Q7

Imagination

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga-SoC Lab 1
Introduction to RVfpga-SoC

Version 1.1 — 7th July 2023
© Copyright Imagination Technologies

imagination
university programme

Table 1. RVfpga Terms

Name Description

Courses

RVfpga A course that shows how to use RVfpgaNexys and RVfpgaSim, RISC-V
system-on-chips (SoCs), to run programs and extend the system by adding
peripherals (RVfpga Labs 1-10), and explore the core and memory system by
running simulations, measuring performance, adding instructions, and
modifying the memory system (RVfpga Labs 11-20). Throughout the course,
users are also shown how to use the RISC-V toolchain (compilers and
debuggers) and simulators, the Verilator HDL simulator, and Western Digital’s
Whisper instruction set simulator (ISS).

RVfpga-SoC A course that shows how to build a subset SweRVolfX SoC from scratch using
building blocks such as the SweRV core, memories, and peripherals. The
course also shows how to load the Zephyr real-time operating system (RTOS)
onto SweRVolf and run programs including Tensorflow Lite’s hello world
example on top of the operating system.

Cores and SoCs

SweRV EH1 Open-source commercial RISC-V core developed by Western Digital
Core (https://github.com/chipsalliance/Cores-SweRV).

SweRV EH1 SweRV EH1 core with added memory (ICCM, DCCM, and instruction cache),
Core Complex | programmable interrupt controller (PIC), bus interfaces, and debug unit

(https://github.com/chipsalliance/Cores-SweRV).

SweRVolfX The System on Chip that we use in the RVfpga course. It is an extension of
SweRVolf.

SweRVolf (https://github.com/chipsalliance/Cores-SweRVolf): An open-source
SoC built around the SweRV EH1 Core Complex. It adds a boot ROM, UART
interface, system controller, interconnect (AXI Interconnect, Wishbone
Interconnect, and AXI-to-Wishbone bridge), and an SPI controller.
SweRVolfX: It adds four new peripherals to SweRVolf: a GPIO, a PTC, an
additional SPI, and a controller for the 8 Digit 7-Segment Displays.

RVfpgaNexys [The SweRVolfX SoC targeted to the Nexys A7 board and its peripherals. It
adds a DDR2 interface, CDC (clock domain crossing) unit, BSCAN logic (for
the JTAG interface), and clock generator.

RVfpgaNexys is the same as SweRVolf Nexys
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 2

https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf

imagination
university programme

RVfpgaSim The SweRVolfX SoC with a testbench wrapper and AXI memory intended for
simulation.
RVfpgaSim is the same as SweRVolf Sim,

(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

1. Introduction

1. Introduction to a System on a Chip
In this lab, we will show how to build a RISC-V system on a chip (SoC) from building blocks.

An SoC is an integrated circuit or an IC that integrates an entire electronic or computer
system onto it. An SoC includes a core and all of the peripherals and interfaces necessary to
load an operating system and run programs. Figure 1 illustrates the typical hierarchical
organization of an embedded system starting with the processor core, then the SoC built
around the core, and finally the system and board interface.

SoC

Figure 1. Typical Embedded system

The design process of an SoC starts with prototyping on an FPGA. Our focus will be on
targeting an SoC to an FPGA.

The RISC-V CPU that we will use is Western Digital's SweRV EH1 Core Complex, and the
SoC that we will design in this lab will be a subset of SweRVolfX, which we will target to the
Nexys A7-100T board. Figure 2 illustrates the various components and how they fit together.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 3

https://github.com/chipsalliance/Cores-SweRVolf

imagination
university programme

SweRV EH1 Core Complex] T
ﬂ Nexys A7
SoC é

SweRVoIfX

Figure 2. RVfpga System based Embedded system

2. Introduction to SweRVolfX and the RVfpga System
Before starting this lab, we highly encourage students to have gone through the RVfpga

course Getting Started Guide and understand the overall RVfpga System. The following is a
brief description of the RVfpga system introduced in the RVfpga course.

