
THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga-SoC Lab 5

Running Tensorflow Lite on
SweRVolf

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies

Table 1. RVfpga Terms

Name Description
Courses

RVfpga A course that shows how to use RVfpgaNexys and RVfpgaSim, RISC-V
system-on-chips (SoCs), to run programs and extend the system by adding
peripherals (RVfpga Labs 1-10), and explore the core and memory system by
running simulations, measuring performance, adding instructions, and
modifying the memory system (RVfpga Labs 11-20). Throughout the course,
users are also shown how to use the RISC-V toolchain (compilers and
debuggers) and simulators, the Verilator HDL simulator, and Western Digital’s
Whisper instruction set simulator (ISS).

RVfpga-SoC A course that shows how to build a subset SweRVolfX SoC from scratch using
building blocks such as the SweRV core, memories, and peripherals. The
course also shows how to load the Zephyr real-time operating system (RTOS)
onto SweRVolf and run programs including Tensorflow Lite’s hello world
example on top of the operating system.

Cores and SoCs
SweRV EH1
Core

Open-source commercial RISC-V core developed by Western Digital
(https://github.com/chipsalliance/Cores-SweRV).

SweRV EH1
Core
Complex

SweRV EH1 core with added memory (ICCM, DCCM, and instruction cache),
programmable interrupt controller (PIC), bus interfaces, and debug unit
(https://github.com/chipsalliance/Cores-SweRV).

SweRVolfX The System on Chip that we use in the RVfpga course. It is an extension of
SweRVolf.
SweRVolf (https://github.com/chipsalliance/Cores-SweRVolf): An open-source
SoC built around the SweRV EH1 Core Complex. It adds a boot ROM, UART
interface, system controller, interconnect (AXI Interconnect, Wishbone
Interconnect, and AXI-to-Wishbone bridge), and an SPI controller.
SweRVolfX: It adds four new peripherals to SweRVolf: a GPIO, a PTC, an
additional SPI, and a controller for the 8 Digit 7-Segment Displays.

RVfpgaNexys The SweRVolfX SoC targeted to the Nexys A7 board and its peripherals. It
adds a DDR2 interface, CDC (clock domain crossing) unit, BSCAN logic (for
the JTAG interface), and clock generator.
RVfpgaNexys is the same as SweRVolf Nexys
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

RVfpgaSim The SweRVolfX SoC with a testbench wrapper and AXI memory intended for
simulation.
RVfpgaSim is the same as SweRVolf Sim,
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 2

https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf

1. Introduction

In this Lab, we show how to build a Tensorflow Lite project for Zephyr (a real-time operating
system) and then run that Zephyr program on SweRVolf. Similar to what we have seen in the
previous lab, we will be running a Tensorflow program on top of Zephyr instead of a basic C
or Assembly language program.

1. Brief background of TensorFlow Lite

TensorFlow Lite is a set of tools that enables on-device machine learning by helping
developers run their models on mobile, embedded, and IoT devices. It compresses a
TensorFlow model to a .tflite model that has a small binary size. This enables on-device
machine learning and uses hardware acceleration to improve performance.

Its key features are:
● Optimized for on-device machine learning by addressing five key constraints: latency

(there's no round-trip to a server), privacy (no personal data leaves the device),
connectivity (internet connectivity is not required), size (reduced model and binary
size), and power consumption (efficient inference and a lack of network connections).

● Multiple platform support, covering Android and iOS devices, embedded Linux, and
microcontrollers.

● Diverse language support includes Java, Swift, Objective-C, C++, and Python.

● High performance, with hardware acceleration and model optimization.

● End-to-end examples for common machine learning tasks such as image
classification, object detection, pose estimation, question answering, text
classification, etc., on multiple platforms.

For more information, visit https://www.tensorflow.org/lite/microcontrollers

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 3

https://www.tensorflow.org/lite/microcontrollers

SweRVolf and Tensorflow Lite

Figure 1 illustrates the hierarchical layers on top of the Nexys A7 board that we will
implement in this Lab.

Figure 1. Layers on top of the FPGA board

The steps for running a TensorFlow Lite program on the Nexys A7 board are subtly different
from the ones in Lab 4.

Step 1. Download SweRVolf onto the FPGA board
First, we download the SweRVolf, the RISC-V system targeted to an FPGA, to the
Nexys A7 FPGA board. We download the SweRVolf onto the board by either uploading the
bitstream to the board using PlatformIO or by using the FuseSoC run command, which
uploads the generated bitstream to the board if it's connected.

Step 2. Build Tensorflow programs
In this step, we build a Tensorflow Lite application for Zephyr. The Zephyr RTOS is built as
part of this build. The output is an elf file.

Step 3. Load programs on SweRVolf.
In this step, we load the elf file generated during Step 2 onto SweRVolf.

