction/EE560_05_Ras_Just_FYI.pdf

Imagination University Programme – RVfpga Lab 16
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

