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1. INTRODUCTION 
 
In this and the next lab, we focus on the memory system of the RVfpga System. Remember 
from Figure 25 in the RVfpga Getting Started Guide (that we replicate in Figure 1 for the 
sake of convenience), that the RVfpga System has an External DDR Main Memory, a Cache 
for instructions (I$) and two Scratchpad memories (also called closely-coupled memories), 
one for data (DCCM) and one for instructions (ICCM). 
 
 

 
 

Figure 1. RVfpgaNexys: the RVfpga Memory System is highlighted by red boxes 
 
 

NOTE: Before starting working on Lab 19, we recommend reading Sections 8.1-8.3 of the 
book by S. Harris and D. Harris, “Digital Design and Computer Architecture: RISC-V 
Edition”, Morgan Kaufmann [DDCARV]. 

 
In this lab, we focus on the operation of the Cache. Unfortunately, as shown in Figure 1, the 
RVfpga System does not include a data cache (D$). Thus, we cannot study a cache using 
the typical approaches where program data memory accesses are analysed. However, the 
RVfpga System does include an I$, which we use in this lab to demonstrate the main 
concepts of a Cache Memory. Most of the concepts explained in Section 8.3 of [DDCARV] 
are also applicable to an I$ and thus they are useful for our purposes. 
 
We first describe how data are read from and written to the DDR External Memory (Section 
2), and then we delve into the operation and management of the I$ available in the RVfpga 
System (Section 3). 
 
 

2. DDR EXTERNAL MEMORY DATA ACCESSES 
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Even though we cannot use a D$ in this lab to explain the cache, we use data accesses to 
describe the RVfpga System’s overall memory system. In Labs 13 and 14, we showed how 
loads and stores use both the DDR External Memory and the DCCM. As explained in those 
labs, whenever the core needs to access data, the address is computed in DC1 and then 
that data is read or written from/to Main Memory during the remaining stages using the AXI 
Bus. The pipeline must be stalled for a few cycles when accessing the DDR Memory, but it 
does not stall when accessing the DCCM. 
 
The next example illustrates a program that includes a load instruction followed by a store 
instruction, focusing on the read/write of the DDR External Memory. Folder 
[RVfpgaPath]/RVfpga/Labs/Lab19/LW-SW_Instruction_ExtMemory provides the PlatformIO 
project so that you can analyse, simulate, and modify the program as desired. The program, 
shown in Figure 2, traverses a 10,000-element array (uninitialized and used only for 

illustrative purposes), reading each element (lw instruction, highlighted in red), adding a 

constant to it and storing the element (sw instruction, highlighted in red) in the same 

component. 
 

 

.data 

D: .space 40000 

 

.text 

Test_Assembly: 

 

li t2, 0x000 

csrrs t1, 0x7F9, t2 

 

la t4, D 

li t5, 50 

li t0, 40000 

la t6, D 

add t6, t6, t0 

 

REPEAT: 

   lw t3, (t4) 

   add t3, t3, t5 

   sw t3, (t4) 

   add t4, t4, 4 

   bne  t4, t6, REPEAT    # Repeat the loop 

 

Figure 2. Example program 
 
Open the project in PlatformIO, build it, and open the disassembly file (available at 
[RVfpgaPath]/RVfpga/Labs/Lab19/LW-

SW_Instruction_ExtMemory/.pio/build/swervolf_nexys/firmware.dis). Notice that the lw 

instruction (0x000eae03) and the sw instruction (0x01cea023) are at addresses 0x00000194 

and 0x0000019c, respectively. 
 
 0x00000194: 000eae03           lw t3,0(t4) 

… 

0x0000019c: 01cea023           sw t3,0(t4) 
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Figure 3. Simulation of a random iteration of the program from Figure 2 

i i+8 i+16 i+21 
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Figure 3 shows the simulation of a random iteration of the loop from Figure 2. 
 

TASK: Replicate the simulation from Figure 3 on your own computer. To do so, follow the 
next steps (as described in detail in Section 7 of the GSG): 
- If necessary, generate the simulation binary (Vrvfpgasim). 
- In PlatformIO, open the project provided at: [RVfpgaPath]/RVfpga/Labs/Lab19/LW-

SW_Instruction_ExtMemory. 
- Establish the correct path to the RVfpga simulation binary (Vrvfpgasim) in file 

platformio.ini. 
- Generate the simulation trace using Verilator (Generate Trace). 
- Open the trace on GTKWave. 
- Use file test_Blocking_Extended.tcl (provided at [RVfpgaPath]/RVfpga/Labs/Lab19/LW-

SW_Instruction_ExtMemory) for opening the same signals as the ones shown in Figure 
6. For that purpose, on GTKWave, click on File → Read Tcl Script File and select the 
test_Blocking_Extended.tcl file. 

- Click on Zoom In ( ) several times and analyse the region starting at 42500 ps. 

 
We next describe how memory reads and writes occur using the DDR External Memory via 
the AXI bus. Refer to Section 4.B.iii of the Getting Started Guide for more details about how 
the bus operates. 
 