Table 1 shows the hierarchical organization of the RVfpga system, from the SweRV EH1
Core up to the RVfpgaNexys and RVfpgaSim. The System on Chip (SoC) used in the
RVfpga system, called SweRVolfX and illustrated in Figure 3, is based on, SweRVolf
version 0.7.3 (https://github.com/chipsalliance/Cores-SweRVolf/releases/tag/v0.7.3), which is
built on top of the SweRV EH1 Core Complex. In addition to the SweRV EH1 Core
Complex, the SweRVolf SoC also includes Boot ROM, a UART, a System Controller, and an
SPI controller. SweRV EH1 Core uses an AXI bus, and the peripherals use a Wishbone bus;
the SoC also has an AXI-Wishbone Bridge.

In the RVfpga system, the SweRVolf SoC is extended with some more functionality, such as
another SPI controller (SPI12), a GPIO (General Purpose Input/Output) controller, a PTC
(PWM/Timer/Counter) module. (Figure 3 shows these new peripherals in red). This System
on a Chip is called SweRVolfX (the X stands for eXtended).

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 4

https://github.com/chipsalliance/Cores-SweRVolf/releases/tag/v0.7

imagination
university programme

[AXl Interconnect]

@ ERAM Memory

[AXI-Wishbone Bridge]

[}

[Wishbone Interconnect]

g

| BootRoM |[system-ctrl |[spin | [Fspiz] [pre | [T@pio | [uarr |

Figure 3. SweRVolfX

Table 4 gives the memory-mapped addresses of the peripherals that are connected to the
SweRV EH1 core via the Wishbone interconnect.

Table 4. MEMORY-MAPPED Addresses of SweRVolf

System Address
Boot ROM 0x80000000 - 0x80000FFF
System Controller 0x80001000 - 0x8000103F
SPI1* 0x80001040 - 0x8000107F
SPI12* 0x80001100 - 0x8000113F
Timer* 0x80001200 - 0x8000123F
GPIO* 0x80001400 - 0x8000143F
UART 0x80002000 - 0x80002FFF

* Peripherals added in SweRVolfX
3. Introduction to RVfpga-SoC
In RVfpga, SweRVolfX was introduced without any detail regarding how SweRVolfX was
created. The RVfpga-SoC course shows how to build a subset of SweRVolfX SoC from
scratch using building blocks such as the SweRV core, memories, and peripherals.

This Lab will be a step-by-step guide that shows how to start with a CPU (the SweRV EH1
Core Complex) and then build it into an SoC. We will be using the Vivado Block Design Tool.
Vivado’s block design tool facilitates wiring components graphically, making the process
easier to understand and visualize. This visual approach also illustrates how each module is
connected with the others to form an SoC.

The modules can be classified into three major blocks or categories:
1. CPU (SweRV EH1 Core Complex)
2. Interconnect (AXI-Interconnect, AXI2WB, and WB-Interconnect)

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 5

imagination
university programme

SweRVolIfX has many different modules and some are not necessary for a barebones
RISC-V SoC. Hence, the extra modules have been trimmed to simplify the Lab and focus on
the barebone functionality needed to bring a CPU core alive. Figure 4 shows the modules
we will not be including (UART, PTC, SPI1, and SPI12).

3. Peripherals (Boot-ROM, GPIO controller, and System controller)

SweRV EH1 Core Complex

IFU

SweRV EH1 Core — RV32IMC

> JTAG

LSU Bus IFU Bus Debug Bus B DMA Slave
Master Master Master Port

[AXI Interconnect]

@ E{>RAI\/1 Memory

[AXI-Wishbone Bridge]

[Wishbone Interconnect]

Boot-ROM | [system-crl | [)@ | [Sh@ | [P¥€] [[ePio | [ud€T |

Figure 4. A subset of the SweRVolfX

Figure 5 shows a high-level block diagram of the SoC that we will be implementing.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023
© Copyright Imagination Technologies 6

imagination
university programme

SweRV Core. <‘,_i DM |

@ <r“| Clock |

i Interconnect Wrapper <7 Reset |

AXl - Interconnect |
@ j
AXI 2 WB ' T
- = Memory |
N | = R
b
WB - Interconnect

& @ @ | @_'E|

|Syscon| |Boot-ROM| | GPIO K=

K= 16 Switches |

Figure 5. High-level block diagram of Lab 1 SoC

For the sake of ease of learning and understanding, some components that make up the
Interconnect (AXI interconnect, Wishbone Interconnect, and AXI to Wishbone bridge) have
been wrapped into one Interconnect wrapper module.

