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1. INTRODUCTION 
 
In this lab, we analyse the scratchpad memories (ICCM and DCCM) available in the SweRV 
EH1 processor, and then we provide several benchmarking examples and exercises to 
demonstrate some of the concepts from Labs 11 to 20. 
 
Recall from Figure 25 of the RVfpga Getting Started Guide (that we repeat below in Figure 1 
for the sake of convenience), that the RVfpga System includes two scratchpad memories 
(highlighted in red in the figure): one for data, called Data Closely-Coupled Memory (DCCM), 
and one for instructions, called Instruction Closely-Coupled Memory (ICCM). 
 
 

 
 

Figure 1. RVfpgaNexys System 
 
 

NOTE: Before starting to work on this lab, we recommend reading Sections 1 and 3 of the 
paper by Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. “On-chip vs. off-chip 
memory: the data partitioning problem in embedded processor-based systems”. ACM 
Trans. Design Autom. Electr. Syst. 5(3): 682-704 (2000) (available at: 
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.2430&rep=rep1&type=pdf). 
This paper presents a good introduction to the use of Scratch-Pad memories in embedded 
processors. 

 
The RVfpga System memory map was described in Section 4.B of the Getting Started 
Guide. The next figure complements that description with an illustration of the address space 
occupied by the Instruction Memory (Figure 2a) and by the Data Memory (Figure 2b) 
available in the RVfpga System. 
 

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.2430&rep=rep1&type=pdf
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(a) Address space of Instruction Memory, consisting of an instruction cache (I$) 
and DDR External Memory. The ICCM is disabled in the default system. 
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(b) Address space of Data Memory, consisting of a DCCM and DDR External 
Memory. 
 

Figure 2. RVfpga System address space for Instruction and Data Memories 
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In this lab, we focus on the configuration and operation of the Data/Instruction Closely-
Coupled Memories (Sections 2.A and 2.B respectively) and then introduce several 
benchmarking examples and exercises (Section 3) where we use both ad-hoc toy programs 
that illustrate specific situations and real applications. 
 
 

2. DATA/INSTRUCTION CLOSELY-COUPLED MEMORIES (DCCM AND ICCM) 
 
In this section, we analyse the Data Closely-Coupled Memory (DCCM) and the Instruction 
Closely-Coupled Memory (ICCM) available in the RVfpga System. We first describe how 
these two structures can be configured (Section 3.A) and then we illustrate how an access to 
the DCCM is performed (Section 3.B). 
 

A. DCCM and ICCM configuration in the RVfpga System 
 
The RVfpga System’s DCCM and ICCM are highly configurable based on a set of 
parameters defined in file 
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/common_defines.
vh. The default RVfpga System has the following parameters for these two structures: 
 

DCCM: 
`define RV_DCCM_EADR 32'hf004ffff 

`define RV_DCCM_FDATA_WIDTH 39 

`define RV_LSU_SB_BITS 16 

`define RV_DCCM_SIZE 64 

`define RV_DCCM_ECC_WIDTH 7 

`define RV_DCCM_SADR 32'hf0040000 

`define RV_DCCM_BYTE_WIDTH 4 

`define RV_DCCM_NUM_BANKS 8 

`define RV_DCCM_SIZE_64  

`define RV_DCCM_NUM_BANKS_8  

`define RV_DCCM_OFFSET 28'h40000 

`define RV_DCCM_WIDTH_BITS 2 

`define RV_DCCM_ENABLE 1 

`define RV_DCCM_DATA_CELL ram_2048x39 

`define RV_DCCM_RESERVED 'h1000 

`define RV_DCCM_ROWS 2048 

`define RV_DCCM_BANK_BITS 3 

`define RV_DCCM_DATA_WIDTH 32 

`define RV_DCCM_INDEX_BITS 11 

`define RV_DCCM_BITS 16 

`define RV_DCCM_REGION 4'hf 

 
ICCM: 

