

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga Lab 15

Data Hazards

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 2

1. INTRODUCTION

In this lab we deal with data hazards. As explained by Hennessy and Patterson in their 6th

edition of “Computer Architecture : A Quantitative Approach” [HePa], data hazards occur
when the pipeline changes the order of read/write accesses to operands so that the order
differs from the order seen by sequentially executing instructions on an unpipelined
processor. Assume instruction i is followed by instruction j in the program and both
instructions use register x. Three types of data hazards can occur between i and j:

- Read After Write (RAW) data hazard: This is the most common type of hazard. It
occurs when instruction j reads register x before instruction i writes register x. Thus,
instruction j would use the wrong value of x.

- Write After Read (WAR) data hazard: WAR hazards occur when instruction j writes
x and instruction i reads x, and instruction j is reordered to occur before i. Thus,
instruction i reads the incorrect value of x. This hazard only occurs when instructions
are reordered, which only rarely happens in SweRV EH1; specifically, WAR hazards
never happen in SweRV EH1.

- Write After Write (WAW) data hazard: WAW hazards occur when instructions are

reordered and instruction j writes x before instruction i writes x. This hazard only
occurs when instructions are reordered, which only rarely happens in SweRV EH1;
however, in the case of non-blocking loads, a WAW hazard could occur as we will
analyse later in this lab.

In the following sections we analyse how RAW data hazards are resolved in the SweRV EH1
processor, and then we describe tasks and exercises related to RAW hazards. We also
describe an exercise analysing a situation when a WAW hazard takes place.

NOTE: Before analysing the SweRV EH1 data hazard logic, we recommend reading
Section 7.5 in DDCARV about how hazards are resolved in the pipelined processor. Data
hazards, specifically, are analysed in Section 7.5.3. Although the pipelined processor
shown in the book is simpler than SweRV EH1, data hazards are resolved similarly in both
processors.

2. SOLVING DATA HAZARDS WITH FORWARDING AT THE DECODE STAGE

As explained in Section 7.5.3 of DDCARV, some RAW data hazards can be solved by
forwarding (also called bypassing) a result from an instruction executing in an advanced
pipeline stage to a dependent instruction executing in an earlier pipeline stage. This requires
adding multiplexers in front of the Functional Units (ALUs, Multiplier, Adder that computes
the Effective Address in DC1, etc.) to select their operands from either the Register File or
from subsequent stages.

Figure 1 extends the Decode stage shown in Figure 4 of Lab 11 with the bypass values. The
Forwarding Logic produces bypass (i.e., forwarded) for each of the two source operands in
each of the Ways:

- Way-0:

o First input operand: i0_rs1_bypass_data_d[31:0]

o Second input operand: i0_rs2_bypass_data_d[31:0]

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 3

- Way-1:

o First input operand: i1_rs1_bypass_data_d[31:0]

o Second input operand: i1_rs2_bypass_data_d[31:0]

These four inputs are distributed to the 3:1 and 4:1 multiplexers that determine the input
operands for each of the Execution stages pipeline paths. For the sake of clarity in Figure 1,
signals are connected by name. The inputs to the Forwarding Logic are the results produced
by previous program instructions that are more advanced in the pipeline, as we will see
below.

raddr0 [4:0]

raddr1 [4:0]

rd0 [31:0]

rd1 [31:0]

Register File

(dec_gpr_ctl)

MUX

b = mul_rs2_d

I0 Pipe

L/S Pipe

Mult Pipe

a = mul_rs1_d

MUX

rd0

rd1

MUX

b = i0_rs2_d

a = i0_rs1_final_d

MUX

rd0

rd1

MUX
exu_lsu_rs1_d

rd0

exu_lsu_rs2_d
MUX

rd1

raddr2 [4:0]

raddr3 [4:0]

rd2 [31:0]

rd3 [31:0]

rd2

rd3

rd3

rd2

I1 Pipe

MUX

MUX

rd2

rd3

MUX

MUX

rd0

rd1

rd2

rd3

dividend

divisor

Divider

Forwarding

Logic

i0_rs1_bypass_data_d[31:0]

i0_rs2_bypass_data_d[31:0]

i1_rs1_bypass_data_d[31:0]

i1_rs2_bypass_data_d[31:0]

From

subsequent

stages

DECODE STAGE EX1/DC1/M1

b = i1_rs2_d

a = i1_rs1_d

i0_rs1_bypass_data_d

i0_rs2_bypass_data_d

i1_rs1_bypass_data_d

i1_rs2_bypass_data_d

i0_rs1_bypass_data_d

i1_rs1_bypass_data_d

i0_rs2_bypass_data_d

i1_rs2_bypass_data_d

i0_rs2_bypass_data_d

i1_rs2_bypass_data_d

i0_rs1_bypass_data_d

i1_rs1_bypass_data_d

i0_rs1_bypass_data_d

i1_rs1_bypass_data_d

i0_rs2_bypass_data_d

i1_rs2_bypass_data_d

Figure 1. Bypass inputs to the Functional Units.

Many forwarding paths exist in the SweRV EH1 processor – in this section we focus on a
specific path and analyse it in detail. Then, in the tasks and exercises, you will inspect other
cases. We analyse the situation of two dependent A-L instructions executing simultaneously
and how RAW data hazards are resolved. As we did in Labs 12 and 13, we start with a basic
study (Section 2.A) and then proceed to an advanced analysis (Section 2.B). You may
choose to complete the basic section only or to complete both sections.

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 4

We will work with the example shown in Figure 2, that executes two add instructions

contained within a loop that repeats for 0xFFFF iterations. The first add instruction writes a

value to t4 and the second add instruction uses t4 as its second input operand. An

independent add instruction (add t6, t6, -1), which is the instruction that updates the

loop index) is inserted in between the two add instructions to force the dependent add

instructions use the same way of the processor.