- The processor reads data from the DDR External Memory (yellow square) into t3. 

The reading starts in cycle i, when the write from the previous iteration has 

completed on the bus (i.e., when lsu_axi_wvalid goes from 1 to 0): 

 
o Cycle i: the effective address is sent to the External Memory through the AXI 

bus: 

 lsu_axi_arvalid = 1 

 lsu_axi_araddr = 0x00002AB0 

 
o Cycle i+8: (Note that the simulated memory is not equal to the actual DDR 

memory on the Nexys A7 board, and thus the latency seen in the simulation 
is not the same as the latency on the board, which we will analyse later), the 
read value is received through the AXI bus from the External Memory: 

 lsu_axi_rvalid = 1 

 lsu_axi_rdata = 0x0 

 

- The processor computes the addition (add t3, t3, t5) in the Secondary ALU and 

writes it to the Register File, as explained in Lab 15. (This is not shown in the figure, 
but you can analyse it in your own simulation.)  
 

o Cycle i+15: The processor writes the result to t3: t3 = 0x2AB0. 

 

- Finally, the processor writes the value of t3 to the DDR External Memory (red 

square): 
 

o Cycle i+16: the effective address and the data are sent to the External 
Memory through the AXI bus: 

 lsu_axi_awvalid = 1 
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 lsu_axi_awaddr = 0x00002AB0 

 lsu_axi_wvalid = 1 

 lsu_axi_wdata = 0x0000000000002AB0 

 
o Cycle i+21: (again, this latency is different in simulation and on the board), 

the External Memory notifies through the AXI bus that the write has been 
correctly carried out: 

 lsu_axi_bvalid = 1 

 lsu_axi_bresp = 00 (defined as: everything has worked alright) 

 
 

TASK: Using the HW Counters, measure the number of cycles, instructions, loads and 
stores in the program from Figure 2. How much time in total (both for reading and writing) 
does it take to access the DDR External Memory? You can compare the execution when 
using the DDR memory as in Figure 3 and when using the DCCM (another PlatformIO 
project is provided at [RVfpgaPath]/RVfpga/Labs/Lab19/LW-SW_Instruction_DCCM/, 
which contains the same program prepared for reading from / writing to the DCCM). 
Remember that the simulated memory is not the same as the actual DDR memory on the 
Nexys A7 board, thus the read/write latency observed in the simulation and in the 
execution on the board differs. 

 
 

TASK: Use the example from [RVfpgaPath]/RVfpga/Labs/Lab19/LW_Instruction_ExtMem 
to estimate the DDR External Memory read latency using the HW Counters. As in the 
previous task, you can use the example from 
[RVfpgaPath]/RVfpga/Labs/Lab19/LW_Instruction_DCCM to compare with a program with 
no stalls due to the memory accesses. Remember that the simulated memory is not the 
same as the actual DDR memory on the Nexys A7 board, thus the read latency observed 
in the simulation and in the execution on the board differs. 

 
 

TASK: A quite complex but very interesting exercise is to analyse the Memory Controller 
used in the RVfpga System. Remember that you can find the modules that make up this 
controller in folder [RVfpgaPath]/RVfpga/src/LiteDRAM, and that the top module is 
implemented in file litedram_top.v inside that folder. You can start with the simulation from 
Figure 3 and add and analyse some signals from the LiteDRAM controller. 

 
 
 

3. INSTRUCTION FETCH FROM THE INSTRUCTION CACHE 
 
In this section we analyse the operation of the Instruction Cache (I$) available in the RVfpga 
System. We first describe how the I$ can be configured (Section 3.A) and then investigate 
how cache misses and hits are processed (Sections 3.B and 3.C), and finally we analyse the 
I$ Replacement Policy used in SweRV EH1 (Section 3.D). 
 

A. Instruction Cache Configuration 
 
The RVfpga System’s I$ is highly configurable based on a set of parameters defined in file 
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/common_defines.
vh. The default RVfpga System has the following I$ parameters: 
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`define RV_ICACHE_SIZE 16 

`define RV_ICACHE_DATA_CELL ram_256x34 

`define RV_ICACHE_IC_INDEX 8 

`define RV_ICACHE_TAG_CELL ram_64x21 

`define RV_ICACHE_ENABLE 1 

`define RV_ICACHE_IC_ROWS 256 

`define RV_ICACHE_TAG_DEPTH 64 

`define RV_ICACHE_TAG_HIGH 12 

`define RV_ICACHE_TAG_LOW 6 

`define RV_ICACHE_IC_DEPTH 8 

`define RV_ICACHE_TADDR_HIGH 5 

 
However, some of the above parameters are overridden in file 
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/include/global.h: 
 

localparam ICACHE_TAG_HIGH  = `RV_ICACHE_TAG_HIGH; 

localparam ICACHE_TAG_LOW   = `RV_ICACHE_TAG_LOW; 

localparam ICACHE_IC_DEPTH  = `RV_ICACHE_IC_DEPTH; 

localparam ICACHE_TAG_DEPTH = `RV_ICACHE_TAG_DEPTH; 

