

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 13

Memory Instructions: lw and sw

Instructions

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

In the previous labs we introduced the basic concepts of pipelining and its use in the SweRV
EH1 processor, and we analysed how Arithmetic-Logic instructions are executed in this
processor. In this lab, we continue with the analysis of basic instructions; specifically, we
analyse memory reads and writes.

The memory system is one of the most critical performance bottlenecks in modern
computers. Memory latencies are usually much higher than the core clock cycle, so the
processor may have to stall while waiting for data from memory.

In this lab, we first examine the Load/Store pipe (the set of pipeline stages devoted to
execute load/store operations) when reading a low-latency memory location – that is, one
that does not stall the processor. We then examine store instruction execution. Finally, we
repeat our analysis ignoring the low-latency memory and directly interfacing with the DDR
main memory available on the Nexys A7 board.

Figure 1 illustrates a high-level view of the microarchitecture of the SweRV EH1 processor.
The figure highlights the stages that are relevant in this lab: Decode, DC1-3 (Data Access
stages 1-3), Commit, and Writeback.

Figure 1 SweRV EH1 core microarchitecture

(figure from https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf)

2. THE lw INSTRUCTION ACCESSING A LOW-LATENCY MEMORY

In this section we use the simple code in Figure 2 to illustrate the most relevant events of the

execution of a load instruction. The example program consists of a loop that contains two lw

(load word) operations (highlighted in red), each reading a 32-bit word from consecutive

https://github.com/chipsalliance/Cores-SweRV/blob/master/docs/RISC-V_SweRV_EH1_PRM.pdf

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

word-aligned memory addresses. All iterations access the same data and do nothing with
them.

As in Lab 12, the lw instructions (highlighted in red in the figure) are surrounded by several

nop (no-operation) instructions in order to isolate them from preceding and subsequent

instructions. For the sake of simplicity, in this lab we also disable the use of compressed
instructions as explained in the SweRVref document.

.globl main

.section .midccm

A: .space 8

.text

main:

Register t3 = x28 (register 28)

la t0, A # t0 = addr(A)

li t1, 0x2 # t1 = 2

sw t1, (t0) # A[0] = 2

add t1, t1, 6 # t1 = 8

sw t1, 4(t0) # A[1] = 8

INSERT_NOPS_9

REPEAT:

 INSERT_NOPS_1

 lw t1, (t0)

 INSERT_NOPS_9

 INSERT_NOPS_4

 lw t1, 4(t0)

 INSERT_NOPS_10

 INSERT_NOPS_4

 beq zero, zero, REPEAT # Repeat the loop

.end

Figure 2 Example program with two lw instructions

Folder [RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_DCCM provides the PlatformIO
project so that you can analyse, simulate, and change the program. Open the project in
PlatformIO, build it, and open the disassembly file (located at
[RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_DCCM/.pio/build/swervolf_nexys/firmwar

e.dis). In that file, locate the second lw instruction, which is at address 0x0000014c. Notice

the machine code for the instruction (0x0042a303):
0x0000014c: 0042a303 lw t1,4(t0)

TASK: Verify that these 32 bits (0x0042a303) correspond to instruction lw t1,4(t0) in

the RISC-V architecture.

So far, in the Getting Started Guide (GSG) and in previous labs, we have been using the
DDR memory available on the Nexys A7 board for storing both the instructions and the data
from our program. However, accessing that external memory requires several cycles and
makes it difficult to analyse the stages of a load/store instruction; thus, in this section, we
use the low-latency DCCM (data closely-coupled memory) available in SweRV EH1 for
storing the program data.

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

The DCCM is a local memory tightly coupled to the core. It provides low-latency access and
SECDED ECC protection1. Its size is set as an argument at build time of the core, ranging
from 4 KiB to 512 KiB (64 KiB is the default). In Lab 20 we will analyse the DCCM and ICCM
in more detail; in this lab, we simply use it to simplify analysis of the load/store instructions.
Note that, this way, everything happens inside the SweRV EH1 Core Complex (Figure 3),
where both the SweRV EH1 pipeline and the DCCM are placed (highlighted in red).

Figure 3 SweRV EH1 Core Complex

The code in Figure 2 defines an ad-hoc section called .midccm to allocate space in the

DCCM. By default, the address space of the DCCM starts at 0xF0040000 in our default
RVfpga System. The linker script provided with this project (available at:
[RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_DCCM/ld/link.lds) will take care of the
proper address assignments. This linker script is used by including the following command in
file [RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_DCCM/platformio.ini:

 board_build.ldscript = ld/link.lds

A. Basic analysis of the lw instruction

Figure 4 shows the execution of the second lw instruction for an intermediate iteration of

the loop from Figure 2. The signals shown are the ones specified in file:
[RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_DCCM/scriptLoad.tcl. Note that all
iterations are the same: the first load reads the DDCM’s first data word (2) into t1 (x6); the
second load reads the DDCM’s second data word (8) into the same register (t1).

1 See the RISC-V SweRVTM EH1 Programmer's Reference Manual for more details.

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

Figure 4. Verilator simulation for example program in Figure 2

Figure 5 shows a high-level view of the SweRV EH1 pipeline during the execution of the

second lw instruction. Note that the figure merges the state of the processor in different

cycles:
- Cycle i: The instruction is decoded and the register file is read.
- Cycle i+1: The effective address is computed using the adder.
- Cycle i+2: The DDCM is read using the address computed in the previous stage.
- Cycle i+5: The value read from memory is written to the Register File.