.globl Test_Assembly

.text

Test_Assembly:

li t3, 0x3

li t4, 0x2

li t5, 0x1

li t6, 0xFFFF

REPEAT:

 INSERT_NOPS_8

 add t4, t4, t5 # t4 = t4 + t5 (t4 = 2 + 1)

 add t6, t6, -1

 add t3, t3, t4 # t3 = t3 + t4 (t3 = 3 + 3)

 INSERT_NOPS_9

 li t3, 0x3

 li t4, 0x2

 li t5, 0x1

 bne t6, zero, REPEAT # Repeat the loop

.end

Figure 2. RAW data hazard between two add instructions

Folder [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_AL-AL provides the PlatformIO
project so that you can analyse, simulate, and modify the program as desired. Open the
project in PlatformIO, build it, and open the disassembly file (available at
[RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_AL-

AL/.pio/build/swervolf_nexys/firmware.dis) you will see that the two add instructions that we

are analysing are placed at addresses 0x000001A0 and 0x000001A8:

 0x000001a0: 01ee8eb3 add t4,t4,t5

 0x000001a4: ffff8f93 addi t6,t6,-1

0x000001a8: 01de0e33 add t3,t3,t4

A. Basic analysis of a RAW data hazard between A-L
instructions

In the example that we are analysing, the second add instruction (add t3,t3,t4) needs to

use the result of the first add instruction (add t4,t4,t5) as its second input operand. This

result is available at the EX1 stage, from where it can be bypassed to the Decode stage and

used by the second add instruction. In our example (Figure 2), all iterations are equal and

t4 is 2 initially and 3 after the first addition. This last value (3) is the one that the second

addition must use as its second input operand, and not the value read from the Register File

(which is 2 until the first add instruction reaches the Writeback stage and updates it).

Figure 3 illustrates the flow of the instructions of the example from Figure 2 through the
SweRV EH1 pipeline for a random iteration of the loop. In cycle i, the value computed at the

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 5

EX1 stage of the I0 Pipe must be forwarded to the instruction which is at the Decode stage

of Way-0, due to the RAW data hazard between the two add instructions under analysis.

Cycle i-1 Cycle i

...

add t4,t4,t5 (01ee8eb3)

add t6,t6,-1 (ffff8f93)

add t3,t3,t4 (01de0e33)

nop (00000013)

nop (00000013)

nop (00000013)

nop (00000013)

nop (00000013)

...

DECO

DECO

ALGN

ALGN

FC2

FC2

FC1

FC1

Cycle i+1 Cycle i+3

EX1

EX1

DECO

DECO

ALGN

ALGN

FC2

FC2

EX2

EX2

EX1

EX1

DECO

DECO

ALGN

ALGN

EX3

EX3

EX2

EX2

EX1

EX1

DECO

DECO

Cycle i+4 Cycle i+5 Cycle i+6

COMMIT

COMMIT

EX3

EX3

EX2

EX2

EX1

EX1

WB

WB

COMMIT

COMMIT

EX3

EX3

EX2

EX2

WB

WB

COMMIT

COMMIT

EX3

EX3

Figure 3. Execution of Figure 2 example code. Forwarding is performed in cycle i.

Figure 4 illustrates the SweRV EH1 Way-0 Decode and EX1 stages during cycle i of Figure

3. In this cycle, the first add instruction (add t4,t4,t5) is in the EX1 stage and the second

add instruction (add t3,t3,t4) is in the Decode stage. As shown in the figure, the result

of the first add instruction is bypassed to the Decode stage, it is selected by the Forwarding

Logic (as we will analyse in detail in the following section), and it is used as the second input

operand for the second add instruction.

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 6

DECODE STAGE EX1 STAGE

r0 [31:0]

r1 [31:0]

out [31:0]

aff

bff

ALU

(exu_alu_ctl)

gpr_i0_rs1_d [31:0]

gpr_i0_rs2_d [31:0]

a

b

a_ff

b_ff

i0_result_e1 [31:0]

Register File

(dec_gpr_ctl)

3-1

MUX

3-1

MUX

add t3,t3,t4 (0x01de0e33) add t4,t4,t5 (0x01ee8eb3)

3
2

1

3
3

3

3

Forwarding Logic

i0_rs2_bypass_data_d[31:0]

2

Figure 4. Result forwarded from EX1 to Decode (second operand) of Way 0

Finally, Figure 5 shows the simulation of the program from Figure 2 during cycles i and i+1 of
Figure 3.

Figure 5. Simulation of Figure 2 example code

Decode

stage

EX1

stage

add t4,t4,t5
add t3,t3,t4

i+1 i

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 7

TASK: Replicate the simulation from Figure 5 on your own computer. You can use the .tcl
file provided in: [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_AL-AL/test_Basic.tcl.

Analyse the simulation from Figure 5 and the diagram from Figure 4 at the same time.

- Instruction add t4,t4,t5 (0x01ee8eb3):

o In cycle i, this instruction is in the EX1 stage of the I0 Pipe (i0_inst_e1 =

0x01ee8eb3). It computes the following addition in the ALU:

a_ff (2) + b_ff (1) = out (3)

The result of the addition is provided as an input to the Forwarding Logic at
the Decode stage, as shown in Figure 4.

- Instruction add t3,t3,t4 (0x01de0e33):

o In cycle i, this instruction is in the Decode stage of Way-0 (dec_i0_instr_d

= 0x01de0e33). The Forwarding Logic connects i0_result_e1 with

i0_rs2_bypass_data_d. The two 3:1 multiplexers select the input

operands for the addition that will be calculated in the next cycle (cycle i+1) in
the EX1 stage of the I0 Pipe; specifically:

a = 3 (from the Register File)

b = 3 (from the ALU output in the EX1 stage of the I0 Pipe, through the

Forwarding Logic, signal i0_rs2_bypass_data_d)

o In cycle i+1, this instruction is in the EX1 stage of the I0 Pipe (i0_inst_e1 =

0x01de0e33). It computes the following addition in the ALU:

a_ff (3) + b_ff (3) = out (6)

TASK: Remove all nop instructions in the example from Figure 2. Draw a figure similar to

Figure 3 for two consecutive iterations of the loop, then analyse and confirm that the figure
is correct by comparing it to a Verilator simulation, and finally compute the IPC by using the
Performance Counters while executing the program on the board.