 
Thus, the I$ has the following configuration: 
 

Characteristic Value 

I$ Size  

Data Array (without parity information) 
Parity information for data:   

16 Kibytes 
1 Kibyte (4 Bytes per block) 

Tag Array (without parity information) 
Parity information for tags        

640 Bytes 
32 Bytes (1 bit per tag) 

LRU State 24 Bytes (3 bits per set) 

Valid Bit 32 Bytes (1 valid bit per tag) 

Associativity (not configurable) 4 ways 

Block Size 64 Bytes 

Number of blocks (Size/Block Size=16Ki/64) 256 blocks 

Number of blocks per way (# blocks/Assoc.=256/4)   64 blocks 

 
According to this configuration, the I$ used in the RVfpga System is shown in Figure 4. 
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TAG SET OFFSET
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+ Parity

20 bits 

+ Parity

20 bits 

+ Parity

20 bits 
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WAY 0 WAY 1 WAY 2 WAY 3

SET 0

SET 1

SET 62

SET 63

= = = =

ic_rd_hit [3:0]

ic_rw_addr [31:2] (Fetch Address)

4-1 Multiplexer

1 1 1 1

ic_rd_data[135:0] (ic_rd_data_only[127:0] + Parity)

64 Bytes 

+ Parity

64 Bytes 

+ Parity

64 Bytes 

+ Parity

2 bits

TagWay0
TagWay1

TagWay2

TagWay3

ic_tag_valid [3:0]

DataWay0 DataWay1 DataWay2 DataWay3

adr_ff 

(Register)

ic_rw_addr_ff [31:12]
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LRU0

LRU1

LRU62

LRU63

 
 

Figure 4. I$ internal design. The input signal to the I$ (ic_rw_addr) and the output signal from the I$ (ic_rd_data) is provided 

from/to the Cache Controller (module ifu_mem_ctl), as we explained in Figure 3 of Lab 11 (repeated below as Figure 8). 
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The RVfpga System’s I$ is implemented in module ifu_ic_mem, included in file 
[RVfpgaPath]/RVfpga/src/SweRVolfSoC/SweRVEh1CoreComplex/ifu/ifu_ic_mem.sv. This 
module instantiates two other modules: 
 

- IC_TAG: This module includes the Tag Array (the red boxes shown in Figure 4) and 

the logic to compute the hit signal, ic_rd_hit. The module receives, among other 

signals, the Address, ic_rw_addr. It outputs, among other signals, signal 

ic_rd_hit, which is used by the Data Array to select the cache way where the hit 

takes place. 
 
The tags read when an access to the I$ is performed, are provided in signals 

TagWay0–TagWay3, as shown in Figure 4 and in simulation (shown later). Note that 

the processor uses a signal called w_tout to read the tags. Signals TagWay0–

TagWay3 are extracted from w_tout in lines 583-590 of file ifu_ic_mem.sv. 

 
- IC_DATA: This module is the Data Array, which includes the green boxes shown in 

Figure 4, as well as the 4:1 multiplexer that selects the data from the way where a hit 
takes place. Each way is physically split into 4 banks (not shown in the figure). The 

module receives, among other signals, the Fetch Address (ic_rw_addr) and the hit 

signal from the IC_TAG module (ic_rd_hit). Based on the 6-bit SET field and on 2 

bits of the OFFSET field of the Fetch Address, this module selects and outputs, in 

signal ic_rd_data, the 128-bit instruction bundle plus some parity bits that must be 

sent to the SweRV EH1 processor. Note that signal ic_rd_data_only is the same 

as signal ic_rd_data without the parity information, thus we use it in our 

simulations below. 
 

The data read from the I$ is in signals DataWay0–DataWay3. Note that these 

signals are used both in the figure and in simulation, but they not used by the 

processor. The actual processor signal is called wb_dout_way_with_premux, from 

which signals DataWay0–DataWay3 are obtained in lines 313-320 of file 

ifu_ic_mem.sv. 
 
 

TASK: Analyse module ifu_ic_mem to understand how the elements in Figure 4 are 
implemented. 