For Labs that focus on the CPU and inside the CPU, please refer to the RVfpga course.
The RVfpga (also written RISC-V FPGA) course is a package that includes instructions,
tools, and labs for targeting a commercial RISC-V processor and SoC to a
field-programmable gate array (FPGA) and then using and expanding it to learn about
computer architecture, digital design, embedded systems, and programming.

For more information about RVfpga, visit https://university.imgtec.com/rvfpga/

2. Requirements

To complete this lab, you will need to have the following software installed:
e Vivado 2019.2 Web Pack (Refer to Installation Guide (Page No.04))
e Digilent Board Files (Refer to Installation Guide (Page No.05))

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 7

https://university.imgtec.com/rvfpga/

imagination
university programme

IMPORTANT: Before starting RVfpga-SoC Labs, we highly recommend completing the
RVfpga-SoC Installation Guide.

For example, if you have not already, install Xilinx’s Vivado following the instructions in the
RVfpga-SoC Installation Guide. Make sure that you have copied the RVfpgaSoC folder that
you downloaded from Imagination’s University Programme to your machine.

3. Create Vivado Project

You will use Xilinx’s Vivado Design Suite to build the SweRVolfX subset using the RTL, the
Verilog files that define the system. Follow these steps, detailed below, to create a Vivado
project.

Step 1. Open Vivado
If you did not install Vivado on your machine as described in the RVfpga-SoC Installation
Guide, do so now. Be sure to install the board files as well.

Now, run Vivado (in Linux, open a terminal and type: vivado; in Windows, open Vivado

from the Start menu). The Vivado welcome screen will open. Click on Create Project (see
Figure 6).

VIVADO' £ XILINX.

HLx Editions

Recent Projects

Quick Start

Create Project >
Open Project >
Open Example Project >

Figure 6. Vivado welcome screen: Create Project

Step 2. Create a new RTL project
The Create a New Vivado Project Wizard will now open (see Figure 7). Click Next.

Create a New Vivado Project

4
V|VADO This wizard will guide you through the creation of a new project.

HLx Editions
To create a Vivado project you will need to provide a name and a location for your project files. Next, you

will specify the type of flow you'll be working with. Finally, you will specify your project sources and

v choose a default part.
& XILINX.
N
[2

Figure 7. Create a New Vivado Project Wizard

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 8

imagination
university programme

Enter the name of the project as “Lab1” with no spaces. Then click Next (see Figure 8).

Select the following Project Location Path :
[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabProjects/Labl

Uncheck the create project subdirectory checkbox because there is already a folder called
“Lab1” in the “LabProjects” folder.

New Project

Project Name

Enter a name for your project and specify a directory where the project data files will be stored. ‘
Project name: Labl
Project location: /homefhamza/RvfpgaSoC/Labs/LabProjects/Labl E

[[] create project subdirectory

Project will be created at: fhomefhamza/RvfpgasSoC/Labs/LabProjects/Labl

)

Figure 8. Project Name

Select the project type as RTL Project, and click Next (see Figure 9).

Project Type
Specify the type of project to create, '

@) RTLProject
"~ You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

") Do not specify sources at this time

5 Post-synthesis Project
" You will be able to add sources, view device resources, run design analysis, planning and implementation.

¢ WO Planning Project
" Do net specify design sources, You will be able to view part/package resources,

y Imported Project
" Create a Vivado project from a Synplify, XST or ISE Project Fils.

Y Example Project
" Create a new Vivadao project from a predefined template.

Figure 9. RTL Project

Step 3. Add the RTL source files and the constraint files

In the Add Sources window, click on “Add Directories” (see Figure 10).