Decode

lw t1, 4(t0)

Instruction Register

(dec_i0_instr_d)

raddr0

CONTROL

UNIT

Pipeline

Registers

Adder

offset_dc1

rs1_dc1

full_addr_dc1

DC1 DC2 DC3 Commit Writeback

waddr0

wd0

5 (t0)

4

0xF0040000

6 (t1)

8

REGISTER

FILE

rd0

Pipeline

Registers

0xF0040004

dccm_data_lo_dc2

DCCM

8 8 8 8

lsu_offset_d

4

dccm_rden

ls
u
_

rs
1

_
d

Address Check

(lsu_addrcheck)

i0
_

re
s
u

lt
_

e
4

_
fi
n

a
l
[3

1
:0

]

1

Figure 5. High-level view of the lw instruction executing in the SweRV EH1 pipeline

DC1

Writeback

DECODE

DC2 / Commit

lw t1, 4(t0)

i+6 Cycle i i+1 i+2 i+3 i+4 i+5

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

TASK: Replicate the simulation from Figure 4 on your own computer. Follow the next steps
(as described in detail in Section 7 of the GSG):
- If necessary, generate the simulation binary (Vrvfpgasim).
- In PlatformIO, open the project provided at:

[RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_DCCM.
- Correct the path to the RVfpga simulation binary (Vrvfpgasim) in file platformio.ini.
- Generate the simulation trace with Verilator (Generate Trace).
- Open the trace using GTKWave.
- Use file scriptLoad.tcl (provided at

[RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_DCCM/) to open the same signals
as the ones shown in Figure 4. For that purpose, on GTKWave, click on File → Read
Tcl Script File and select the scriptLoad.tcl file.

- Click on Zoom In () several times and move to 18600ps.

Analyse the waveform from Figure 4 and the diagram from Figure 5 at the same time. The
figures include some signals associated with the Decode, DC1-3, Commit, and Writeback

stages. The values highlighted in red correspond to the second lw instruction as it traverses

these stages.

 Cycle i: Decode: dec_i0_pc_d_ext holds the address of the lw instruction

(0x0000014C) and signal dec_i0_instr_d contains the 32 bits of the lw machine

instruction (0x0042a303).

During this stage, the control signals are generated. Moreover, the operands for

computing the load effective address are obtained: signal lsu_rs1_d contains the

base address of the lw operation (which in this example is held in register t0 and is

equal to 0xF0040000), and signal lsu_offset_d contains the 12-bit signed immediate

extracted from the instruction (0x004 in this example).

 Cycle i+1: DC1: The address is computed using an adder located inside module

lsu_lsc_ctl. The address is the base address (rs1_dc1 = 0xF0040000) plus the sign-

extended offset (offset_dc1 = 0x00000004); the final address is full_addr_dc1 =

0xF0040004. This address is checked (Address Check) to determine the memory region
of the access (DCCM, PIC, or external memory). In this example, given that the final

address belongs to the DCCM range (0xF0040004), dccm_rden asserts to enable the

read of the corresponding DCCM bank. The final address (full_addr_dc1) and the

enable signal (dccm_rden) are provided to the DCCM, which is read in the next cycle.

 Cycle i+2: DC2: the DCCM is read and the data is placed in dccm_data_lo_dc2 =

0x8, which is propagated to the next stage.

 Cycle i+3: DC3: the data read from the DCCM is propagated to the next stage.

 Cycle i+4: Commit: the data read from the DCCM (signal i0_result_e4_final =

0x8) is propagated to the next stage.

 Cycle i+5: Writeback: Finally, the value read from memory is written back to the

register file through signal wd0 = 0x8. Given that wen0 = 1, the value is written at the

end of that cycle into register x6 (waddr0 = 0x6). You can observe that, in the following

cycle (last cycle shown in Figure 4), register x6 (also called t1) contains the new value

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

(t1 = 0x8). Note that the signal t1 shown in the waveform is an alias defined in the .tcl

script for signal dout.

B. Advanced analysis of the lw instruction

In this section, we analyse the stages traversed by the lw instruction in more detail. Figure

6 shows a diagram of the main elements that the load instruction from our example traverses
during its execution along the Load/Store pipe (DC1, DC2, and DC3 stages). You may need
to zoom into the figure to be able to see the details. The black blocks labelled LOGIC in the
figure contain various blocks, such as multiplexers and logic gates. For the sake of
simplicity, only some of the block’s interface signals are included in the figure.

The Decode and Writeback stages are identical as the ones shown for A-L instructions (see
Figure 6 in Lab 12). However, we point out a few details of the Decode stage. Recall that in
the Decode stage, control signals are generated and instructions and operands are
scheduled to the proper pipes:

- The load’s immediate offset is in signal lsu_offset_d.

- The load’s base address is in signal exu_lsu_rs1_d. (This signal is produced from

a 4:1 multiplexer (shown in Figure 4 of Lab 11), and propagated to the DC1 Stage
after traversing some logic.)

- The signals for load/store instructions are in lsu_p, a new control signal packet

shown in Figure 6.