 
 

B. Instruction Cache Miss Management 
 
In this section, we show how instruction misses are managed in the processor. The example 

in Figure 5 illustrates a program that includes 16 sequential, uncompressed add instructions 

(which occupy 4*16 = 64 bytes), shown in red in the figure, within a loop with 0x10000 

iterations. Several nop instructions are placed before the 16 add instructions to force the 16 

add instructions to map into a single I$ block. Recall that the I$ block size is 64 bytes. Thus 

the first add instruction must be aligned on 64-byte boundary. Folder 

[RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_Example provides the PlatformIO 
project so that you can analyse, simulate, and modify the program as desired. 
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Test_Assembly: 

 

   INSERT_NOPS_3 

   INSERT_NOPS_8 

   INSERT_NOPS_8 

 

   li t6, 0x10000 

 

REPEAT: 

   add t6, t6, -1 

 

   add t0, t0, t0 

   add t1, t1, t1 

   add t2, t2, t2 

   add t3, t3, t3 

   add t4, t4, t4 

   add t5, t5, t5 

   add t6, t6, t6 

   add a7, a7, a7 

   add t0, t0, t0 

   add t2, t2, t2 

   add t1, t1, t1 

   add t3, t3, t3 

   add t4, t4, t4 

   add t6, t6, t6 

   add t5, t5, t5 

   add a7, a7, a7 

 

   INSERT_NOPS_8 

   INSERT_NOPS_8 

 

   INSERT_NOPS_8 

   INSERT_NOPS_8 

   INSERT_NOPS_8 

   INSERT_NOPS_8 

 

   bne t6, zero, REPEAT    # Repeat the loop 

 

ret 

 

Figure 5. Example program 
 
Open the project in PlatformIO, build it, and open the disassembly file (available at 
[RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_Example/.pio/build/swervolf_nexys/fir

mware.dis). Notice that the first add instruction (0x005282b3) is placed at address 

0x000001c0 (which is aligned on a 64-byte boundary) and the sixteenth one (0x011888b3) 
is placed at address 0x000001fc (the last word in the block). 
 
 0x000001c0: 005282b3           add t0,t0,t0 

  …    …     … 

 0x000001fc: 011888b3           add a7,a7,a7 

 

Figure 6 shows the simulation of the region around the 16 add instructions (from 28900 ps 

to 30220 ps). The figure in the middle (main one) shows the execution of the region of 
interest for our analysis. The figures on the top and the two on the bottom zoom into specific 
regions of the main figure. 
 
 

TASK: Replicate the simulation from Figure 6 on your own computer. To do so, follow the 
next steps (as described in detail in Section 7 of the GSG): 
- If necessary, generate the simulation binary (Vrvfpgasim). 
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- In PlatformIO, open the project provided at: 
[RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_Example. 

- Update the path to the RVfpga simulation binary (Vrvfpgasim) in file platformio.ini. 
- Generate the simulation trace with Verilator (Generate Trace). 
- Open the trace on GTKWave. 
- Use file test1_Miss.tcl (provided at 

[RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_Example) for opening the same 
signals as the ones shown in Figure 6. For that purpose, on GTKWave, click on File → 
Read Tcl Script File and select the test1_Miss.tcl file. 

- Click on Zoom In ( ) several times and analyse the region from 28900 ps to 30220 
ps. 

 
You can also analyse some things in more detail, such as the write to the I$ or the bypass 
of the initial instructions. 
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Figure 6. Simulation of the program from Figure 5 showing an I$ miss 
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This example illustrates how an I$ miss is handled in SweRV EH1. It shows the fetch of the 

16 add instructions the first time they are executed. When these instructions are not in the I$ 

yet and they must be copied from the DDR External Memory into the I$. 
 

- In the figure on the top you can see that an I$ miss is signalled around 29ns 

(ic_act_miss_f2 = 1), which triggers the request of the block through the AXI bus 

(ifu_axi_arvalid = 1). 

 
- Then, the eight 64-bit chunks that make up the target block are requested 

sequentially through the AXI bus. 

o Signal ifu_axi_arvalid goes high for 27 cycles. This signal indicates that 

the channel is signalling valid read address and control information.  

o During these 27 cycles where ifu_axi_arvalid = 1 the initial addresses of 

the eight 64-bit chunks are provided sequentially through the AXI bus using 

signal ifu_axi_araddr, which provides the 8 addresses that must be read 

from the DDR Memory: 

 ifu_axi_araddr = 0x000001c0 

 ifu_axi_araddr = 0x000001c8 

 ifu_axi_araddr = 0x000001d0 

 ifu_axi_araddr = 0x000001d8 

 ifu_axi_araddr = 0x000001e0 

 ifu_axi_araddr = 0x000001e8 

 ifu_axi_araddr = 0x000001f0 

 ifu_axi_araddr = 0x000001f8 

 
- The middle figure shows the eight 64-bit chunks arriving sequentially to the processor 

through the AXI bus in signal ifu_axi_rdata. 

o Signal ifu_axi_rvalid, which indicates that the channel is signalling the 

required read data, goes high for one cycle every 7 cycles. 
o Each of the eight 64-bit chunks (each containing two instructions) is provided 

in signal ifu_axi_rdata (this cannot be seen in Figure 6 – you can 

replicate the simulation on your computer to verify it): 

 ifu_axi_rdata = 0x00630333005282b3 

 ifu_axi_rdata = 0x01ce0e33007383b3 

 ifu_axi_rdata = 0x01ef0f3301de8eb3 

 ifu_axi_rdata = 0x011888b301ff8fb3 

 ifu_axi_rdata = 0x007383b3005282b3 

 ifu_axi_rdata = 0x01ce0e3300630333 

 ifu_axi_rdata = 0x01ff8fb301de8eb3 

 ifu_axi_rdata = 0x011888b301ef0f33 

 
- The two bottom figures show that each of the eight 64-bit chunks is written into the I$ 

right after their arrival to the cache controller. For example, the first two 64-bit chunks 
are written as follows: 

o Signal ic_wr_en goes high and at the same time ic_wr_data = 

0x00630333005282b3. Thus, the first and second add instructions are written 

into the I$. 