TASK: In the example from Figure 2, remove all nop instructions and move the add

t6,t6,-1 instruction after the add t3,t3,t4 instruction, and then re-examine the

program both in simulation and on the board. In this reordered program, the two dependent

add instructions (add t4,t4,t5 and add t3,t3,t4) arrive at the Decode stage in the

same cycle, and this has an impact in performance. Explain the impact of these changes,
using both simulation and execution on the board.

Test similar situations where you replace the dependent add instruction for other

dependent instructions, such as:

- add t4,t4,t5
mul t3,t3,t4

- add t4,t4,t5
div t3,t3,t4

- add t4,t4,t5
lw t3, 0(t4)

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 8

B. Advanced analysis of a RAW data hazard between A-L
instructions

i. Theoretical explanation

Figure 6 extends the diagrams from Figure 1 and Figure 4 by adding a 10:1 multiplexer

(surrounded by a blue square in Figure 6) that produces signal i0_rs2_bypass_data_d,

which in our example from Figure 2 provides the second input operand for the second add

instruction (add t3,t3,t4). This 10:1 multiplexer is implemented inside the Forwarding

Logic box shown in Figure 1 and Figure 4.

The figure also shows the input connections of this 10:1 multiplexer. The bypassed value
can come from an instruction executing through Way 0 or Way 1. Thus five forwarding paths
are necessary per way. Specifically, the inputs to the 10:1 multiplexer can come from any of
the subsequent stages (EX1, EX2, EX3, Commit, and Writeback) of Way 0 or Way 1. For the
sake of simplicity, we connect the five inputs coming from Way 0 using wires, whereas the 5
inputs coming from Way 1 are connected by name.

Three additional 10:1 multiplexers inside the Forwarding Logic compute the three other

source operands: signals i0_rs1_bypass_data_d, i1_rs1_bypass_data_d and

i1_rs2_bypass_data_d. However, we do not show them in the figure as they are not

used in the example that we analyse in this section (Figure 2). All four multiplexers can be
found in lines 2429-2473 of module dec_decode_ctl.

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

Decode EX1

rd0 [31:0]

rd1 [31:0]

out [31:0]

aff

bff

ALU

(exu_alu

_ctl)

gpr_i0_rs1_d

gpr_i0_rs2_d

a
 =

 i
0

_
rs

1
_

fi
n
a

l_
d

b
 =

 i
0

_
rs

2
_

d

a_ff

b_ff

i0_ap_e1 [19:0]

i0_result_e1 [31:0] =

exu_i0_result_e1 [31:0]

i0e2res

ultff

i0
_

re
s
u

lt
_

e
2
 [

3
1

:0
]

i0e3res

ultff

EX2

i0
_

re
s
u

lt
_

e
3
 [

3
1

:0
]

i0e4res

ultff

EX3

i0
_

re
s
u

lt
_

e
3

_
fi
n
a

l
[3

1
:0

]

3-1

MUX

i0
_

re
s
u

lt
_

e
4
 [

3
1

:0
]

i0wbre

sultff

Commit

i0
_

re
s
u

lt
_

e
4

_
fi
n
a

l
[3

1
:0

]

Register File

(dec_gpr_ctl)

Writeback

3-1

MUX

3-1

MUX

3-1

MUX

e3d

10-1

MUX

i0_rs2_bypass_data_d[31:0]

i0_result_wb [31:0]

i1_result_wb

i1_result_e4_final

i1_result_e3_final

i1_result_e2

i1_result_e1

dec_i0_immed_d[31:0]

Figure 6. I0 Pipe including the Forwarding Logic used for the second input source of the ALU

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies

i0_rs2_d[31:0]

gpr_i0_rs2_d[31:0]

dec_i0_immed_d[31:0]

i0_rs2_bypass_data_d[31:0]

dec_i0_rs2_bypass_en_d

out [31:0]

aff

bff

a

b

aff

bff3-1

MUX

ALU (exu_alu_ctl)i1_result_e3_final

i0_rs2bypass[9:0]

10-1

MUX

i0_result_e3_final

i1_result_e2

i0_result_e2

i1_result_e1

i0_result_e1

i1_result_e4_final

i0_result_e4_final

i1_result_wb

i0_result_wb

(Module dec_decode_ctl)

(Module exu)

(Module exu)

Figure 7. 10:1 and 3:1 multiplexers highlighted in Figure 6

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 11

Figure 7 zooms into the two multiplexers (10:1 and 3:1 multiplexers) from Figure 6 that

compute the second input operand for the I0 Pipe ALU (b). The figure shows both a block

diagram and the Verilog code where these multiplexers are implemented in modules
dec_decode_ctl and exu.

NOTE: The two multiplexers from Figure 7 also exist in the processor from DDCARV. Data
is forwarded to the Execute stage in that processor and fewer forwarding paths exist
because it is not superscalar and has a shorter pipeline. You can analyse the forwarding
paths in Figure 7.55 of DDCARV.

We next analyse the inputs, outputs, and control signal of the two multiplexers shown in
Figure 7.

10:1 Multiplexer:

Output: The output of the 10:1 multiplexer is i0_rs2_bypass_data_d[31:0]. This signal

contains the value that must be forwarded (bypassed) to the instruction in the Decode stage.

Inputs: The inputs to the 10:1 multiplexer are the results of previous instructions in the
program that are executing at later stages (EX1, EX2, EX3, Commit, or Writeback). Five of
these signals come from the I0 Pipe (as shown in Figure 6) and the other five signals come
from the I1 Pipe (not shown in Figure 6), as the instruction in the Decode stage could
potentially depend on an instruction executing in any of the two ways.