Similarly to Decode, the Commit Stage was also analysed in Lab 12, but we now include the

input to the final 3:1 multiplexer related to load instructions (lsu_result_corr_dc4),

which was omitted in Lab 12 for the sake of simplicity. Remember that the output of this 3:1

multiplexer is i0_result_e4_final[31:0], as shown in Figure 6. Moreover, we only

focus on Way 0 in this lab, but a load/store can execute through either way of the two-way
superscalar processor. Note, however, that there is only one L/S (Load/Store) Pipe. Thus,

Way 1 also has a 3:1 multiplexer (whose output is i1_result_e4_final[31:0] and one

of its inputs is lsu_result_corr_dc4), as shown in Figure 4 of Lab 11.

TASK: Extend the simulation from Figure 4 to include the signals shown in
Figure 6, which are explained below. A .tcl file that you can use is provided at:
[RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_DCCM/scriptLoadExtended.tcl

TASK: Locate the modules and signals from Figure 6 in the Verilog files of the SweRV
EH1 processor.

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Decode

lsu_p [18:0]

DC1

Pipeline

Registers

for

Control

Signals

rs1

ff
lsadder

offset_dc1[11:0]

rs1_dc1

lsu_addr_dc1 [31:0] =

full_addr_dc1 [31:0]
dccm_data

_lo_ff

DC2 DC3

Pipeline

Registers

for

Control

Signals

Pipeline

Registers

for

Control

Signals

ls
u
_

o
ff

s
e
t_

d

DCCM

(lsu_

dccm_

mem)

addr_in_dccm_dc1 d
c
c
m

_
d
a

ta
_

lo
_

d
c
2
 [

3
1

:0
]

d
c
c
m

_
d
a

ta
_

lo
_

d
c
3
 [

3
1

:0
]

dccm_data

_hi_ff

d
c
c
m

_
d
a

ta
_

h
i_

d
c
2
 [

3
1

:0
]

d
c
c
m

_
d
a

ta
_

h
i_

d
c
3
 [

3
1

:0
]

ALIGN,

MERGE

And

ERROR

CHECK

Pipeline

Registers

for

Control

Signals

addr_external_dc3

LOGIC

addr_external_dc1

Address Check

(lsu_addrcheck)

dccm_rden

..
.

LOGIC

e
x
u

_
ls

u
_

rs
1

_
d

ls
u
_
rs

1
_

d

LOGIC

end_addr_dc1 [31:0] =

full_end_addr_dc1 [31:0]

offse

tff

ls
u
_

ld
_

d
a

ta
_

c
o
rr

_
d
c
3
 [

3
1

:0
]

bus_read_data_dc3 [31:0]

ls
u
_

re
s
u

lt
_

c
o
rr

_
d
c
3
 [

3
1

:0
]

lsu_resul

t_corr_dc

4ff

3-1

MUX
i0_result_e4_final [31:0]

ls
u
_

re
s
u

lt
_

c
o
rr

_
d
c
4
 [

3
1

:0
]

Commit

2-1

MUX

Adder
LOGIC

d
e

c
_
ls

u
_
o
ff

s
e
t_

d

LOGIC

LOG

IC

e
x
u

_
i0

_
re

s
u

lt
_
e

4
 [

3
1

:0
]

i0
_

re
s
u

lt
_

e
4
 [

3
1

:0
]

e4d.i0secondary

e4d.i0v

e4d.i0load

Figure 6 Main elements traversed by load instructions in the Load/Store Pipe

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

i. Decode Stage

General details of the Decode Stage were already analysed in Labs 11 and 12. Remember
that the Decode Stage is responsible for two main tasks:

- Decode the instructions and generate control signals.

- Distribute the instructions to the appropriate pipes and provide the input operands.

Decode the instructions and generate control signals:

In addition to other control signals structures already analysed in Labs 11 and 12, an

additional structure, lsu_pkt_t, contains load/store instruction signals. As usual, this

structure is defined in file
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/swerv_types.sv.

Signal lsu_p is an example of a signal of this type that is propagated from the Decode

Stage through the Load/Store Pipe stages.

This signal encapsulates some relevant information for memory read/write:

o Bit 0 (valid) is set to 1 if the operation is valid.

o Bit 12 (unsign) is set to 1 when the data to be read/written is unsigned.

o Bit 13 (store) is set to 1 if the operation is a store (sb, sh, sw…).

o Bit 14 (load) is set to 1 if the operation is a load (lb, lh, lw…).

o Bits 15-18 codify the size of the access (byte, halfword, word, doubleword).

TASK: Include signal lsu_p in the simulation from Figure 4 and analyse its bits according

to this description.

Distribute the instructions to the appropriate pipes and provide the input operands:

As explained in Lab 11, the SweRV EH1 processor includes several pipes for executing
instructions. In the Decode Stage the instructions, once decoded, must be scheduled
through the appropriate pipes. In the program that we are analysing in this lab (Figure 2), the

lw instruction is sent for execution to the LSU Pipe (stages DC1-3). Specifically,

exu_lsu_rs1_d is the value held in the base register. Signal dec_lsu_offset_d is the

12-bit signed immediate offset, which is extracted from the instruction and sent to the DC1
stage.