`define RV_ICCM_DATA_CELL ram_16384x39 

`define RV_ICCM_BITS 19 

`define RV_ICCM_ROWS 16384 

`define RV_ICCM_INDEX_BITS 14 

`define RV_ICCM_NUM_BANKS 8 

`define RV_ICCM_NUM_BANKS_8  

`define RV_ICCM_BANK_BITS 3 

`define RV_ICCM_SIZE_512  

`define RV_ICCM_RESERVED 'h1000 
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`define RV_ICCM_SIZE 512 

`define RV_ICCM_REGION 4'he 

`define RV_ICCM_OFFSET 10'he000000 

`define RV_ICCM_SADR 32'hee000000 

`define RV_ICCM_EADR 32'hee07ffff 

 
However, as in the I$, some of the above parameters are overridden in file 
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/global.h: 
 

DCCM: 
localparam DCCM_BITS        = `RV_DCCM_BITS; 

localparam DCCM_BANK_BITS   = `RV_DCCM_BANK_BITS; 

localparam DCCM_NUM_BANKS   = `RV_DCCM_NUM_BANKS; 

localparam DCCM_DATA_WIDTH  = `RV_DCCM_DATA_WIDTH; 

localparam DCCM_FDATA_WIDTH = `RV_DCCM_FDATA_WIDTH; 

localparam DCCM_BYTE_WIDTH  = `RV_DCCM_BYTE_WIDTH; 

localparam DCCM_ECC_WIDTH   = `RV_DCCM_ECC_WIDTH; 

 
ICCM: 

localparam ICCM_SIZE         = `RV_ICCM_SIZE; 

localparam ICCM_BITS         = `RV_ICCM_BITS; 

localparam ICCM_NUM_BANKS    = `RV_ICCM_NUM_BANKS; 

localparam ICCM_BANK_BITS    = `RV_ICCM_BANK_BITS; 

localparam ICCM_INDEX_BITS   = `RV_ICCM_INDEX_BITS; 

localparam ICCM_BANK_HI      = 4 + (`RV_ICCM_BANK_BITS/4); 

 
Note that, as shown in Figure 2, the DCCM is enabled in our baseline system 

(RV_DCCM_ENABLE = 1) but the ICCM is disabled (RV_ICCM_ENABLE not defined), so no 

ICCM is included in the SoC used in the previous labs. 
 
Table 1 summarizes the ICCM and DCCM configurations in the RVfpga System. 
 

Table 1. DCCM and ICCM Configurations 

Characteristic Value 

DCCM  

Enable 1 

Address space 0xF0040000 – 0xF004FFFF 

Size 64 KiB 

Number of banks 8 

Bank size 2048x39 bits (7 bits for parity) 

ICCM  

Enable 0 

 
Figure 3 shows a block diagram of RVfpga’s DCCM configuration. The input signals to the 

DCCM (lsu_addr_dc1, end_addr_dc1, stbuf_addr_any, stbuf_ecc_any and 

stbuf_data_any) and the output signals from the DDCM (dccm_data_lo_dc2 and 

dccm_data_hi_dc2) are provided from/to the Load Store Unit (lsu), as explained in Lab 13 

(see Figures 6 and 13 in Lab 13). 
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Figure 3. DCCM internal design. 
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The RVfpga System’s DCCM is implemented in module lsu_dccm_mem, included in file 
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/lsu/lsu_dccm_mem.sv. 
As shown in Figure 3, the DCCM is divided into 8 banks. Two read addresses are provided 

for supporting unaligned accesses: dccm_rd_addr_lo[15:0] = lsu_addr_dc1[15:0] 

and dccm_rd_addr_hi[15:0] = end_addr_dc1[15:0]. These addresses are logically 

divided into 3 fields: 
- Bank: Bank selected. 
- Addr: Address of the 32-bit word read within the bank. 
- Off: Byte read within the 32-bit word. 
- Note that 7 parity bits are added to each 32-bit word. 