Control signal: The control signal (i0_rs2bypass[9:0]) selects which input is connected

with the output of the multiplexer. It is formed by 10 bits, with at most one of them being high
at the same time (they can all be zero if there is no data hazard). The multiplexer operates
as follows:

- If i0_rs2bypass[9] == 1  i0_rs2_bypass_data_d = i1_result_e1

- If i0_rs2bypass[8] == 1  i0_rs2_bypass_data_d = i0_result_e1

- If i0_rs2bypass[7] == 1  i0_rs2_bypass_data_d = i1_result_e2

- If i0_rs2bypass[6] == 1  i0_rs2_bypass_data_d = i0_result_e2

- If i0_rs2bypass[5] == 1  i0_rs2_bypass_data_d = i1_result_e3_final

- If i0_rs2bypass[4] == 1  i0_rs2_bypass_data_d = i0_result_e3_final

- If i0_rs2bypass[3] == 1  i0_rs2_bypass_data_d = i1_result_e4_final

- If i0_rs2bypass[2] == 1  i0_rs2_bypass_data_d = i0_result_e4_final

- If i0_rs2bypass[1] == 1  i0_rs2_bypass_data_d = i1_result_wb

- If i0_rs2bypass[0] == 1  i0_rs2_bypass_data_d = i0_result_wb

In order to understand how this 10-bit control signal is computed, we explain the

computation of signal i0_rs2bypass[8], which is the one which goes high in our example

from Figure 2 for the add-add bypass.

- If i0_rs2bypass[8] is 1, the bypassed value selected is i0_result_e1, which is

the result of the instruction executing in the EX1 stage of the I0 pipe (see Figure 6).

- For EX1 to forward data to the Decode stage (both in the I0 pipe), the following
conditions must occur (see Section 4 of the SweRVref document to review the
control signals):

 The second input operand of the instruction in the Decode stage is read from the

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 12

Register File, and it is not read from register zero. In the SweRV EH1 Control

Unit, this occurs when dec_i0_rs2_en_d is 1. The corresponding Verilog code

is:
dec_i0_rs2_en_d = i0_dp.rs2 & (i0r.rs2[4:0] != 5'd0);

 The instruction in the EX1 stage of the I0 Pipe is valid:

e1d.i0v == 1

 The destination register of the instruction in the EX1 stage (of the I0 pipe) and the
second source register of the instruction in the Decode stage (of Way 0) are the
same:

e1d.i0rd[4:0] == i0r.rs2[4:0]

 The instruction in the EX1 stage (of the I0 Pipe) is an ALU operation:

i0_rs2_class_d.alu == 1

- Taking all this into account, we can conclude that:

i0_rs2bypass[8] =

(i0_dp.rs2 & (i0r.rs2[4:0] != 5'd0)) &

e1d.i0v &

(e1d.i0rd[4:0] == i0r.rs2[4:0]) &

i0_rs2_class_d.alu ;

TASK: Compare the previous equations with the ones explained for the pipelined
processor from DDCARV.

TASK: Analyse the Verilog code to explain how the computation of the previous equation
is performed. You must inspect the following lines of module dec_decode_ctl.

TASK: Write equations (similar to the one above) for other control bits of

i0_rs2bypass[9:0], i0_rs1bypass[9:0], i1_rs2bypass[9:0], and

i1_rs1bypass[9:0].

3:1 Multiplexer:

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 13

Output: The output of the 3:1 multiplexer is i0_rs2_d[31:0]. This signal is sent to the

second input (b) of the ALU in Way 0.

Inputs: The inputs to the 3:1 multiplexer are:

- The value read from the Register File (gpr_i0_rs2_d).

- The Immediate value (dec_i0_immed_d), obtained from the instruction.

- The value bypassed from later stages (i0_rs2_bypass_data_d) obtained from the

10:1 multiplexer described earlier.

Control signal: The control signal to the 3:1 multiplexer (dec_i0_rs2_bypass_en_d)

selects either:

- The value bypassed from later stages (i0_rs2_bypass_data_d), if

dec_i0_rs2_bypass_en_d ==1

- Or the value coming from the Register File or the Immediate (gpr_i0_rs2_d and

dec_i0_immed_d, respectively), if dec_i0_rs2_bypass_en_d == 0. It may look

strange that the same signal selects two inputs; however, the signal that must not be

selected (either gpr_i0_rs2_d or dec_i0_immed_d) is forced to zero in the

Verilog code.

The select signal of the 3:1 multiplexer (dec_i0_rs2_bypass_en_d) is simply computed

as the logical OR of the 10-bit control signal of the 10:1 multiplexer:

assign dec_i0_rs2_bypass_en_d = |i0_rs2bypass[9:0];

Thus, whenever the second input operand of an instruction depends on the result of an
earlier instruction that is still executing (i.e. any of the 10 bits of signal

i0_rs2bypass[9:0] is 1), dec_i0_rs2_bypass_en_d == 1 and the operand is

obtained through forwarding. Conversely, if it does not depend on any earlier instruction,

dec_i0_rs2_bypass_en_d == 0 and the operand comes from either the Register File or

the Immediate.

ii. Experiment

Figure 8 shows the simulation of the program from Figure 2 in a random iteration of the loop.
Cycle i from Figure 3 is indicated at the top part of the figure.

The signals on the top (Trace Signals) are included to help trace the instructions as they
progress through the pipeline. Note that these signals were already used in previous labs.
The meaning of each signal in Way 0 is as follows (the same applies to Way 1 by just

substituting i0 for i1 in the signal names):

 dec_i0_instr_d  instruction in the Decode stage

 i0_inst_e1  instruction in the EX1 stage

 i0_inst_e2  instruction in the EX2 stage

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 14

 i0_inst_e3  instruction in the EX3 stage

 i0_inst_e4  instruction in the Commit stage

 i0_inst_wb  instruction in the Writeback stage

Below the Trace Signals, the main signals of each multiplexer analysed above are shown.
Each multiplexer is surrounded by two blue lines, whereas the control signal, inputs, and
output of each multiplexer are separated by red lines.