TASK: Analyse in the Verilog code the path followed by the two inputs to the LSU

(exu_lsu_rs1_d and dec_lsu_offset_d) from the sources where they are obtained.

Several modules are involved in this process: dec, exu, lsu.

ii. DC1 Stage

In the DC1 Stage, rs1_dc1 (base address, propagated from Decode) and offset_dc1

(offset, propagated from Decode) are added in module lsadder to compute the main

effective address (signal full_addr_dc1[31:0], which is assigned to

lsu_addr_dc1[31:0]). This is the memory address to be read.

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 10

In addition to the address to be read, the end address (end_addr_dc1[31:0]) is also

computed in another adder (we should highlight that this second adder was not shown in
Figure 5 nor in Figure 4 of Lab 11 for the sake of simplicity). This is the address of the last
byte that must be read from memory. This address is used to handle unaligned accesses
and sub-word (byte, half-word) accesses.

TASK: Analyse the implementation of the two adders from the DC1 stage, which are
instantiated in module lsu_lsc_ctl. We provide guidance in Figure 7 below by showing the
implementation of these adders.

Figure 7. Verilog for adders in DC1 stage from file lsu_lsc_ctl.sv.

For example, a load word (lw) to the address starting at 0xF0040003 would have:

full_addr_dc1=0xF0040003 and end_addr_dc1=0xF0040006 (see Figure 8). This way,

the LSU Pipe can extract the word from the read bundle, which consists of two words that
begin at addresses that are a multiple of four (in this case 0xF0040000 and 0xF0040004).

Figure 8. Example of a lw instruction to address 0xF0040003

The two addresses (lsu_addr_dc1[31:0] and end_addr_dc1[31:0]) are sent to the

Data Memory (in our example, the DCCM), which will be accessed in the next cycle.

TASK: In the program from Figure 2, try different access sizes (byte, half-word) and

unaligned accesses. To do so, change the offset or the access type from lw to lb (load

byte) or lh (load half-word). For example, if you change the offset from 4 to 3, the load

word instruction performs an unaligned access to the 32-bits starting at address

0xF0040003, as shown in Figure 8. Analyse the value of signals lsu_addr_dc1[31:0]

(or full_addr_dc1[31:0]) and end_addr_dc1[31:0] under these different

situations.
In Lab 20 we analyse this situation from the internals of the DCCM.

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

In addition to the address calculation, the DC1 stage performs an address range check in
module lsu_addrcheck (see Figure 9) to determine the target memory for the access, which
is the DCCM in our example.

Figure 9. Check range and location of memory address

As a result of the address check, it is determined which memory must be accessed: the
DCCM, the PIC, or the External DDR Memory (see Figure 10).

Figure 10. Addresses for each memory unit

In our example, the DCCM read enable signal goes high (addr_in_dccm_dc1 = 1). This

signal traverses some logic and then it is provided to the DCCM (signal dccm_rden) to

enable/disable the access (in our example, to enable it). Signal addr_external_dc1,

which is 1 when the External DDR Memory must be enabled and 0 otherwise, is propagated
and used by the DC3 Stage, as shown in Figure 6.

iii. DC2 Stage

If DCCM reading is enabled (dccm_rden = 1) the data is read during this stage. Note that

two 32-bit values are read (dccm_data_lo_dc2[31:0] and

dccm_data_hi_dc2[31:0]), as the data access could be unaligned and thus spread

across two words (such as in the example from Figure 8).

TASK: In the program from Figure 2, compare the value of signals

dccm_data_lo_dc2[31:0] and dccm_data_hi_dc2[31:0] when doing a lw to

address 0xF0040004 and to address 0xF0040003.

iv. DC3 Stage

The two 32-bit data values from the DCCM are propagated from DC2 (signals

dccm_data_lo_dc2[31:0] and dccm_data_hi_dc2[31:0]) to DC3 (signals

dccm_data_lo_dc3[31:0] and dccm_data_hi_dc3[31:0]). For aligned accesses,

such as the one from our example, both signals are equal and only

dccm_data_lo_dc3[31:0] is used.

In the DC3 stage, the two words read in the previous cycle (dccm_data_lo_dc3[31:0]

and dccm_data_hi_dc3[31:0]) go through logic that performs several tasks:

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

- Error Checking: Data is checked for errors using ECC.

- Handling Load/Store Hazards: If a store instruction to the same address is still
executing, data is forwarded from the store instruction to the load instruction instead
of being read from memory. We will analyse this situation in Lab 15.

- Alignment: The requested data is aligned.

As a result of all these processes, the final data is provided in signal

lsu_ld_data_corr_dc3[31:0].

TASK: Analyse the Align, Merge, and Error Check logic used in the Verilog code in
modules lsu_dccm_ctl and lsu_ecc.

TASK: In the program from Figure 2, compare the value of signal

lsu_result_corr_dc3[31:0] when doing a lw to address 0xF0040004 and to

address 0xF0040003.

After this logic that performs error-checking, load/store hazard handling, and alignment, a

2:1 multiplexer selects between data from the DCCM (lsu_ld_data_corr_dc3[31:0])

or DDR memory (bus_read_data_dc3[31:0]). This multiplexer is controlled by signal

addr_external_dc3, which was generated in module lsu_addrcheck in the DC1 stage

(signal addr_external_dc1).