 
As also explained in Lab 13 and as it can be seen in Figure 3, one write address is provided 

in signal dccm_wr_addr[15:0] by the Store Buffer (see the appendix from Lab 13 for 

further descriptions of the Store Buffer operation). The write address is divided as the read 
addresses (see the previous item). Based on the 3-bit Bank field of these addresses (plus 
other signals not specified in the figure that you will analyse in a task below), 8 read/write 

enable bits are obtained in rden_bank[7:0] and wren_bank[7:0], respectively. Each 

bit determines if the corresponding bank must be enabled or disabled for reading and 
writing. 

 
Based on the 11-bit Addr field of these addresses (and other signals not specified in the 
figure that you will analyse in a task below), eight 11-bit addresses are obtained in 

addr_bank[7:0][10:0], one 11-bit address per bank. 

 
Each of the 8 banks can be accessed independently, as you will analyse in a task below. 
Thus, for example, in the most extreme situation, it would be possible to perform two reads 
and one write in the same cycle, as long as the three accesses are to three different banks: 
 

- In an unaligned read, banks j and k can be read in the same cycle by providing the 

11-bit addresses in signals addr_bank[j] (which is obtained from the 11-bit Addr 

field of signal dccm_rd_addr_lo) and addr_bank[k] (which is obtained from the 

11-bit Addr field of signal dccm_rd_addr_hi), and by setting the corresponding 

enable signals: rden_bank[j] = rden_bank[k] = 1. 

 
- At the same time, it is also possible to write to bank i, by providing the 11-bit address 

in signal addr_bank[i] (obtained from the 11-bit Addr field of signal 

dccm_wr_addr), and by setting the corresponding enable signal: wren_bank[i] = 

1. 
 

TASK: Using the instructions provided in Lab 1, implement a new RVfpga System that 
includes a 64 KiB ICCM. 
 
Remember that the ICCM is disabled in our default system. Thus, as explained in Section 
2.A of the SweRVref document, in order to enable the ICCM you must include the following 
line in file 
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/common_define
s.vh: 

`define RV_ICCM_ENABLE 1 

 
In addition, the parameters provided in the default RVfpga System are for a 512 KiB ICCM. 
Thus, in order to implement a 64 KiB ICCM, you must modify the following lines of the 
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same file (file common_defines.vh): 
RV_ICCM_DATA_CELL ram_16384x39  RV_ICCM_DATA_CELL ram_2048x39 

RV_ICCM_BITS 19  RV_ICCM_BITS 16 

RV_ICCM_ROWS 16384  RV_ICCM_ROWS 2048 

RV_ICCM_INDEX_BITS 14  RV_ICCM_INDEX_BITS 11 

RV_ICCM_SIZE_512  RV_ICCM_SIZE_64 

RV_ICCM_SIZE 512  RV_ICCM_SIZE 64 

RV_ICCM_EADR 32'hee07ffff  RV_ICCM_EADR 32'hee00ffff 

 
As explained in Section 2.A of the SweRVref document, instead of manually modifying file 
common_defines.vh, you can also modify the configuration of the SweRV EH1 processor 
using the swerv.config script. 

 
 

TASK: Draw a figure similar to Figure 3 for the ICCM implemented in the previous task. 

 
 

B. Accessing the DCCM 
 
Similar to the I$ that we analysed in Lab 19, the ICCM and the DCCM have a low access 
latency – that is, that allows data to be read or written in a single cycle (see Figure 2). 
However, as opposed to the I$, the ICCM and DCCM are controlled by software. 
 
In this section we illustrate and describe an access to the DCCM. We use the DCCM internal 
design shown in Figure 3 as a reference and execute a program similar to one already used 
in Lab 19. This program, shown in Figure 4, is provided in folder 
[RVfpgaPath]/RVfpga/Labs/Lab20/LW-SW_Instruction_DCCM/. It traverses a 250-element 

array, reading each element (lw instruction, highlighted in red), adding one to it and storing 

the element (sw instruction, highlighted in red) back to the same array element. The loop 

contains 20 nop instructions to isolate the iterations from each other. The array is initialized 

before accessing it (the initialization loop is not shown in Figure 4, but you can see the array 
initialization in the PlatformIO project). 
 