o Several cycles later, signal ic_wr_en goes high again and at the same time 

ic_wr_data = 0x01ce0e33007383b3. Thus, the third and fourth add 

instructions are written into the I$. 
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- Finally, you can see that the four instructions are bypassed from the I$ controller to 

the pipeline (signals ifu_byp_data_first_half and 

ifu_byp_data_second_half) so that it can restart execution as soon as possible 

after the I$ miss. Several cycles later, the four instructions arrive at the Decode 
Stage (see the figure on the bottom right corner that zooms into signals 

dec_i0_instr_d and dec_i1_instr_d). 

 
 

C. Instruction Cache Hit Management 
 
In this section we work with the same example from Section 3.B (Figure 5), but we now 
focus on analysing I$ hits. Figure 7 shows the second iteration of the loop when executing 
the program in Figure 5 (any iteration would be valid except the first one, which, as we 
analysed in Figure 6, experiences misses in the I$). 
 
 

TASK: Replicate the simulation from Figure 7 on your own computer. Use file test1_Hit.tcl 

(provided at [RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_Example). Zoom In (
) several times and move to 34680ps. 
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Figure 7. Simulation waveform for the program in Figure 5 illustrating an I$ hit 

Cycle i Cycle i+1 Cycle i+2 Cycle i+3 Cycle i+4 
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Analyse the simulation waveform in Figure 7, which includes some of the signals from Figure 
3 of Lab 11 that explained the FC1 and FC2 stages. We repeat a diagram of those stages in 
Figure 8 below, for convenience. The simulation also includes some of the signals shown in 
Figure 4 of the current lab. Note that Figure 4 shows the I$ design, which is shown as a 
black box in Figure 8 below. 
 

q1ff

q0ff

q2ff

ic_data_f2 = ifu_fetch_data [127:0]

q0 [127:0]

q1 [127:0]

q2 [127:0]

Memory Controller 

(ifu_mem_ctl)

ICCM

(ifu_iccm_

mem)

I$

(ifu_ic_me

m)

Lite DRAM 

Controller

FC1 FC2 ALIGN

ifu_axi_rdata [63:0]

Aligner
(ifu_aln_ctl)

ifu_i0_instr [31:0]

ifu_i1_instr [31:0]

INSTRUCTION

REGISTERS

(dec_ib_ctl)

(PC) ifc_fetch_addr_f1 [31:1] = fetch_addr_f1 [31:1]

ifu_axi_araddr [31:0]

LOGIC

LOGIC

ic_rw_addr

ic_rd_data

iccm_rd

_data

iccm_rw_addr

 
 

Figure 8. FC1, FC2 and Align stages 
 
The i$ hit occurs as follows, as shown in Figure 7: 
 

- Cycle i: The address of the first add instruction (add t0,t0,t0) in the program 

from Figure 5 is given in signal ifc_fetch_addr_f1_ext 

(ifc_fetch_addr_f1_ext = 0x000001c0). This signal is passed to the I$ except 

for its two least significant bits, which are needed because instructions are 4-byte 

(32-bit) aligned. Thus, ic_rw_addr = 0x0000070. 

 
The Tag Array and the Data Array are accessed using a subset of the Fetch 
Address, as shown in Figure 4. The result of the access will be available in the next 
cycle. 
 

- Cycle i+1: The four tags, one per cache way, are in signals TagWay0-TagWay3. 

These are compared to the TAG field of the Fetch Address that was registered in 

adr_ff (output signal ic_rw_addr_ff). In this case, all tags are the same as the 

TAG field, however only one way (Way 0) is valid (ic_tag_valid = 0001), thus a 

hit is signalled in Way 0: ic_rd_hit = 0001. 

 

Also, four 128-bit bundles are in signals DataWay0-DataWay3. The 4:1 multiplexer 

from Figure 4 selects the data provided by Way 0 (i.e. DataWay0). Thus: 

ic_rd_data_only = 0x01ce0e33007383b300630333005282b3 
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Note that the signal that is shown in Figure 8 is ic_rd_data, which is the same as 

ic_rd_data_only plus the parity information. 

 
These 128 bits are propagated to the Align stage as shown in Figure 8.  

ifu_fetch_data = ic_data_f2 = ic_rd_data_only = 

0x01ce0e33007383b300630333005282b3 
 
Note that these 128 bits correspond to the first four add instructions. 
 