TASK: Analyse in the Verilog code how signal addr_external_dc1 was computed in

the DC1 stage in module lsu_addrcheck.

The output of this 2:1 multiplexer (lsu_result_corr_dc3[31:0]) is propagated to the

Commit Stage.

v. Commit Stage

In the Commit stage, a 3:1 multiplexer selects the read data

(i0_result_e4_final[31:0]) to be sent to the Writeback Stage (see Figure 6). This 3:1

multiplexer could also select the output of the ALU, as was already explained in Labs 11 and
12, and the output of the Secondary ALU, as we will analyse in Lab 15.

vi. Writeback Stage

This stage was already explained in Labs 11 and 12 and thus it is not shown in Figure 6,
where the result of the addition was written to the destination register. In this case, this stage
writes the DCCM data to the destination register.

3. THE sw INSTRUCTION ACCESSING A LOW LATENCY MEMORY

In this section we use the code shown in Figure 11 to illustrate the most relevant events of
the execution of a store instruction. The code contains a loop with 1000 iterations that writes

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 13

to consecutive addresses of memory. Vector A contains 1000 words and is placed at the

DCCM (0xF0040000 – 0xF004FFFF). Each sw is followed by a lw that checks that the

correct value was stored. As usual, nops are inserted to isolate the instructions and, in this

case, also to ensure that the data is actually written to and read from memory and not just

forwarded from the sw instruction to the lw. As usual, we disable the use of compressed

instructions as explained in the SweRVref document. Also, as in the example from the
previous section, we use the DCCM for storing and loading data.

.globl main

.section .midccm

A: .space 4000

.text

main:

la t0, A # t0 = addr(A)

li t1, 0x2 # t1 = 2

li t2, 1000 # t2 = 1000

INSERT_NOPS_2

REPEAT:

 sw t1, (t0)

 INSERT_NOPS_10

 INSERT_NOPS_4

 lw t1, (t0)

 INSERT_NOPS_10

 add t1,t1,t1

 add t0,t0,0x04

 add t2,t2,-1

 INSERT_NOPS_10

 bne t2, zero, REPEAT # Repeat the loop

 nop

 nop

.end

Figure 11 Example code with sw instruction

Folder [RVfpgaPath]/RVfpga/Labs/Lab13/SW_Instruction_DCCM provides the PlatformIO
project so that you can analyse, simulate and change the program. Open the project in
PlatformIO, build it, and open the disassembly file (available at
[RVfpgaPath]/RVfpga/Labs/Lab13/SW_Instruction_DCCM/.pio/build/swervolf_nexys/firmwar

e.dis). You will see that the sw instruction is placed at address 0x00000110, and you can

also see the machine code for the instruction (0x0062a023):
0x00000110: 0062a023 sw t1,0(t0)

TASK: Verify that these 32 bits (0x0062a023) correspond to instruction sw t1,0(t0) in

the RISC-V architecture.

Figure 12 shows the execution of the sw instruction during the fourth iteration of the loop

from Figure 11. Any iteration except the first one could be analysed. As usual, the first
execution of an instruction should not be used in order to avoid instruction cache (I$) misses.

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

Figure 12 Verilator simulation for the example of Figure 11

Figure 13 shows a high-level view of the SweRV EH1 pipeline while executing the sw

instruction during the fourth iteration of the loop from Figure 11. Register t1 (which holds the

value to write to memory) is 0x10 and t0 (which holds the base address) is 0xF004000C.

Thus, sw writes the value 0x10 to the DCCM address 0xF004000C. The figure shows the

real names used in the Verilog modules of the SweRV EH1 processor. Note that the figure
merges the state of the processor in different cycles:

- Cycle i: The store instruction is decoded at the Decode stage, it is assigned

to the LSU Pipe and the operands are provided, in this case from the instruction’s
immediate field and from the Register File, which is read in this cycle.

- Cycle i+1: The effective address is computed at the Adder Unit as explained for

the load. Note that only the lsadder shown in Figure 6 is included in the figure for

the sake of simplicity.

- Cycle i+6: The second operand (read from register t1) is stored in the DCCM,

after traversing the Store Buffer, which we explain in the Appendix.

Note that the store is not a critical operation in terms of program execution time, so it can be
delayed several cycles without impacting performance. In contrast, load instructions can be
critical, as they often read a value needed by a subsequent instruction, thus, as mentioned in
the previous section, a store-load forwarding path is implemented (not shown in Figure 13),
which saves memory accesses and avoids pipeline stalls in case of a data hazard between a
store and a subsequent load to the same memory address. We analyse this situation in Lab
15.