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 15

Figure 8. Simulation of the program from Figure 2 in a random iteration of the loop

Figure 9 shows the Decode and EX1 stages during the execution of the program from Figure
2 in Cycle i (as defined in Figure 8).

Trace

Signals

DECODE

EX1

EX2

EX3

COMMIT

WB

Cycle i

10-1

MUX

3-1

MUX

add t4,t4,t5
add t3,t3,t4

Control

10 Inputs

Output

Control

3 Inputs

Output

Decode stage

EX1 stage

WB stage

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 16

DECODE STAGE EX1 STAGE

r0 [31:0]

r1 [31:0]

out [31:0]

aff

bff

ALU

(exu_alu_ctl)

gpr_i0_rs1_d [31:0]

gpr_i0_rs2_d [31:0]

a

b

aff

bff

i0_result_e1 [31:0]

Register File

(dec_gpr_ctl)

3-1

MUX

3-1

MUX

10-1

MUX

i0_rs2_bypass_data_d[31:0]

dec_i0_immed_d[31:0]

add t3,t3,t4 add t4,t4,t5

3
2

1

3

3

3 3

Cycle i

Figure 9. Decode and EX1 stages during execution of the Figure 2 example program in
Cycle i (as defined in Figure 8)

TASK: Replicate the simulation from Figure 8 on your own computer. You can use the .tcl
file provided in: [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_AL-AL/test_Advanced.tcl.

Analyse the simulation from Figure 8 and the diagram from Figure 9 at the same time.

- Trace Signals shown in Figure 8:

o In cycle i, the second add instruction is executing in the Decode stage of Way

0 (dec_i0_instr_d = 0x01DE0E33), and the first add instruction is

executing in the EX1 stage of the I0 Pipe (i0_inst_e1 = 0x01EE8EB3).

o In cycle i+1, the second add progresses to the EX1 stage of the I0 Pipe

(i0_inst_e1 = 0x01DE0E33) and the first add progresses to the EX2 stage

of the I0 Pipe (i0_inst_e2 = 0x01EE8EB3).

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 17

- 10:1 Multiplexer: In Cycle i, signal i0_rs2bypass[9:0] = 0x100 (i.e.

i0_rs2bypass[8] = 1), thus the output is connected with the value coming from

the EX1 stage of the I0 Pipe (see Figure 9):

i0_rs2_bypass_data_d = i0_result_e1 = 0x00000003

- 3:1 Multiplexer: In Cycle i, signal dec_i0_rs2_bypass_en_d = 1, thus the output

is connected with the value coming from the bypass logic (see Figure 9):

i0_rs2_d = i0_rs2_bypass_data_d = 0x00000003

- EX1 stage shown in Figure 8:

o In cycle i, the first add instruction computes the addition in the I0 Pipe ALU:

a_ff (2) + b_ff (1) = out (3).

o In cycle i+1, the second add instruction computes the addition in the I0 Pipe

ALU: a_ff (3) + b_ff (3) = out (6).

TASK: For the program from Figure 2, perform the same analysis as in Figure 8 for
situations where the two dependent instructions are placed at different distances one from
each other. You can control the distance by changing the number of nops between the two

dependent add instructions.

Also, create other examples where the first input operand is the one that receives the
forwarding data.

You can also create other examples where the two add instructions are executing through
the I1 Pipe, and confirm that the behaviour is the same.

Finally, substitute the dependent add instruction (add t3,t3,t4) for other dependent

instructions executing though other pipes and analyse the results of the simulation. For

example, instead of the second add instruction, you could include one of the following

instructions:

 - lw t3, (t4) (force the read value to come from the DCCM as explained in Lab 13)

 - mul t3, t3, t4

 - div t3, t3, t4

3. SOLVING DATA HAZARDS WITH FORWARDING AT THE COMMIT STAGE

A more delicate situation occurs when an instruction depends on a previous instruction that

needs several cycles to obtain the result (i.e. a multi-cycle operation), such as a lw

instruction, a mul instruction, a div instruction, etc. In this section we analyse a specific

situation that can occur in the execution of a lw instruction and a dependent add instruction,

and we leave as an exercise the analysis of other instructions and situations.

As explained in Lab 13, a lw instruction needs three cycles (stages DC1, DC2 and DC3) to

obtain its result when the low-latency DCCM memory is used. This is the scenario used in
this section. (As we also analysed in Labs 13 and 14, a larger delay is incurred when the

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 18

External DDR2 Memory is used – the effects of this larger memory latency on data hazards
is left as an exercise.)

If the lw instruction executes three or more cycles ahead of the dependent add instruction,

the hazard is resolved as explained in Section 2. In this case, the same 10:1 and 3:1
multiplexers described in that section are used for forwarding the data read by the load
instruction to the subsequent instruction that depends on it.

APPENDIX A: The appendix at the end of the document includes an example of a lw-add

RAW data hazard that is handled as explained in Section 2.

However, if the load instruction executes closer to the dependent add instruction, the hazard

is resolved in a different way than described in Section 2. The problem now is that when the

add instruction reaches the EX1 stage, the value read by the lw instruction is not yet

available.

In the pipelined processor explained in DDCARV, bubbles are introduced in this case, which
make the dependent instruction wait and only use the read value when it is available. This
requires little added hardware, but it impacts performance. Thus, SweRV EH1 allows the
dependent instruction to continue through the pipeline and then recalculate the operation in
the Commit stage, if needed due to a data dependency.