- Cycle i+2: The first and second add instructions are extracted in the Align stage 

from buffer q1: 

o ifu_i0_instr = 0x005282b3 

o ifu_i1_instr = 0x00630333 

 

- Cycle i+3: The third and fourth add instructions are extracted in the Align stage and, 

at the same time, the first and second add instructions are decoded: 

o ifu_i0_instr = 0x007383b3 

o ifu_i1_instr = 0x01ce0e33 

o dec_i0_instr_d = 0x005282b3 

o dec_i1_instr_d = 0x00630333 

 

- Cycle i+4: Finally, the third and fourth add instructions are decoded: 

o dec_i0_instr_d = 0x007383b3 

o dec_i1_instr_d = 0x01ce0e33 

 
 

D. Instruction Cache Replacement Policy 
 
This section describes the RVfpga System’s cache replacement policy. As explained by 
Harris & Harris in Section 8.3.3 of [DDCARV], in set associative caches the cache must 
choose which block to evict when a cache set is full. The principle of temporal locality 
suggests that the best choice is to evict the least recently used block because it is least likely 
to be used again soon. Hence, most associative caches have a least recently used (LRU) 
replacement policy. However, tracking the least recently used way becomes complicated, 
thus approximate LRU policies (usually called Pseudo LRU) are often used and good 
enough in practice. Specifically, SweRV EH1 uses an approximate policy called Binary Tree 
Pseudo LRU. 
 

NOTE: If you haven’t done so already, read Section 8.3.3 of [DDCARV]. Also, we 
recommend reading Section 4 of the Master Thesis by Gille Damien, “Study of Different 
Cache Line Replacement Algorithms in Embedded Systems” (8 March 2007), which you 
can find online at: https://people.kth.se/~ingo/MasterThesis/ThesisDamienGille2007.pdf. 
We refer to that document as [GiDa]. 

 
 

i. Implementation of the Binary Tree Pseudo LRU policy in SweRV EH1 
 
As explained in [GiDa], a Binary Tree LRU policy, which is an approximation of an LRU 
policy, requires N-1 bits per set (which we call LRU State) in an N-way associative cache. 

https://people.kth.se/~ingo/MasterThesis/ThesisDamienGille2007.pdf
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Thus, in the case of SweRV EH1, where a 4-way Instruction Cache is used, 3 bits are 
required per set to track the access history to the different ways. 
 
As explained in Section 3.B, when an I$ miss occurs, the block must be requested from the 
DDR External Memory. When the DDR External Memory supplies the cache block, it must 
be written into the I$. The SET field of the Fetch Address determines the I$ set where the 
new block must be written (see Figure 4). Two things can happen: 
 

- The set is not full, meaning that one or more blocks are non-valid. In this case, the 
new block is written in the lowest way that contains a non-valid block. 
 

- The set is full, meaning that the four blocks are valid. In our processor, the Binary 
Tree LRU Replacement Policy determines which block must be evicted. This policy 
determines the way to replace based on the 3-bit LRU State of the Set, according to 
the following table (where x means don’t care): 

 

LRU State Way to replace 

x00 Way 0 

x10 Way 1 

0x1 Way 2 

1x1 Way 3 

 
The following Verilog snippet (Figure 9), extracted from module ifu_mem_ctl, implements 
the logic for the selection of the way that must be used for storing the new I$ block, 
according to the previous explanation. 
 

 
Figure 9. Verilog code for selecting which way must be replaced 

 
The signals used in the Verilog snippet from Figure 9 are the following: 
 

- replace_way_mb_any (4 bits): holds a one-hot value that is 1 for the way that must 

be replaced. 
 

- way_status_mb_ff (3 bits): holds the LRU state of the new block’s set. 

 
- tagv_mb_ff (4 bits): holds the valid bits of the new block’s set; ways that are valid 

have valid bits of 1, whereas invalid ways have valid bits that are 0.  
 
 

TASK: Analyse the Verilog code from Figure 9 and explain how it operates based on the 
above explanations. 

 
 
When a hit or a miss happens in the I$, the LRU state of the set must be updated according 
to the following table (where ‘-‘ means that the bit remains unchanged): 
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Written Way Next LRU state 

Way 0 -11 

Way 1 -01 

Way 2 1-0 

Way 3 0-0 

 
If you analyse this table you will see that, as explained by [GiDa], upon a hit or miss, the bits 
on the path towards the hit/inserted line are inversed to indicate the opposite part of the tree 
as pseudo LRU. The idea behind is to protect the last accessed data from eviction by 
inversing the nodes towards it. 
 
The following Verilog snippet (Figure 10), extracted from module ifu_mem_ctl, implements 
the logic for this update of the LRU state. 
 

 
 

Figure 10. Verilog snippet for updating the LRU state 
 
The signals used in the Verilog snippet from Figure 10 are the following: 
 

-  ic_rd_hit (4 bits): holds the way where a hit has taken place. 

 
- way_status and way_status_mb_ff (3 bits each): hold the previous LRU state of 

the set where the hit or replacement has taken place. 
 