 

// Access array 

la t4, D 

li t5, 50 

li t0, 1000 

la t6, D 

add t6, t6, t0 

li t5, 1 

 

REPEAT_Access: 

   lw t3, (t4) 

   add t3, t3, t5 

   sw t3, (t4) 

   add t4, t4, 4 

   INSERT_NOPS_10 

   INSERT_NOPS_10 

   bne  t4, t6, REPEAT_Access    # Repeat the loop 

 

Figure 4. Example program 
 
Open the project in PlatformIO, build it, and open the disassembly file (available at 
[RVfpgaPath]/RVfpga/Labs/Lab20/LW-

SW_Instruction_DCCM/.pio/build/swervolf_nexys/firmware.dis). Notice that the lw 
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instruction (0x000eae03) and the sw instruction (0x01cea023) are placed at addresses 

0x000001c0 and 0x000001c8, respectively. 
 
 0x000001c0: 000eae03           lw t3,0(t4) 

… 

0x000001c8: 01cea023           sw t3,0(t4) 

 
 

Figure 5 shows the simulation of a random iteration of the loop from Figure 4. The figure 
includes some of the signals shown in Figure 3 as well as some of the LSU core signals that 
we described in Lab 13. 
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Figure 5. Simulation of a random iteration of the program from Figure 4 
 

i i+1 i+2 i+8 
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TASK: Replicate the simulation from Figure 5 on your own computer. To do so, follow the 
next steps (as described in detail in Section 7 of the GSG): 
- If necessary, generate the simulation binary (Vrvfpgasim). 
- In PlatformIO, open the project provided at: [RVfpgaPath]/RVfpga/Labs/Lab20/LW-

SW_Instruction_DCCM. 
- Establish the correct path to the RVfpga simulation binary (Vrvfpgasim) in file 

platformio.ini. 
- Generate the simulation trace using Verilator (Generate Trace). 
- Open the trace on GTKWave. 
- Use file scriptLoadStore.tcl (provided at [RVfpgaPath]/RVfpga/Labs/Lab20/LW-

SW_Instruction_DCCM) for opening the same signals as the ones shown in Figure 5. 
For that purpose, in GTKWave, click on File → Read Tcl Script File and select the 
scriptLoadStore.tcl file. 

- Click on Zoom In ( ) several times and analyse the region starting at 43900 ps. 

 
Memory reads and writes using the DCCM occur as follows: 
 

o Cycle i: The lw instruction is decoded in Way 1: dec_i1_instr_d = 0x000eae03. 

 
o Cycle i+1: The address is generated in the DC1 stage, as described in Lab 13 (see 

Figure 6 of that lab), and provided to the DCCM: 

 lsu_addr_dc1[31:0] = 0xF0040024  dccm_rd_addr_lo[15:0] = 0x0024 

 end_addr_dc1[15:0] = 0x0027          dccm_rd_addr_hi[15:0] = 0x0027 

 

As a result of the address check, reading the DCCM is enabled: dccm_rden = 1. This 

signal is provided to the DCCM and, along with the 3-bit Bank field of the address, 
determines the bank that must be read. In this case, only the second bank of the access 

needs to be read as the access is word-aligned: rden_bank = 0x02 (in binary 

00000010). 
 
o Cycle i+2: The read data is obtained from the DCCM and provided to the core. Given 

that it is an aligned access, the two read signals are equal and only 

dccm_data_lo_dc2 is effectively used by the core (again, this was explained in Lab 

13): 

 dccm_rd_data_lo = 0x4400000009  dccm_data_lo_dc2 = 0x00000009 

 dccm_rd_data_hi = 0x4400000009  dccm_data_hi_dc2 = 0x00000009 

 
o Cycle i+8: After adding 1 (the immediate) to the read value (0x00000009 + 1 = 

0x0000000A) and traversing the Store Buffer, as explained in the appendix of Lab 13, 
the data and address are provided to the DCCM, and writing of the correct bank is 
enabled using the following signals: 

 dccm_wren = 1 

 wren_bank = 0x02 (in binary 00000010; i.e, the second bank) 

 dccm_wr_addr = 0x0024 

 dccm_wr_data = 0x420000000A 

 
 