DECODE

DC1

DCCM

Write

Cycle i i+1 i+6

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 15

DECODE STAGE

sw t1, (t0)

Instruction Register

(dec_i0_instr_d)

raddr0

CONTROL

UNIT

Pipeline

Registers

Adder

offset_dc1

rs1_dc1

full_addr_dc1

DC1

5 (t0)

0

0xF004000C

REGISTER

FILE

rd0

0xF004000C

DCCM

dccm_wr_addr

rd1
raddr1

Pipeline

Registers

exu_lsu_rs2_d
6 (t1)

0x00000010

...

dccm_wr_data

dccm_wren

lsu_rs1_d

lsu_offset_d

0

1

Figure 13 High-level view of the execution of the sw instruction in SweRV EH1

TASK: Replicate the simulation from Figure 12 on your own computer. Follow the next
steps (as described in detail in Section 7 of the GSG):
- If necessary, generate the simulation binary (Vrvfpgasim).
- Open in PlatformIO the project provided at:

[RVfpgaPath]/RVfpga/Labs/Lab13/SW_Instruction_DCCM.
- Update the path to the RVfpga simulation binary (Vrvfpgasim) in file platformio.ini.
- Generate the simulation trace with Verilator (Generate Trace).
- Open the trace on GTKWave.
- Use file scriptStore.tcl (provided at

[RVfpgaPath]/RVfpga/Labs/Lab13/SW_Instruction_DCCM/) to display the same signals
as the ones shown in Figure 4. For that purpose, in GTKWave, click on File → Read
Tcl Script File and select the scriptStore.tcl file.

- Click on Zoom In () several times and move to 17900ps.

Analyse the waveform from Figure 12 and the diagram from Figure 13 at the same time. The
figure includes some signals associated with the Decode and DC1 stages, as well as some
signals related with the DCCM write, which happens several cycles later. The values

highlighted in red correspond to the sw instruction as it traverses these stages.

- Cycle i: Decode: As explained for the load instruction, signal

dec_i0_pc_d_ext contains the address of the sw instruction (0x00000110) and

signal dec_i0_instr_d contains the 32-bit sw instruction (0x0062a023). Signal

lsu_rs1_d contains the base address of the sw operation (which in this example is

0xF004000C, as provided by register t0), and signal lsu_offset_d contains the

12-bit immediate (0x000 in this example) that was extracted from the instruction and
subsequently added to the base address. For store instructions, the value read from

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 16

the second register (in this case t1) will eventually be written to memory

(exu_lsu_rs2_d = 0x10). Thus, it must be propagated to the subsequent stages.

- Cycle i+1: DC1: As explained for loads, during this stage the address is

computed (full_addr_dc1 = rs1_dc1 + offset_dc1 = 0xF004000C).

- Cycle i+6: DCCM Write: After five cycles, the DCCM receives the write data and

address (dccm_wr_addr=0x000C and dccm_wr_data=0x4900000010) from the

Store Buffer. Note that the DCCM only receives the last 16 bits of the address
(0x000C), because its actual size is 64 KiB in our configuration (see file
common_defines.vh) and 16 bits are enough for addressing 216 bytes. The data has

been prepended with some ECC bits (0x49). When signal dccm_wren asserts (in

cycle i+6 in Figure 12) the write to the DCCM completes.

APPENDIX A – OPERATION OF THE STORE BUFFER: Appendix A explains the Store
Buffer, which is an important structure that temporarily keeps the value and address that
must be written into memory by the store instruction.

TASK: Analyse in the simulation the load instruction that follows the store to verify that the
value has been correctly written to the DCCM. You will need to add some of the signals
from Figure 4 and Figure 6 to analyse the load.

TASK: Extend the basic analysis performed in this section for the sw instruction in a similar

way as the advanced analysis performed for the lw instruction in Section 2.B.

TASK: Analyse unaligned stores to the DCCM, as well as sub-word stores: store byte (sb)

or store half-word (sh).

4. ACCESSING EXTERNAL MEMORY

In Sections 2 and 3 we used the DCCM for storing and loading the data. In this section, we
analyse load instructions that access the External Memory available on the Nexys A7. Note
that in this case (see Figure 14), as opposed to the scenario analysed in Section 2 (see
Figure 3), the SweRV EH1 Core must communicate with the External Memory through the
AXI bus in order to obtain the data requested by the load instruction.

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 17

Figure 14. RVfpgaNexys

We analyse both blocking and non-blocking accesses. Blocking loads completely stop the
processor until they receive the data read from memory. This means that no other instruction
progresses until the load receives its data. In contrast, non-blocking loads allow program
execution to continue as long as the instructions do not depend on the data read by the load;
execution only stops when an instruction is executed that depends on the load. In these two
scenarios, the data read from memory follows different paths through the pipeline; in this lab
we analyse the first one (blocking loads) and in the next lab (Lab 14) we analyse the second
case (non-blocking loads) in the context of structural hazards.

The code in Figure 15 depicts a simple example to illustrate the execution of a lw instruction

reading the external DDR memory. The code contains a loop that reads a 12-element array

(lw t3, (t4)) and accumulates the sum of its elements in register t6 (add t6, t3,

t6). As usual, several nop operations are inserted to isolate the instructions and make them

easier to analyse, and compressed instructions are disabled.

Vector D contains 12 words and it is placed in Main Memory. For that aim, the array is
declared within section .data and the usual linker script is employed for the project (available
at ~/.platformio/packages/framework-wd-riscv-sdk/board/nexys_a7_eh1/link.lds). This way
the data defined in the .data section are placed in the external memory and not in the DCCM
as was done in the program from Figure 2.