- ifu_wr_en_new_q (1 bit): is 1 if a replacement has occurred. 

 
- way_status_new (3 bits): holds the new LRU state for the set just referenced on a 

hit or a miss. 
 

- replace_way_mb_any (4 bits): holds a one-hot value that is 1 for the way that must 

be replaced. This signal was also explained below Figure 9. 
 

 
 

TASK: Analyse the Verilog code from Figure 10 and explain how it operates based on the 
above explanations. 

 
 

ii. Example demonstrating the operation of the Binary Tree LRU policy 
 
For analysing the replacement policy of SweRV EH1, we provide a new example in folder 
[RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_LRU_Example. In this example 
(Figure 11), five different I$ blocks are accessed inside an infinite loop and all five of these 
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blocks map to the same I$ set: SET = 8. For that purpose, we create an infinite loop that 

contains five j (jump) instructions, where each pair of j instructions is separated by 1023 

nops. Notice that the j instruction plus the nops occupy 4KiB (1024 * 4Bytes/Instruction), 

which is equal to the size of each Way in the I$ (see Section 3.A and Figure 4). 
 

 

Set8_Block1:   j Set8_Block2        # This j instruction is at address 0x00000200 

               INSERT_NOPS_1023 

 

Set8_Block2:   j Set8_Block3        # This j instruction is at address 0x00001200 

               INSERT_NOPS_1023 

 

Set8_Block3:   j Set8_Block4        # This j instruction is at address 0x00002200 

               INSERT_NOPS_1023 

 

Set8_Block4:   j Set8_Block5        # This j instruction is at address 0x00003200 

               INSERT_NOPS_1023 

 

Set8_Block5:   j Set8_Block1        # This j instruction is at address 0x00004200 

 

 
Figure 11. Example program showing j instructions that map to the same set 

 
Open the project in PlatformIO, build it, and open the disassembly file (available at 
[RVfpgaPath]/RVfpga/Labs/Lab19/InstructionMemory_LRU_Example/.pio/build/swervolf_nex
ys/firmware.dis). Notice the following: 
 

- The first j instruction (j Set8_Block2) is at address 0x00000200. According to the 

address division shown in Figure 4 for accessing the I$: 
I$ Address in binary = 00000000000000000000001000000000 
TAG = 0x0 
SET = 0x8 
OFFSET = 0x0 

 

- The second j instruction (j Set8_Block3) is at address 0x00001200. According to 

the address division shown in Figure 4 for accessing the I$: 
I$ Address in binary = 00000000000000000001001000000000 
TAG = 0x1 
SET = 0x8 
OFFSET = 0x0 

 

- The third j instruction (j Set8_Block4) is at address 0x00002200. According to 

the address division shown in Figure 4 for accessing the I$: 
I$ Address in binary = 00000000000000000010001000000000 
TAG = 0x2 
SET = 0x8 
OFFSET = 0x0 

 

- The fourth j instruction (j Set8_Block5) is at address 0x00003200. According to 

the address division shown in Figure 4 for accessing the I$: 
I$ Address in binary = 00000000000000000011001000000000 
TAG = 0x3 
SET = 0x8 
OFFSET = 0x0 

 

- The fifth j instruction (j Set8_Block1) is at address 0x00004200. According to the 

address division shown in Figure 4 for accessing the I$: 
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I$ Address in binary = 00000000000000000100001000000000 
TAG = 0x4 
SET = 0x8 
OFFSET = 0x0 

 
In this program (Figure 11), when the first iteration is executed, Set 8 is initially empty. 
Figure 12 shows the theoretical changes to Set 8 in the I$ while executing the first iteration. 
Later, we show several Verilator simulations that confirm these theoretical explanations. 
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00000000000000000000 j Set8_Block2  |  nop  |  ...  |  nop WAY 01

SET 8 after execution of the first j instruction at 0x200

0

0

0

00000000000000000001 j Set8_Block3  |  nop  |  ...  |  nop1

WAY 1

WAY 2

WAY 3

LRU STATE = 011

00000000000000000010 j Set8_Block4  |  nop  |  ...  |  nop1

00000000000000000011 j Set8_Block5  |  nop  |  ...  |  nop1

00000000000000000000 j Set8_Block2  |  nop  |  ...  |  nop WAY 01

SET 8 after execution of the second j instruction at 0x1200

0

0

WAY 1

WAY 2

WAY 3

LRU STATE = 001

00000000000000000001 j Set8_Block3  |  nop  |  ...  |  nop1

00000000000000000000 j Set8_Block2  |  nop  |  ...  |  nop WAY 01

SET 8 after execution of the third j instruction at 0x2200

0

WAY 1

WAY 2

WAY 3

LRU STATE = 100

00000000000000000010 j Set8_Block4  |  nop  |  ...  |  nop1

00000000000000000001 j Set8_Block3  |  nop  |  ...  |  nop1

00000000000000000000 j Set8_Block2  |  nop  |  ...  |  nop WAY 01

SET 8 after execution of the fourth j instruction at 0x3200

WAY 1

WAY 2

WAY 3

LRU STATE = 000

00000000000000000011 j Set8_Block5  |  nop  |  ...  |  nop1

00000000000000000010 j Set8_Block4  |  nop  |  ...  |  nop1

00000000000000000001 j Set8_Block3  |  nop  |  ...  |  nop1

00000000000000000100 j Set8_Block1  |  nop  |  ...  |  nop WAY 01

SET 8 after execution of the fifth j instruction at 0x4200

WAY 1

WAY 2

WAY 3

LRU STATE = 011

Valid            Tag                                                Data

 
 