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 9

imagination
university programme

New Project

Add Sources

Specify HDL, netlist, Block Design, and IP files, or directories containing those files, to add to your project. Create ‘
a new source file on disk and add it to your project. You can also add and create sources later,

e e

4

Use Add Files, Add Directories or Create File buttons below
Add Files |I Add Directories I| Create File
Target language: | Verilog w Simulator language: | Mixed '

e

Figure 10. Add Sources directory

Now select the “src” directory at the following path
[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/src (See Figure 11).

Add Source Directories X

Recent: ' jhomefhamza/RvipgaSoC/Labs/LabProjects/Labl v taaldlds X C

Directory: /home/hamza/RvfpgaSoCilabs/LabResources/Labl/src

~ home
v hamza
Desktop
Documents
Downloads
Music
Pictures
Public
RvfpgasoC
~ Labs
> Lab Instructions
v LabProjects
Labl
> SweRvolf
v LabResources
v Labl

L v v v v v v

bl

Figure 11. Select the “src” directory

Click Select.
Then click on the “Add Files” button.

I Add Files I Add Directories Create File

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 10

imagination
university programme

Figure 12. Add Files

Select the Files type to “All Files”. Now navigate to the LiteDRAM directory inside the src
directory that we have just added.

e [RVfpgaSoCPath]/RVfpgaSoC/Labs/LabResources/Labl/src/LiteDRAM
/mem 1.init

e [RVfpgaSoCPath]/RVfpgaSoC/Labs/LabResources/Labl/src/LiteDRAM
/litdram core.init

Select both the “.init” files and click OK to add them both (see Figure 13).

)

Add Source Files

Look in: LiteDRAM v taLdd, BXC &&=
serv 1.0.2 Recent Directories
. litedram_core.init /home/hamza/RvipgaSoC/Labs/LlabResources/Lablisre «
itedram_core.v
it adram tan File Preview
- Fi_Ie: litedram_core.init
Directory:

Jhomeshamza/RvipgaSoC/LabsilabResources/Labl fsre/liteDRAM
Created: Sunday 11/29/20 03:04 PM

Accessed: Today at 19:00 PM

Modified: Sunday 11/29/20 03:04 PM

Size: 41.4 kB

Type: INIT

owner: hamza

Permissions: rw-rw-r--

File name: "litedram_core.init" "mem_1.init"

Files of grpel 2ll Files I

[o |
Figure 13. Add LiteDram Sources Files

Make sure all three of the checkboxes are checked (see Figure 14).
Click “Next” to proceed to the next step.

New Project 0

Add Sources

Specify HOL, netlist, Block Design, and IP files, or directories containing those files, to add to your project. Create a new source file on disk and add it '
to your project. You can also add and create sources later.

+A
Index Name Library HOL Source For Location
. 1 src Hl_defaultlib Synthesis & Simulation = fhomefhamza/RvfpgaSoC/Labs/LabResources/Labl
. 2 litedram_core.init ~ N/A /A = (homefhamza/RvfpgaSol/Labs/labResources/Labl/src/LiteDRAM
. 3 mem_1.init NJA /A = (homefhamza/RvfpgaSol/Labs/labResources/Labl/src/LiteDRAM
Add Files | ‘ Add Directories | ‘ Lreate File

Scan and add RTL include files into project

[Copy sources into project

Target language: | Verilog Simulator language: = Mixed ~

®
Figure 14. Add Sources

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 1

imagination
university programme

You will now add the constraints for the system. These files map the signal names to the
pins on the board. For example, the Nexys A7 FPGA board’s LEDs are connected to FPGA
pins on the board through the PCB traces. Vivado must know this to map the correct signal
name in the RTL to the correct FPGA pin. For example, the following line in the
[RVifpgaSoCPath]/RVfogaSoC/src/rvipga.xdc file, a Xilinx design constraints file, indicates
that FPGA pin H17 maps to the least significant LED (o_1ed[0]) and that it uses LVCMOS
3.3V signalling:

set property -dict { PACKAGE PIN H17 IOSTANDARD LVCMOS33 } [get ports { o led[O0]
}1

Note that the signal name o_1ed is the name used in RVfpga’s Verilog code to drive the
Nexys A7 board’s LEDs.