Specifically, SweRV EH1 adds an extra ALU (the Secondary ALU) in the Commit stage of
each way. This ALU recalculates the arithmetic-logic operation with the proper inputs when
necessary. Thus, no cycles are lost due to stalling – but at the cost of adding two extra ALUs
(one per way) as well as added control signals and logic. Figure 10 illustrates the
implementation of this Secondary ALU in the Commit stage of Way 0 (the ALU is surrounded
by a blue square) as well as the added forwarding logic in the EX3 stage for the second
input operand (this logic is surrounded by a red square). (In Figure 4 of Lab 11 these two
extra ALUs and the forwarding paths were not included for the sake of simplicity.)

out [31:0]

Secondary ALU

(exu_alu_ctl)

a aff

bff

EX3

i0_result_e3_final

i0_result_e4 [31:0]

Commit

i0_result_e4_final [31:0] i0_result_wb [31:0]

Writeback

3-1

MUX

4-1

MUX

aff

bff
2-1

MUX

LOGIC

LOGIC

i0_result_e4_eff [31:0]

i0_result_wb_eff [31:0]

i0_rs2_e3 [31:0]

i0
_

rs
2

_
b
y
p

a
s
s
_

d
a

ta
_

e
3
 [

3
1

:0
]

i1_result_e4_eff [31:0]

i1_result_wb_eff [31:0]
b = i0_rs2_e3_final

exu_i0_result_e4[31:0]

lsu_result_corr_dc4 [31:0]

Secondary ALU Forwarding Logic

Figure 10. Secondary ALU in the Commit stage of Way 0

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 19

TASK: Add logic to Figure 10 to produce the first input operand (a) of the Secondary ALU

in the I0 Pipe.

Figure 11 shows the example code used in this section. It executes a lw instruction followed

immediately by an independent add instruction (add t6, t6, -1: that calculates the loop

index) and then an add instruction that depends on the load. The independent add

instruction is included to force both the lw instruction and the dependent add instruction to

execute through Way 0. Thus, the only difference with respect to the program from the

Appendix is that the lw and add instructions are closer now; however, this small difference

in the program translates into a huge difference in the way it is executed, as we have just
explained and will demonstrate next.

.globl Test_Assembly

.section .midccm

#.data

A: .space 4

.text

Test_Assembly:

la t0, A # t0 = addr(A)

li t1, 0x1 # t1 = 1

sw t1, (t0) # A[0] = 1

li t1, 0x0

li t3, 0x1

li t6, 0xFFFF

REPEAT:

 beq t6, zero, OUT # Stay in the loop?

 INSERT_NOPS_9

 lw t1, (t0)

 add t6, t6, -1

 add t3, t3, t1 # t3 = t3 + t1

 INSERT_NOPS_8

 li t1, 0x0

 li t3, 0x1

 add t4, t4, 0x1

 add t5, t5, 0x1

 j REPEAT

OUT:

.end

Figure 11. Program that executes a lw, independent add, and dependent add

As usual, folder [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_Close-LW-AL provides the
PlatformIO project so that you can analyse, simulate, and modify the program as desired.
Open the project in PlatformIO, build it, and open the disassembly file (available at
[RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_Close-LW-

AL/.pio/build/swervolf_nexys/firmware.dis). Notice that the lw and add instructions are

placed at addresses 0x000001bc and 0x000001c4.

0x000001bc: 0002a303 lw t1,0(t0)

0x000001c0: ffff8f93 addi t6,t6,-1

0x000001c4: 006e0e33 add t3,t3,t1

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 20

Figure 12 shows the simulation of the program from Figure 11 in a random iteration of the
loop. Again, any iteration would be valid except for the first one, which you should try to
avoid due to instruction cache misses. As in the example from the previous section, the
signals on the top (Trace Signals) are included for help trace the instructions as they
progress through the pipeline. Below the Trace Signals, the main signals of the 4:1 and 2:1
multiplexers and the new ALU from Figure 11 are shown.

Figure 12. Simulation of the program from Figure 11 in the third iteration of the loop

Figure 13 shows a diagram of the execution of the program from Figure 11 in the seventh

iteration of the loop and for cycle i shown in Figure 12, when the add instruction is in the

EX3 stage and the lw instruction is in the Commit stage, and for cycle i+1, when the add

lw t1,0(t0) add t3,t3,t1

i i+1

4-1
MUX

EX3

2-1
MUX

EX3

Secondary
ALU

EX4

Trace

Signals

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 21

instruction is in the Commit (i.e., EX4) stage and recalculates the operation on the proper
inputs.

out [31:0]

ALU (exu_alu_ctl)

a

b

aff

bff

EX3 STAGE

i0_result_e3_final [31:0]

i0_result_e4 [31:0]

COMMIT STAGE

i0_result_e4_final [31:0]3-1

MUX

4-1

MUX

aff

bff
2-1

MUX

LOGIC
i0_result_e4_eff [31:0]

i0_rs2_e3 [31:0]

add t3,t3,t1 lw t1,(t0)

1

1

1
1

1

Cycle i

lsu_result_corr_dc4 [31:0]

1

out [31:0]

ALU

(exu_alu_ctl)

aff

bff

i0_result_e4 [31:0]

EX4 STAGE

i0_result_e4_final [31:0]
3-1

MUX

aff

bff

add t3,t3,t1

1

1

2

2

Cycle i+1

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 22

Figure 13. Diagram of the execution of the program from Figure 11 in the seventh
iteration of the loop and for cycles i and i+1 from Figure 12

TASK: Replicate the simulation from Figure 12 on your own computer. You can use the .tcl
file provided at: [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_Close-LW-
AL/scriptLoad.tcl

TASK: Draw a figure similar to Figure 3 for the example from Figure 11.

Analyse the waveform from Figure 12 and the diagram from Figure 13 at the same time.