Figure 12. Set 8 of the I$ during execution of the first loop iteration in Figure 11 
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The following Verilator simulations show the cache signals during the first iteration of the 
loop, and they confirm the analysis shown in Figure 12. Figure 13 shows the Verilator 

simulation of the program after executing the first j instruction (j Set8_Block2). Again, 

this instruction address (0x200) maps to Set 8 of the I$. That set is initially empty: 

tagv_mb_ff = 0000. Thus, according to the Binary Tree LRU policy, the new block must be 

written in Way 0: replace_way_mb_any = ic_wr_en = 0001. The LRU state of Set 8 is 

updated as follows: way_status_new = 011. 

 
Recall from Section 3.B that the block is read from the DDR Memory and written into the I$ 
in 64-bit chunks. Figure 13 illustrates the write of the tag and the two first instructions of the 
new block into SET 8: 

 ic_rw_addr_q[11:4] = 00100000 (SET 8) 

 ic_tag_wr_data[19:0] = 0x0 (the most significant bit is used for error correction 

and not included here) 

 ic_wr_data1[31:0] = 0x0000106F (j Set8_Block2) 

 ic_wr_data2[31:0] = 0x00000013 (nop) 

 

(ic_wr_data1 and ic_wr_data2 are signals created for the sake of clarity, but the signal 

used in the I$ is called ic_wr_data[67:0], which includes the two instructions plus some 

parity information). 
 

 
 

Figure 13. LRU state of set 8 after executing the first j instruction 

 

Figure 14 illustrates the Verilator simulation after the execution of the second j instruction (j 

Set8_Block3). This instruction address (0x1200) also maps to Set 8 of the I$. Only way 0 

is valid in that set: tagv_mb_ff = 0001. Thus, according to the Binary Tree LRU policy, the 

new block must be written in Way 1: replace_way_mb_any = ic_wr_en = 0010. The LRU 

state of Set 8 is updated as follows: way_status_new = 001. 

 
As before, Figure 14 illustrates the write of the first two instructions of the new block into 
SET 8: 

 ic_rw_addr_q[11:4] = 00100000 (SET 8) 

 ic_tag_wr_data[19:0] = 0x1 (the most significant bit is used for error correction 

and not included here) 

 ic_wr_data1[31:0] = 0x0000106F (j Set8_Block3) 

 ic_wr_data2[31:0] = 0x00000013 (nop) 
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Figure 14. LRU state of set 8 after executing the second j instruction 

 
 

Figure 15 illustrates the Verilator simulation after executing the fifth j instruction (j 

Set8_Block1). This instruction address (0x4200) also maps to Set 8 of the I$. However, as 

opposed to the previous situation, in this case the set is full: tagv_mb_ff = 1111. Thus, 

according to the Binary Tree LRU policy, the new block must be written to Way 1: 

replace_way_mb_any = ic_wr_en = 0001. The LRU state of Set 8 is updated as follows: 

way_status_new = 011. 

 
As before, Figure 15 illustrates the write of the two first instructions of the new block into 
SET 8: 

 ic_rw_addr_q[11:4] = 00100000 (SET 8) 

 ic_tag_wr_data[19:0] = 0x4 (the most significant bit is used for error correction 

and not included here) 

  ic_wr_data1[31:0] = 0x800fc06f (j Set8_Block1) 

 ic_wr_data2[31:0] = 0x00008067 (ret) 

  

 
 

Figure 15. LRU state of set 8 after executing the fifth j instruction 

 
 

TASK: Replicate the simulation from Figure 13-Figure 15 on your own computer. 
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4. EXERCISES 
 
 

1) Transform the infinite loop from Figure 11 into a loop with 0x10000 iterations, but 

keep the j instructions at the same addresses. Measure the number of cycles and I$ 

hits and misses. Then remove one of the j instructions and measure the same 

metrics. Compare and explain the results. 
 
 

2) Use the program from Figure 5 to analyse an I$ hit from the point of view of the I$ 
Replacement Policy. 
 
 

3) Extend Figure 6 to analyse in detail how each 64-bit chunk is written in the I$. 
 

 
4) Analyse in simulation and on the board other I$ configurations, such as an I$ with a 

different block size. Recall that the number of ways cannot be modified. 
 
 

5) Analyse the logic that checks the correctness of the parity information from the Data 
Array and from the Tag Array. 
 