In the Add Constraints window, click on “Add Files” and select the following two files (see
Figure 15):
[RVfpgaSoCPath]/RVfpgaSoC/Labs/LabResources/Lab1/src/rvfpga.xdc
[RVifpgaSoCPath]/RVfogaSoC/Labs/LabResources/Lab1/src/litedram.xdc

Then click Next.

Add Constraint Files -~

Look in: src v tadEds BXC RS
LiteDRAM Recent Directories
OtherSources fhome/hamza/R\fpgaSoC/Labs/LabResources/labljsrc v
SweRVolfSoC
I liteDRAM.xdc File Preview
N nfpga.xdc | # ddram: 0.3 ~
set_property LOC M4 [get_ports ddram_a[0]]

set_property SLEW FAST [get_ports ddram_a[0]]
set_property IOSTANDARD SSTL1S II [get_ports ddram_al@]
sé‘.t_ﬁ;oﬁeriy‘LOC P4 [get_ports ddram_al[1]]
set_property SLEW FAST [get_ports ddram_a[l]]
set_property IOSTANDARD SSTL1S II [get_ports ddram_a[l]

sé‘.t_ﬁ;oﬁeriy‘LOC ME [get_ports ddram_al[2]]

set_property SLEW FAST [get_ports ddram_a[2]]
set_property IOSTANDARD SSTL1S II [get_ports ddram_a[2]
#F ddram: 0.2 hd

< bl

File name: "liteDRAM.xdc" "rvfpga.xdc”

Files of type: Design Constraint Files {.sdc, xdc)

Figure 15. Add Constraints

Step 4. Select Nexys A7 as the target board

In the Default Part window, click on Boards and then select Nexys A7-100T (See Figure 16).
You may use the Search box to narrow down the results. You will also notice that the name
of the actual target FPGA is listed in the Part column: xc7a100tcsg324-1. This indicates that
it is a Xilinx Artix-7 FPGA with 100k equivalent gates with a CSG (chip-scale grid) package
and 324 pins.

Click Next.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 12

imagination
university programme

Default Part
Choose a default Xilinx part or board for your project. '

—_—
Parts Boards

—
Reset All Filters Update Board Repositories
Vendor: = All v Name: | All v Board Rev: | Latest v
Search: | - nexys v | (5 matches)
i Preview Vendor File Version Part 1/C
~
Nexys A7-100T digilentinc.com 1.0 xcTa100tesg324-1 32
Nexys A7-50T digilentinc.com 1.0 xcTa50ticsg324-1L 32
Nexys4 digilentinc.com 1.1 xc7a100tcsg324-1 32
Nexys4 DDR digilentinc.com 1.1 Xxc7a100tcsg324-1 32
v
< >

)
\2) < Bac Next > Cance

Figure 16. Select target board: Nexys A7-100T

In the New Project Summary window, click Finish (see Figure 17).

New Project Summary

VIVADO'

HiLx Editions © A new RTL project named 'Lab1’ will be created.
© 208 source files will be added.
O 2 constraints files will be added.

O The default part and product family for the new project:
Default Board: Nexys A7-100T
Default Part: xc7a100tcsg324-1
Product: Artix-7
Family: Artix-7
Package: csg324
Speed Grade: -1

w
i; Xl LI NX;;- To create the project, click Finish

Figure 17. New Project Summary Window

Note that once the project completes being set up, it will indicate that files exist with Syntax
Errors — this will be fixed in the next step.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 13

imagination
university programme

Step 5. Set rvfpga as Top Module

The project will initialize. You will now set the rvfpga module as the top module. In the
Sources pane, scroll down under Design Sources, right-click on the rvfpga module, and
select Set as Top (see Figure 18). You can also find the rvfpga module by typing this name in
the search box, as shown. This sets rvfpga as the highest-level module in the hierarchy and
the target to be synthesized and implemented onto the FPGA. After setting rvfpga as the top
module, the hierarchy will update.