By default, load instructions are non-blocking in SweRV EH1. If we want load instructions to
be blocking, we must include the next two instructions at the beginning of the assembly code
that we are going to analyse, shown in Figure 15 (refer to Section 2.C of the SweRVref
document for more explanations on core features enabling/disabling):

li t2, 0x020

csrrs t1, 0x7F9, t2

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 18

.globl main

.data

D: .word 3,5,6,8,7,10,12,2,1,4,11,9

.text

main:

li t2, 0x020

csrrs t1, 0x7F9, t2

la t4, D

li t5, 12

li t6, 0x0

INSERT_NOPS_1

REPEAT:

 lw t3, (t4)

 add t5, t5, -1

 INSERT_NOPS_10

 add t6, t3, t6

 add t4, t4, 4

 INSERT_NOPS_9

 bne t5, zero, REPEAT # Repeat the loop

INSERT_NOPS_4

.end

Figure 15 Example of blocking lw instruction

Folder [RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_ExtMemory provides the
PlatformIO project so that you can analyse, simulate, and change the program. If you open
the project in PlatformIO, build it, and open the disassembly file (available at
[RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_ExtMemory/.pio/build/swervolf_nexys/firm

ware.dis), you will see that the lw instruction is placed at address 0x000000f4, and you can

also see the machine code for the instruction (0x000eae03):

 0x000000f4: 000eae03 lw t3,0(t4)

Blocking loads accessing the External DDR2 Memory follow almost the same path explained
in Section 2 for loads accessing the DDCM, as we will show in Figure 16. However, there is
an important difference: during some cycles, the processor is stalled waiting for the data
provided by the External Memory; then, when the requested data is received, instructions
can continue executing.

The module that controls External Memory access through the AXI bus is called
lsu_bus_intf in SweRV EH1. It is responsible for providing the address to the Lite DRAM
controller and, some cycles later, receive and align the requested data and insert it into the
core in the DC3 stage. Note that an AXI bus is used for communicating with the DDR2
External Memory. In this example (Figure 15), a 2:1 multiplexer at the DC3 stage, which was
also included in Figure 6, selects the input coming from the External Memory (i.e.

lsu_result_corr_dc3 = bus_read_data_dc3), instead of the input coming from the

DCCM (lsu_ld_data_corr_dc3) that was selected in the example from Figure 2. As for

the 3:1 multiplexer at the Commit stage, it selects the same input as in the example from

Figure 2 (i.e. i0_result_e4_final = lsu_result_corr_dc4).

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Lite DRAM

Controller

DC1 STAGE

lsu_addr_dc1 [31:0] =

full_addr_dc1 [31:0]

Pipeline

Registers

for

Control

Signals

addr_external_dc1

Delay due to
accessing External

Memory Pipeline

Registers

for

Control

Signals

External Memory

accessed through AXI

Bus

(lsu_bus_intf)

end_addr_dc1 [31:0] =

full_end_addr_dc1 [31:0]

DC3 STAGE

Pipeline

Registers

for

Control

Signals

addr_external_dc3

b
u

s
_

re
a

d
_

d
a

ta
_

d
c
3
 [

3
1

:0
]

lsu_result_corr_dc3 [31:0]

lsu_resul

t_corr_dc

4ff

3-1

MUX
i0_result_e4_final [31:0]

ls
u
_

re
s
u

lt
_

c
o
rr

_
d
c
4
 [

3
1

:0
]

COMMIT STAGE

2-1

MUX LOGIC

e
x
u

_
i0

_
re

s
u

lt
_

e
4
 [

3
1

:0
]

i0
_

re
s
u

lt
_

e
4
 [

3
1

:0
]

e4d.i0secondary

e4d.i0v

e4d.i0load

ls
u
_

ld
_

d
a

ta
_

c
o
rr

_
d
c
3
 [

3
1

:0
]

Figure 16. Blocking lw instruction accessing External Memory

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Figure 17 shows the execution of the lw in the fourth iteration of the loop of Figure 15,

where it reads the value stored in address 0x00002204 into register t3. Note that for this
program the D array starts at address 0x000021F8.

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Figure 17. Verilator simulation of the example from Figure 15

Delay due to accessing External Memory

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

TASK: Replicate the simulation from Figure 17 on your own computer. Use file
test_Blocking.tcl (provided at

[RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_ExtMemory). Zoom In () several
times and move to 16940ps.

Analyse the waveform. The figure includes some signals associated with the pipeline stages.

Note that the set of signals on the top (clk through full_addr_dc1) and the set of

signals on the bottom (i0_result_e4_final through wd0) are the same as those shown

in Figure 4. The values highlighted in red correspond to the lw instruction as it traverses

these stages.

- The address is computed in the Decode stage, as explained in Section 2. Signal

full_addr_dc1[31:0] contains the address, which in the fourth iteration of our

example (the one shown in Figure 17) is 0x00002204. Signal

end_addr_dc1[31:0] (not shown in the figure) is also computed as explained in

Section 2 and contains the address of the last byte to be accessed.

- Some cycles later, the address is sent to the external memory through the AXI bus

using the following signals: lsu_axi_arvalid = 1 and lsu_axi_araddr =

0x00002200. Note that the address sent is double-word aligned as 64 bits are read

from memory per access. Data is read into signal lsu_axi_rdata (in Labs 19 and

20 we will analyse the memory hierarchy in detail). If more than one address is
required for the access (due to an unaligned access), multiple addresses are sent
and data are returned sequentially through the bus.