TASK: Explain how signals rden_bank, wren_bank, and addr_bank are obtained in 

lines 103, 104, and 105 of module lsu_dccm_mem. 
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TASK: Simulate an unaligned read to the DCCM and analyse how it is handled inside the 
DCCM. You can use the program used above ([RVfpgaPath]/RVfpga/Labs/Lab20/LW-
SW_Instruction_DCCM/) and simply substitute the load instruction as follows: 

lw t3, (t4)  lw t3, 1(t4) 

 
 

TASK: Simulate a DCCM bank conflict by modifying the program from Figure 4 
([RVfpgaPath]/RVfpga/Labs/Lab20/LW-SW_Instruction_DCCM/). 

 

1st modification: Remove the 20 nop instructions, regenerate the simulation, and 

analyse the lw and the sw in a random iteration of the loop. 

 

2nd modification: Modify the immediate of the sw instruction for making the lw and 

sw try to access the same bank in the same cycle: 
 sw t3, (t4)  sw t3, 8(t4) 

 
 
 

3. BENCHMARKING 
 
To benchmark a processor, a program (or set of programs) is run and the processor 
performance is measured. We compare processors by running the same benchmarks (i.e., 
sets of programs) on those processors. We introduce two common benchmarks: CoreMark 
and Dhrystone. These benchmarks are in folder 
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks. We describe these benchmarks, along 
with the Image Processing program from Lab 5, next.  
 
Folder [RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/CoreMark_HwCounters contains 
a PlatformIO project of the CoreMark benchmark targeted to the RVfpga System. We have 
adapted CoreMark to the RVfpga System using the sources provided by Chips Alliance at 
https://github.com/chipsalliance/Cores-SweRV. For any benchmark, we use the hardware 
counters (HW Counters) to measure various processor events, such as numbers of 
instructions executed and number of processor cycles, as explained in Lab 11. In addition to 
modifying the benchmark to use the RISC-V HW Counters, we have added some support for 
using the DCCM/ICCM and for using compiler optimizations. 
 
In the next section, we show how to run CoreMark on the Nexys A7 board under various 
scenarios. 
 

A. Variation 1: No compiler optimizations or DCCM/ICCM 
 
First, we show how to execute the CoreMark benchmark under the processor conditions 
used in previous labs: debug mode and no use of the DCCM/ICCM. To do so, follow the next 
steps: 
 
- Open the CoreMark_HwCounters project in PlatformIO. 
 
- Open file src/Test.c (see Figure 6), which includes the main function of our program: 

o The main function first configures the HW Counters for measuring four events: 

number of cycles, I-bus transactions (instructions) and D-bus transactions (ld/st 

instructions). For this purpose, function pspPerformanceCounterSet() is 

https://github.com/chipsalliance/Cores-SweRV
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used. 
o It then configures the different features of the SweRV EH1 processor, using two 

assembly instructions (li and csrrs) as explained in Section 2.C of the 

SweRVref document. In this case, all features are left to their default values. 
o The program then executes a loop that is only exited when any of the switches on 

the board is inverted. The purpose of this loop is to allow the user to open the 
serial monitor before the benchmark executes and outputs its results. 

o The program then invokes function main_cmark(), which implements the 

CoreMark benchmark itself, which is implemented in file src/cmark.c. 

o It finally prints the four events using function printfNexys(). 

 

 
Figure 6. File src/Test.c in CoreMark PlatformIO project 

 
- Briefly analyse the functions from the CoreMark benchmark implemented in file 

src/cmark.c. Note that the HW Counters are started and stopped inside the 

main_cmark() function (lines 1109-1112 and 1130-1133), and that the benchmark 

itself is executed inbetween (lines 1114-1128). 
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Figure 7. File src/cmark.c in CoreMark PlatformIO project 

 
- Run the program on the board. Then open the serial monitor as explained in Section 6.F 

of the GSG. 
 