- Trace Signals shown in Figure 12:

o In cycle i, the add instruction is in the EX3 stage of Way 0 (i0_inst_e3 =

0x006E0E33), and the lw instruction is in the Commit stage of the I0 Pipe

(i0_inst_e4 = 0x0002A303).

o In cycle i+1, the add instruction is in the Commit stage of Way 0

(i0_inst_e4 = 0x006E0E33).

- 4-1 Multiplexer: In Cycle i, the value read by the load instruction, which in this cycle

is in the Commit stage, is selected:

i0_rs2_bypass_data_e3 = i0_result_e4_eff = 0x00000001

- 2-1 Multiplexer: In Cycle i, due to the dependency between the load and the

addition, the bypassed value is selected (dec_i0_rs2_bypass_en_e3 = 1). Thus:

i0_rs2_e3_final = i0_rs2_bypass_data_e3 = 0x00000001

- Commit stage ALU: In Cycle i+1, the addition is recomputed using the correct

values:

out = a_ff + b_ff = 0x00000001 + 0x00000001 = 0x00000002

Then, in the 3:1 multiplexer, the ALU output is selected (exu_i0_result_e4). Note

that, if no dependency exists, the value in signal i0_result_e4 would be selected.

TASK: In the previous example, analyse how the first operand for the add t3, t3, t1

instruction (t3) is obtained. You can use the .tcl file provided at:

[RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_Close-LW-AL/scriptLoad_FirstOperand.tcl

TASK: Remove the nop instructions in the example from Figure 11 and obtain the IPC
using the HW Counters.

TASK: Disable the Secondary ALU as explained in Lab 11 and analyse the example from
Figure 11 both with a Verilator simulation and with an execution on the board.

TASK: In the example from Figure 11, move the add t6,t6,-1 instruction after the add

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 23

t3,t3,t1 instruction and re-examine the program both in simulation and on the board.

4. EXERCISES

1) Modify the program used in Section 3 by adding an extra arithmetic-logic instruction

that depends on the result of the add instruction. For example, you can replace the

loop from Figure 11 with the following code, where a new AND instruction has been
included (and t3, t4, t3), and where we have slightly reordered the code by

moving forward instruction add t5, t5, 0x1:

 REPEAT:

beq t6, zero, OUT

 INSERT_NOPS_9

lw t1, (t0)

 add t6, t6, -1

 add t3, t3, t1

 add t5, t5, 0x1

 and t3, t4, t3

INSERT_NOPS_8

 li t1, 0x0

 li t3, 0x1

 add t4, t4, 0x1

 j REPEAT

 OUT:

 Analyse the Verilator simulation and explain how data hazards are handled for the new
A-L instruction. Then remove all nop instructions and analyse the results provided by the
HW counters.

2) Analyse the same situation as the one described in Section 3 for a mul instruction

followed by an add instruction that uses the result of the multiplication. In the program

from Figure 11 you can simply substitute the lw for a mul that writes to register t1.

3) Analyse a situation with a lw instruction followed by a mul instruction that depends on

the value read by the load. In the program from Figure 11 you can simply substitute the

dependent add instruction for a mul instruction.

4) (The following exercise is based on exercises 4.18, 4.19, 4.20, and 4.26 of [PaHe].)
Suppose you executed the code below on a version of the SweRV EH1 processor that
does not handle data hazards (i.e., the programmer is responsible for addressing data
hazards by inserting nops where necessary). Add nops to the code so that it will run
correctly.
 addi x11, x12, 5

 add x13, x11, x12

 addi x14, x11, 15

 add x15, x13, x12

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 24

 Then make up sequences of at least three assembly code snippets that exhibit different
types of RAW data hazards. The type of RAW data dependence is identified by the stage
that produces the result and the next instruction that consumes the result.

 For each sequence, how many nops would need to be inserted and where, to allow your
code to run correctly on a SweRV EH1 processor with no forwarding or hazard detection?
What is the CPI if we use the forwarding available in SweRV EH1 and don’t insert nops?

5) In the program from Section 2.C of Lab 14 (available at

[RVfpgaPath]/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory), replace instruction add

x1, x1, 1 with add x28, x1, 1. This introduces a WAW hazard between the

modified add instruction and the non-blocking load at the beginning of the loop (lw

x28, (x29)). Analyse in simulation how this hazard is handled in SweRV EH1, for

which you can look at the value of signal wen2 in the Register File. Try to understand

how this signal is computed in the Control Unit (module dec).

6) In the program from Section 2.C of Lab 14 (available at

[RVfpgaPath]/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory), replace instruction add

x1, x1, 1 with add x1, x28, 1. This introduces a RAW hazard between the

modified add instruction and the non-blocking load at the beginning of the loop (lw

x28, (x29)). Analyse in simulation how this hazard is handled in SweRV EH1.

7) In the program from Section 2.C of Lab 14 (available at

[RVfpgaPath]/RVfpga/Labs/Lab14/LW_Instruction_ExtMemory), replace instruction add

x1, x1, 1 with add x1, x28, 1, and instruction add x7, x7, 1 with add x28,

x7, 1. This causes both a RAW and a WAW hazard to occur. Analyse in simulation

how these two hazards are handled in SweRV EH1.

8) Store to Load Forwarding

This is a very interesting situation that we have not analysed in this lab and that you will
analyse in this exercise. When a store followed by a load access the same address, data
can be forwarded from the store to the load within the core and DDR External Memory
reading can be avoided, saving both time and power.

The logic that implements this forwarding is included in the LSU, and specifically in
modules lsu_bus_intf and lsu_bus_buffer, which you must inspect in this exercise.

The PlatformIO project from [RVfpgaPath]/RVfpga/Labs/Lab15/Sw-Lw-Forwarding
illustrates a store-load forwarding. A .tcl script is provided in that folder, which you can use
for analysing a random iteration of the loop and understand how the store-load forwarding
is carried out in SweRV EH1.