TASK: Modify the program from Figure 15 in order to analyse an unaligned load
access that needs to send two addresses to the External Memory through the AXI
Bus.

- Some cycles later, the external memory returns a 64-bit data read through the AXI

Bus (lsu_axi_rdata = 0x0000000800000006 and lsu_axi_rvalid = 1). This

data is buffered within the LSU (module lsu_bus_buffer).

- The requested 32-bit data is extracted from the 64-bit data read from memory and

inserted in the main pipeline path: bus_read_data_dc3 = 0x00000008.

- Then, this data is written into the Register File following the same path as in the

example from Section 2: i0_result_e4_final → wd0.

TASK: Add to the simulation the signals that control the multiplexers (in the DC3 and
Commit stages in Figure 16) that select the data provided by the DDR External Memory.
You can find these multiplexers at the following lines of the Verilog code:
 - 2:1 Multiplexer: Line 264 of module lsu_lsc_ctl.
 - 3:1 Multiplexer: Line 2277 of module dec_decode_ctl.
A .tcl file that you can use is provided at:
[RVfpgaPath]/RVfpga/Labs/Lab13/LW_Instruction_ExtMemory/test_Blocking_Extended.tcl

TASK: It can also be interesting to analyse the AXI Bus implementation for accessing the
DRAM Controller, for which you can inspect the lsu_bus_intf module.

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 23

APPENDIX A – OPERATION OF THE STORE BUFFER

The Store Buffer is an 8-entry circular queue, located inside the LSU, where every store (sw)

operation is tracked, annotating its target address and data. Generally a store buffer may be
used to:

- Satisfy subsequent load operations with a previous store data if their target
addresses match. This data forwarding solves Read After Write hazards and saves
memory accesses.

- Let independent load operations fast-forward previous pending store operations,
given that load operations are likely to be in the critical path.

- Merge compatible store operations into a single operation, thus solving Write After
Write hazards and saving memory accesses.

Figure 18 shows some of the relevant signals of the Store Buffer when executing the code
from Figure 11. These new signals are added to the ones shown in Figure 12. Like that

figure, Figure 18 shows the execution of the sw instruction in the fourth iteration of the loop.

Figure 18. Verilator simulation for the example from Figure 11 illustrating the Store

Buffer operation

TASK: Replicate the simulation from Figure 18 on your own computer. Use file
scriptStoreBuffer.tcl (provided at

[RVfpgaPath]/RVfpga/Labs/Lab13/SW_Instruction_DCCM). Zoom In () several times
and move to 17900ps.

The top signals (from the Decode, DC1 and DC2 stages), were shown in Figure 12 and
explained there, thus we do not explain them here again. In DC3 (cycle i in the figure), the
write to the Store Buffer is prepared. The final address and the data to be written to memory

by the store instruction are sent to the Store Buffer through signals lsu_addr_dc3 =

Store

Buffer

DCCM

DC3

i+4

Cycle i i+1 i+3

Imagination University Programme – RVfpga Lab 13: Memory Instructions: lw and sw Instructions
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 24

0x000C and store_ecc_datafn_lo_dc3 = 0x00000010. Signal

store_stbuf_reqvld_dc3 is asserted when a store operation is identified at the DC3

Stage, which triggers the store buffer operation.

The next set of signals corresponds to internal Store Buffer signals (you can find these in

module lsu_stbuf). WrPtr codifies the entry of the Store Buffer where the next sw operation

will place its address and data. In the example, WrPtr is 0b011 (i.e. the entry number three,

which is the fourth entry since numbering starts in 0).

During the DC3 Stage (cycle i), the fourth entry of the store buffer is enabled by asserting

the fourth bit of signal stbuf_data_en (note that 0x08 translates to 00001000 in one-hot

coding, and the only ‘1’ value is in the fourth bit position). Signal lsu_stbuf_empty_any

goes low at the end of this cycle to indicate that the Store Buffer is not empty – that is, the
Store Buffer holds data that is pending to be written to memory.

In the Commit stage (cycle i+1), the update of the fourth entry of the store buffer happens.

Signal stbuf_addr and stbuf_data contain in their fourth entry: 0x000C (which

corresponds to the DCCM address to write) and 0x00000010 (which corresponds to the data

to be stored in the DCCM), respectively. WrPtr has been incremented to point to the next

buffer entry (b100), and RdPtr tracks the oldest value in the buffer that has not yet been

committed (b011).

One cycle after the Writeback stage (cycle i+3), the DCCM write enable signal (dccm_wren)

is asserted, thus writing to memory and releasing the fourth entry of the buffer. Finally, at

cycle i+4, RdPtr is updated (to b100) and the buffer is empty again so

lsu_stbuf_empty_any goes high again.

Figure 19 shows how the 8-entry Store Buffer evolves in the example shown in Figure 18. In

cycle i, the Store Buffer is empty, indicated by WrPtr == RdPtr. In cycle i+1 the Store

Buffer contains one address/data pair (0x000C/0x00000010), which corresponds to the store
analysed in Figure 18. Finally, in cycle i+4, the data is written to the DCCM and the Store

Buffer becomes empty again (WrPtr == RdPtr).

Figure 19. Store Buffer changes during the example from Figure 18

TASK: Modify the program from Figure 11 in order to have two outstanding stores and
perform a similar analysis to the one from Figure 18.