After opening the serial monitor, you will first see a repeating message that asks you to 
invert a switch in the board for executing the CoreMark benchmark (see the upper red 
box in Figure 8). Once you invert a switch, the benchmark executes and outputs the 
results, as shown in Figure 8. 
 
CoreMark runs multiple iterations of a loop (you can easily modify the number of 

iterations by means of a parameter called ITERATIONS and defined in file src/cmark.c). 

The number of iterations it completes per second is called the CoreMark score (CM). 
The number of iterations per MHz is CM/MHz. The benchmark provides the CM/MHz – 
also called Iterat/Sec/MHz (iterations/second/MHz) – which is 0.47. You can also view 
the values provided by the hardware counters, which were used to calculate the 
CM/MHz. 
 
The execution took ~2 million cycles and approximately half million instructions were 
processed, resulting in an IPC (instructions per cycle) ≈ 0.25; specifically, ½ million 
instructions / 2 million cycles ≈ 0.25. This performance is really poor: recall that the ideal 
IPC in the SweRV EH1 processor is 2 because it is two-way superscalar. However, 
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performance is graded because of the large number of data reads/writes and the slow 
DDR External Memory. The number of data transactions through the bus is about 
133,000. The number of instruction transactions through the bus is only 392 because 
most instruction accesses hit in the I$. Recall that the RVfpga System does not have a 
D$ (data cache). 
 

 
Figure 8. Execution results of the CoreMark benchmark 

 
 

B. Variation 2: Using the DCCM 
 
Now we enable the DCCM in the RVfpga System so that most data accesses use the DCCM 
(instead of the external DDR memory). As we will see, this change increases performance, 
as expected. Follow the next steps to run CoreMark on a version of the RVfpga system that 
uses the DCCM: 
 
- The default linker script that we have used so far in most labs is available at 
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.platformio/packages/framework-wd-riscv-sdk/board/nexys_a7_eh1/link.lds. However, in 
order to use the DCCM to store some data of the program, we make use of a specific 
linker script that is provided as part of the PlatformIO project that you are using and 
which is available at: 
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/CoreMark_HwCounters/ld/link_DCC
M.ld. Open this file and inspect it. Figure 9 shows some parts of this file, which we 
describe briefly. 
 
In the upper screenshot of Figure 9 defines one memory section for the DCCM (called 

dccm), which corresponds to the address space defined in Figure 2(b) for this memory: 
dccm (wxa!ri) : ORIGIN = 0xf0040000, LENGTH = 64K 

 

The remaining screenshots map several code sections to the DCCM memory: .rodata, 

.data, .sdata, .bss and .stack. 
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Figure 9. File ld/link_DCCM.ld in the CoreMark PlatformIO project 

 
- Open file platformio.ini and uncomment line 18 (see Figure 10) so that the program uses 

the linker script from Figure 9 instead the default linker script. This way, as explained 
above, most data will be accessed in the fast DCCM instead of the slow DDR memory. 

 

                  
 

Figure 10. File platformio.ini in the CoreMark PlatformIO project 
 
- Run the program on the board and open the serial monitor. Then invert a switch on the 

board. You will obtain the results shown in Figure 11. 
 
In this case, the CM/MHz (i.e., the value of Iterat/Sec/MHz) is 1.88. The number of 
cycles has decreased to about a half million cycles. As in the previous version of the 
processor, about a half million instructions are processed; so we obtain an IPC of 1. By 
mapping sections of the program to the DCCM, performance has increased by a factor of 
four. 
 
Finally, the number of data transactions through the bus is now 0, given that data are 
stored in the DCCM. 
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Figure 11. Execution results of the CoreMark benchmark 

 
 

TASK: In file platformio.ini (see Figure 10), comment out line 18 and uncomment line 19 so 
that the program uses the linker script provided at: 
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/CoreMark_HwCounters/ld/link_DCCM
-ICCM.ld. Analyse this new linker script, which uses both the DCCM for storing most data 
and the ICCM for storing the instructions. Execute the CoreMark benchmark and compare 
the results with the ones obtained in this section. In this case, given that our default RVfpga 
System does not include an ICCM, use either the bitstream that you created in the first task 
of this lab  or the bitstream we provide at: 
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/Bitstreams/rvfpganexys_DCCM-
ICCM.bit. 