Sources ? 00X Project Summar
QT &2 4+ A g -] Overview | pa:
> @ ifu_lcem_mem (ifu_iccr em.sv) (17 -
> @ axi_lite_xbar (axi_lite_xbar.sv) (5 Settings Edit
> @ nifpga (nfpga.sv) (=
X o Source Node Properties. .. lect name:
> @ clock_divider {clocl —
> @ nfpgasim (nipgas ™ OpenFie | |
- duct family:
> @ intcon_wrapper (in Replace File... lect part:
> @ intcon_wrapper_bd module nan
> @ axi_lite_to_apb_intf e
> @ =d_uart_wrapper (X Remove File from Project... Ulator langu:
> @ ifu_ic_mem (ifu_ic_t
> @ popcount (popcou
Disable File
> @ simple spilsimple] ird Part
Hierarchy Libraries Move to Simulation Sources
play name:
d part I
Source File Properties Hierarchy Update y [pErtmEm
rd revision:
® rvinga.sv C' Refresh Hierarchy |
pgs , Inectars:
| Enabled " Set asTop iository path
Location: fham .
ird overview:
Type: Systemy
Library: wil_defaL :
& = Set Librarv... thesis

Figure 18. Set rvfpga as top module

Step 6. Set Verilog header files as global include Files

Now, still in the Sources pane under Design Sources, expand the Non-modules filegroup
and click on common_defines.vh. The properties of the file will then open in the Source File
Properties pane, just below the Sources pane. Click on Global Include to tick that box (see
Figure 19). The hierarchy will now update and include that file in Design Sources/Global
Include.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 14

imagination
university programme

Sources ? 00O X
aQa = & + B 2 o

Design Sources (1
Global Include (1

Verilog Header

Non-module Files (¢

@® wb_commony

kommon_deﬁnes.vh_

JTagServer.
@ jtag_common.h

® registers.svh

Hierarchy Librarnes Compile Order

Source File Properties ?7 00X

3 common_defines.vh - o

Read-only: No ~
Encrypted: No
et nes L

¥| Global include

Used In
+| Synthesis
W

< >
Figure 19. Set common_defines.vh as a Global include file

Similarly, set the “assign.svh”, “registers.svh”, and “typedef.svh” SystemVerilogHeader
files as global include files (See Figure 20).

Sources ?2 008 X
Q = £ 4+ 3 2 &
TS CTEGT TS N

® wb_commonyv

& assign.svh

@ axi_interconvh

® boot_mainvh

& common_defines.vh
@ jtagServerh

@ jtag_common.h

© registers.svh

© typedefsvh

@® wb_intercon.vh
_____ B e e

Hierarchy Libraries Compile Order

Figure 20. Set “.svh” files as a Global include file

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 15

imagination
university programme

Now expand the “unknown” filegroup and click on “litedram_core.init". Then click on the
Properties button next to the General button in the Source File Properties panel. Click on
“IS_Global_INCLUDE?” to tick that box (See Figure 21).

Sources ?7 00 X
- .

Q = £ 4+ @A 2 o
w ‘.:iLr&!H”I_CI&!H'IL.I}{ [%=18 —_'i:|lII_'_I—_'IIILI.-.‘:rc'.I ~

@ stream_filter (stream_filter.sv)

@ stream_fork (stream_fork. sv)

@ stream_mux (stream_mux. sv)

@ unread (unread.sv)

@ wb_data_resize (wh_data_resize.v)
~ [Unknown (2)

3 litedram core.init

@ mem_1.init

b Constraints (2)
b Simulation Sources (125)
» [Utility Sources o

Hierarchy Libraries Compile Order

Source File Properties ?2 00 X

@ mem_1.init - o

Q = = =& - 0 2
IMFURTEL_FRUM Mome/namza/fvTpgasol/Lans/Lan..,. .
IS_AWAILABLE v

IS_ENABLED v
IS_GEMERATED

[iGLOElAL_INCLUDE [w] I

LBRARY xil_defaultlib .
MNAME fhome/hamza/Rvfpgasoc/Labs/LabPr
NEEDS_REFRESH

General I Properties I

Figure 21. Set litdram_core.init as a Global include file

Now do the same for the “mem_1.init” file and set that file as a Global include file as well,
just as did for the “litedram_core.init” file.