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 4

2. Requirements

To complete this lab, you will need to install the following:
● Vivado 2019.2 Web Pack (Refer to Installation Guide (Page No.04))
● Verilator (v4.106) (Refer to Installation Guide (Page No.09))
● FuseSoC (Refer to Installation Guide (Page No.10))
● OpenOCD (RISC-V-specific version) (Refer to Installation Guide (Page No.10))
● ZephyrPrerequisites (Refer to Installation Guide (Page No.11))
● Zephyr SDK (v0.12.4) (Refer to Installation Guide (Page No.12))
● PuTTY (Refer to Installation Guide (Page No.12))

IMPORTANT: Before starting RVfpga-SoC Labs, we highly recommend completing the
RVfpga-SoC Installation Guide.

For example, if you have not already, install Xilinx’s Vivado and Verilator following the
instructions in the RVfpga-SoC Installation Guide. Make sure that you have copied the
RVfpga-SoC folder that you downloaded from Imagination’s University Programme to your
machine.

3. Tensorflow’s Hello World Example

In this Lab, we will only set up the Tensorflow environment and run a simple Hello-World
tensor operation.

The Hello World example is designed to demonstrate the absolute basics of using
TensorFlow Lite for Microcontrollers. This program trains and runs a model that replicates a
sine function, i.e., it takes a single number as its input and outputs the number's sine value.

For more information, visit TensorFlow’s official documentation at this link.

4. Setting up The Environment For Tensorflow

Open your Ubuntu terminal and complete the following steps:

Step 1. Navigate to the directory “SweRVolf”. We have to set the following shell variables.
To do that, we run the following:

➢ export WORKSPACE=$(pwd)

➢ export SWERVOLF_ROOT=$WORKSPACE/fusesoc_libraries/swervolf

➢ export ZEPHYR_BASE=$WORKSPACE/zephyr

You can also enter “printenv <variable-name>” command in the terminal window to
verify if the shell variables have been successfully set or not.

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 5

https://www.tensorflow.org/lite/microcontrollers/get_started_low_level

Figure 2. Set the shell variables

Step 2. Clone the Tensorflow GitHub repository.

➢ git clone https://github.com/tensorflow/tensorflow

Figure 3. Tensorflow

Now navigate to the “tensorflow” directory.

➢ cd tensorflow

Figure 4. Navigate to the “tensorflow” directory

Check out the “v2.5.0” branch of the repository by the following command :

➢ git checkout v2.5.0

Figure 5. git checkout

Step 3. In order to add support for Zephyr SweRVolf in TensorFlow, we must copy a couple
of files in this TensorFlow repository.

The first file is the “Makefile.inc” file for the hello_world example. Navigate to the following
path to copy “Makefile.inc”:

● [RVfpgaSoCPath]/RVfpgaSoC/Labs/LabResources/Lab5/Makefile.inc

Now paste the “Makefile.inc” file to the following location (see Figure 6)

● [RVfpgaSoCPath]/RVfpgaSoC/Labs/LabProjects/SweRVolf/tensorflo
w/tensorflow/lite/micro/examples/hello_world/zephyr_riscv/

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 6

Figure 6. Makefile.inc

Note: If you cannot find the “example” folder at the following path:
[RVfpgaSoCPath]/RVfpgaSoC/Labs/LabProjects/SweRVolf/tensorflow/ten
sorflow/lite/micro/examples

It means that you have not changed to v2.5.0 branch of tensorflow.

You can change to v2.5.0 by entering the following command in the terminal:
git checkout v2.5.0

The second file is the “zephyr_swervolf_makefile.inc” file. Navigate to the following path to
copy “zephyr_swervolf_makefile.inc”:

● [RVfpgaSoCPath]/RVfpgaSoC/Labs/LabResources/Lab5/
zephyr_swervolf_makefile.inc

Now paste the “zephyr_swervolf_makefile.inc” file to the following location (see Figure 7)

● [RVfpgaSoCPath]/RVfpgaSoC/Labs/LabProjects/SweRVolf/tensorflo
w/tensorflow/lite/micro/tools/make/targets/

Figure 7. zephyr_swervolf_makefile.inc

Step 4. Install the required packages.

Navigate to the “WORKSPACE” directory using the following command:

➢ cd ..

Figure 8. Navigate to the WORKSPACE directory

Install the required packages by the following command:

➢ sudo apt install git cmake ninja-build gperf ccache dfu-util
device-tree-compiler wget python python3-pip
python3-setuptools python3-tk python3-wheel xz-utils file
make gcc gcc-multilib locales tar curl unzip xxd make
autoconf g++ flex bison virtualenv

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 7

Figure 9. Install packages

Step 5. Create a virtual environment.

First Navigate to the zephyr directory using the following command:

➢ cd zephyr

Figure 10. Navigate to the zephyr directory

Create a virtual environment inside the zephyr directory using the following command:

➢ virtualenv venv-zephyr

Figure 11. Creating venv-zephyr

Step 6. Enter the following command to activate the virtual environment created in the last
step.

➢ source venv-zephyr/bin/activate

Figure 12. Activating venv-zephyr

Step 7. Install the required packages listed in the “requirements.txt” file using the following
command.

➢ pip3 install -r scripts/requirements.txt

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 8

Figure 13. Installing required packages

Now we can close this terminal tab and return to our main terminal tab, where we will be
building the “hello_world” example.