 

C. Variation: Using the DCCM and compiler optimizations 
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Now we add another way to improve performance: compiler optimizations. As in the previous 
section, we use the DCCM to store most of the data sections of the application – but now we 
also enable compiler optimizations. Up until this point, we have executed programs in debug 
mode with no compiler optimizations. To enable compiler optimizations, follow the next 
steps: 
 
- Use the 

[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/CoreMark_HwCounters/ld/link_DCC
M.ld linker script again. To do so, open file platformio.ini and uncomment line 18 (see 
Figure 10) and comment out line 19. 
 

- Using a different procedure than previously used, run the program on the board: 
Upload the usual bitstream but then use option “Upload and Monitor” available in the 
Project Tasks of PlatformIO (see Figure 12). 

 

 
Figure 12. Upload and Monitor 

 
This option will compile the program, execute it on the board and open the serial monitor. 
This option compiles using the optimization flags determined by the build_flags option in 
platformio.ini, in this case -O2 (see Figure 13). 

 

 
Figure 13. File platformio.ini, option build_flags 

 
 
Once the program starts executing, as usual, invert a switch on the board. You will 
obtain the results shown in Figure 14. 
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The CM/MHz (Iterat/Sec/MHz) is now 3.47. The number of cycles has decreased to 
around 288,000, and the number of instructions is now around 309,000. Even though the 
IPC ≈ 1, the performance (CM/MHz and thus, execution time) is now much better than in 
the scenario analysed in Section B, as both the number of cycles and instructions have 
decreased significantly. This improvement is due to enabling compiler optimizations. The 
number of data bus transactions is still 0 given that data is stored in the DCCM. 
 

 
Figure 14. Execution results of CoreMark when using compiler optimizations 

 
 

TASK: Modify the compilation optimization to -O3 and explain the results. 

 
 
 

4. EXERCISES 
 

1) Do the same analysis as was done for CoreMark but this time using the Dhrystone 
benchmark. A PlatformIO project that contains the Dhrystone benchmark is in: 
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/Dhrystone_HwCounters. As 
required by all benchmarks, this Dhrystone benchmark has been adapted to the 
specific system, in this case the RVfpga System, using the sources provided at 
https://github.com/chipsalliance/Cores-SweRV. File Test.c is similar to the one from 

https://github.com/chipsalliance/Cores-SweRV
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CoreMark (Figure 6) but it invokes function main_dhry(), which includes the 

Dhrystone benchmark itself. 
 
 

2) Do the same analysis as was done for CoreMark but this time for the 
ImageProcessing application. A PlatformIO project that contains the 
ImageProcessing application is in: 
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/ImageProcessing_HwCounters. 
These are the applications we used in Lab 5 for transforming an RGB image into 
grayscale. File Test.c is similar to the one from CoreMark (Figure 6) but it invokes 

function ImageTransformation(), which includes the Image Transformation 

benchmark that we analysed in Lab 5. The DCCM of the default RVfpga System is 
not big enough to store the image, so instead use the RVfpga System (bitstream) 
that has a 128 KiB DCCM, which is at: 
[RVfpgaPath]/RVfpga/Labs/Lab20/RealBenchmarks/Bitstreams/rvfpganexys_DCCM-
128.bit.  

 
 

3) Enable/disable various core features as described in Section 2.C of this lab. 
Compare the performance results – that is, values of the HW Counters when 
executing the programs on these modified cores. Run all three programs (CoreMark, 
Dhrystone, and ImageProcessing) on these modified RVfpga Systems on the Nexys 
A7 board. Variations include: 
- Using different Branch Predictor configurations and implementations (such as  
always not-taken, Gshare, and the bimodal predictor implemented in Exercise 1 of  
Lab 16).  
- Enabling/disabling the dual-issue feature.  
- Using various I$/DCCM/ICCM configurations (such as different sizes or different I$  
Replacement Policies). 

 