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 25

APPENDIX A

In this appendix we include an example of a lw-add RAW data hazard that is handled as

explained in Section 2. Figure 14 shows the example code used in this appendix. It executes

a lw instruction followed by 5 nop instructions and an add instruction that depends on the

load. The intermediate nop instructions are included in order to separate the two dependent

instructions.

.globl Test_Assembly

.section .midccm

#.data

A: .space 4

.text

Test_Assembly:

Register t3 is also called register 28 (x28)

la t0, A # t0 = addr(A)

li t1, 0x1 # t1 = 1

sw t1, (t0) # A[0] = 1

li t1, 0x0

li t3, 0x1

li t6, 0xFFFF

REPEAT:

 beq t6, zero, OUT # Stay in the loop?

 INSERT_NOPS_8

 lw t1, (t0)

 INSERT_NOPS_5

 add t3, t3, t1 # t3 = t3 + t1

 INSERT_NOPS_8

 li t1, 0x0

 li t3, 0x1

 add t6, t6, -1

 j REPEAT

OUT:

.end

Figure 14. Program that executes lw, 5 nops, and a dependent add instruction

As usual, folder [RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_FarAway-LW-AL provides
the PlatformIO project so that you can analyse, simulate, and modify the program as
desired. Open the project, build it, and open the disassembly file (available at
[RVfpgaPath]/RVfpga/Labs/Lab15/DataHazards_FarAway-LW-

AL/.pio/build/swervolf_nexys/firmware.dis). Notice that the lw and add instructions are

placed at addresses 0x000001b0 and 0x000001c8.

0x000001b0: 0002a303 lw t1,0(t0)

0x000001b4: 00000013 nop

0x000001b8: 00000013 nop

0x000001bc: 00000013 nop

0x000001c0: 00000013 nop

0x000001c4: 00000013 nop

0x000001c8: 006e0e33 add t3,t3,t1

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 26

Figure 15 shows the simulation of the program from Figure 14 in the third iteration of the
loop. Again, any iteration would be valid except for the first one, which you should try to
avoid due to instruction cache misses. As in the examples from the main lab, the signals on
the top (Trace Signals) help trace the instructions as they progress through the pipeline.
Below the Trace Signals, the main signals of each multiplexer are shown. The signals from
each multiplexer are surrounded by dashed blue lines. The control signal, inputs, and output
of each multiplexer are illustrated, as was done in the main lab.

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 27

Figure 15. Simulation of the program from Figure 14 in the third iteration of the loop

Figure 16 shows a diagram of the execution of the program from Figure 14 in Cycle i (as

defined in Figure 15), when the add instruction is in the Decode stage and the lw instruction

is in DC3.

lw t1,(t0) add t3,t3,t1

Trace

Signals

3:1

MUX

10:1

MUX

Cycle i

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 28

DECODE STAGE
EX1/DC1

STAGE

r0 [31:0]

r1 [31:0]

aff

bff

gpr_i0_rs1_d [31:0]

gpr_i0_rs2_d [31:0]

a

b

EX2/DC2
STAGE

EX3/DC3
STAGE

Register File

(dec_gpr_ctl)

3-1

MUX

3-1

MUX

10-1

MUX

i0_rs2_bypass_data_d[31:0]

dec_i0_immed_d[31:0]

add t3,t3,t1 lw t1,(t0)

bus_read_data_dc3 [31:0]

lsu_ld_data_dc3 [31:0]
i0e4res

ultff
3-1

MUXls
u
_

re
s
u

lt
_

d
c
3
 [

3
1

:0
]

i0
_

re
s
u

lt
_

e
3

_
fi
n
a

l
[3

1
:0

]

1

1

1

1

1

1 1
ALIGN,

MERGE

And

ERROR

CHECK

Cycle i

Figure 16. Hardware during execution of the program from Figure 14 in the third
iteration of the loop and in the fourth cycle shown in Figure 15

TASK: Replicate the simulation from Figure 15 on your own computer.

Analyse the waveform from Figure 15 and the diagram from Figure 16 at the same time.

- Trace Signals shown in Figure 15:

o In cycle i, the add instruction is in the Decode stage of Way 0

(dec_i0_instr_d = 0x006E0E33), and lw is in the DC3 stage of the I0

Pipe (i0_inst_e3 = 0x0002A303).

- 10:1 Multiplexer: In cycle i, signal i0_rs2bypass[9:0] = 0x010 (i.e.

i0_rs2bypass[4] = 1), thus the output is connected to the value coming from the

EX3/DC3 stage of the I0 Pipe (see Figure 16):

i0_rs2_bypass_data_d = i0_result_e3_final = 0x00000001

- 3:1 Multiplexer: In Cycle i, signal dec_i0_rs2_bypass_en_d = 1, thus the output

is connected to the value coming from the bypass logic (see Figure 9):

i0_rs2_d = i0_rs2_bypass_data_d = 0x00000001

Imagination University Programme – RVfpga Lab 15: Data Hazards
Version 2.2 – 9th May 2022
© Copyright Imagination Technologies 29

TASK: Compare how the scenario above is handled in SweRV EH1 and in the pipelined
processor from DDCARV.

TASK: If you compare carefully Figure 16 and Figure 6 of Lab 13, you will see that the

value that the lw instruction reads into the Register File in Figure 6 of Lab 13 (signal

lsu_ld_data_corr_dc3[31:0]) is different than the value forwarded by the lw in

Figure 16 (signal lsu_ld_data_dc3[31:0]). The difference between both values is that

the former has been checked by the ECC logic in module lsu_ecc, whereas the latter has

not. Explain why it is not problematic that the value forwarded by the lw is not checked for

errors.

TASK: In the example from Figure 14, remove all the nop instructions before the lw and

after the add. Do not remove the 5 nops between the two dependent instructions. Analyse

the simulation and then compute the IPC with the Performance Counters by executing the
program on the board (it may seem awkward to keep nop instructions when measuring the
IPC as they are useless instructions; however, the program itself is useless and our only
aim here is to analyse data hazards and understand them).