5. Building Hello World Example for Swervolf

In this section, we will be building the “hello_world” example for SweRVolf. We will be
generating the “zephyr.bin” and “zephyr.elf” files for the “hello_world” example.

Step 1. First, we will navigate to the tensorflow directory.

➢ cd ../tensorflow/

Figure 14. Navigating to the “tensorflow” directory

Step 2. For this Lab, we are going to build Hello world for SweRVolf. This is done with the
following command:

➢ make -f tensorflow/lite/micro/tools/make/Makefile
TARGET=zephyr_swervolf BUILD_TYPE=debug hello_world_bin

Figure 15. Building hello_world example

This will take a few minutes since it has to download some toolchains for the dependencies.
Once it has finished, you should see some folders created inside a path like

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 9

● tensorflow/lite/micro/tools/make/gen/zephyr_swervolf_x86_64_d
ebug/hello_world/

These folders contain the generated project and source files.

Figure 16. Building hello_world example completed

The resulting binaries (zephyr.bin and zephyr.elf) will be generated in the following path:

● tensorflow/lite/micro/tools/make/gen/zephyr_swervolf_x86_64_d
ebug/hello_world/build/zephyr

Step 3. Now you can exit out of the virtual environment by entering the following command:

➢ deactivate

6. Running Hello World Example on Verilator

In this section, we will be converting the “zephyr.bin” file into a “.hex” file and then load it in
as the initial ram file while running the simulator for SweRVolf.

Step 1. Navigate to the “hello_world” project directory. Enter the following command to enter
that directory:

➢ cd
tensorflow/lite/micro/tools/make/gen/zephyr_swervolf_x86_64_d
ebug/hello_world/

Figure 17. “hello_world” project path

Step 2. Convert the “.bin” file to the “.hex” file. To create the “.hex” file, run the following
command from the hello_world directory :

➢ python3 $SWERVOLF_ROOT/sw/makehex.py build/zephyr/zephyr.bin
>
/home/<username>/RVfpgaSoC/Labs/LabProjects/SweRVolf/hello_wor
ld_tensorflow.hex

(Replace the <username> with your username)

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 10

Figure 18. convert “.bin” to “.hex”
Step 3. Navigate back to the “WORKSPACE” directory

➢ cd $WORKSPACE

Figure 19. Installing packages in venv-zephyr

Step 4. Load the “.hex” file in the simulator:

➢ fusesoc run --target=sim swervolf
--ram_init_file=hello_world_tensorflow.hex

Figure 20. Loading “.hex” file in the simulator

We can see the output of the hello_world example (see Figure 21). The program prints out
the X and Y values of the “sine” function.

Figure 21. “hello_world” output

Press “ctrl + c” to exit out of the program.

7. Running Hello World Example on the Nexys A7 Board

In this section, we will be running the “hello_world” project on the board using OpenOCD.

Step 1. Connect the Nexys A7 board to your computer and then run the FPGA build
command in the Workspace directory.

➢ fusesoc run --target=nexys_a7 --run swervolf

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 11

Figure 22. Run the FPGA build

Step 2. Connect OpenOCD with SweRVolf.

➢ openocd -f $SWERVOLF_ROOT/data/swervolf_nexys_debug.cfg

Figure 23. OpenOCD connected

Step 3. Open a new terminal using “Ctrl + Shift + t” & connect to the debug session through
OpenOCD using the following command:

➢ telnet localhost 4444

Figure 24. telnet localhost 4444

OpenOCD supports loading ELF program files by running load_image /path/to/file.elf.
Remember that the path is relative to the directory from where OpenOCD was launched.

➢ load_image
tensorflow/tensorflow/lite/micro/tools/make/gen/zephyr_swervo
lf_x86_64_debug/hello_world/build/zephyr/zephyr.elf

Figure 25. loading the “.elf” file

After the program has been loaded, set the program counter to address zero using the
following command:

➢ reg pc 0

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 12

Figure 26. Set program counter to zero

Now start the program using this command:

➢ resume

Figure 27. Start the program

Step 4. Open a new terminal using “Ctrl + Shift + t”. Open “PuTTY” using the command

➢ sudo putty

Figure 28. Open PuTTY

We will be using PuTTY here as a serial console for our Nexys A7 board.

Step 5. Set the following configuration:
Select the connection type as “Serial”, then enter “/dev/ttyUSB1” as the serial line, and set
the speed equal to “115200”. Now click “Open” to start the serial console.

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 13

Figure 29. PuTTY configuration

In the serial console, we can see the output of the hello_world example (see Figure 30).

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 14

Figure 30. serial console

Again as we saw in the simulation section, the program prints the “X” and “Y” coordinates of
the sine function that the TensorFlow model is plotting.

Note: If you are unable to open a serial console, try “/dev/ttyUSB0” as the serial line.

So in this lab, we have successfully build the “hello_world” example of TensorFlow as a
Zephyr application and then run that example on SweRVolf.

Imagination University Programme – RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 15