Step 7. Add boot_main.mem to the project

In the Flow Navigator pane, click on Add Sources, leave the default option (“Add or create
design sources”), and click on Add Files (see Figure 22). Navigate to
[RVifpgaSoCPath]/RVfogaSoC/Labs/LabResources/Lab1/src/SweRVolfSoC/BootROM/sw
and select boot_main.mem (as shown in Figure 22). The hierarchy will update and include
that file in the Design Sources/Memory File.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 16

imagination
university programme

~ PROJECT MANAGER

o Sources ? 00 X Project Summary
Settings
Q= ¢ + & Overview | Dashboard
Search:
Language Templates 2 ——
I P Catalog ® serial_deglitch
@ shift_reg (shift

® stream filter

@ stream_join (s
® stream_mu
@ unread (u

v IP INTEGRATOR

Add or Create Design Sources

mu Specify HDL, netlist, Block Design, and P files, or directories containing those file types to add to your project. Create a [
new source file on disk and add it to your project.

Create Block Design

@ wh_data_resize (v

Des al
: » = Constraints (2 +
» = Simulation Sources (130 “
v SIMULATION > = Utility Sources Add Source
Fun Simulation Hierarchy Libraries Comp
| - 3 Look in: sw
v RTLANALYSIS Source File Properties 1 boot_main.eff
> Open Elaborated Design ® boot mainwh Use Add Files, Add Direg [] boot_main.mem
® boot_mainvh
~ SYNTHESIS <) Enabled
P Run Synthesis Location: thomerdchavel
> Open Synthesized Design Type: verilog [
Library: wil_defauttlib ‘ £dd Files Ad
~ IMPLEMENTATION
P Run Implementation Size: 0.41®
5 Open Implemented Design Madified: vesterday at 1
<
v PROGRAM AND DEBUG General Properties
¥ Generate Bitstream [©)]
Tcl Console | Messages x -
> Open Hardware Manager

a x & ¥, B 1@ [v] @ Critical warning (721) ()@ Warning (440) |

» s Wivade Commands (2 critica File name: boot_main.mem

Flgure22Add Memory File boot_main.mem

The design source files have now been added and now we can go ahead and start creating
the block design.

4. Create Block Design

We will be using Vivado’s Block Design feature to add the modules required to create the
SweRVoIfX subset and then wire the modules with each other.

Step 1. Click on Create Block Design
Create a new block design in the Flow Navigator by clicking on Create Block Design under
the IP Integrator heading (see Figure 23).

v~ IPINTEGRATOR

I Create Block Design

Open Block Design

Generate Block Design

Figure 23. Create Block Design

Step 2. Select Block Design’s Name
Select the Design name as “BD” to avoid any naming conflicts later in the Lab (See Figure
24).

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 17

imagination
university programme

Create Block Design 0

Please specify name of block design.

Design name: |EID |
Directory: s« =Local to Project= A
Specify source set: Design Sources w

P

Figure 24. Select Block Design’s Name and Directory

Now you will see a blank block design Diagram panel. (see Figure 25)

Diagram 200X

R O + = » C Default View - o

This design is empty. Press the < button to add IP.

Figure 25. Blank Block Design

Step 3. Add Modules to the Block Design
Now we can start adding modules to our Block Design. We can do that by right-clicking on
the blank Block design and select the “Add Module” option (See Figure 26).

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 18

imagination
university programme

Q. Search..
W Select All

+ Addp.
Add Module...
Pinning »
IP Settings...

[Validate Design

Create Hierarchy...
Create Comment
Create Port...

Create Interface Port...

C' Regenerate Layout

Save as PDF File...

Figure 26. Add Module

A dialogue box will appear; you can either scroll down or type in the search box the name of
the required modules you would like to add. We will start by adding the SweRV EH1 Core
Complex.

Select “swerv_wrapper_verilog” and click OK.

Add Module %

Select a module to add to the block design. '

Module type: |RTL w
Search: Q- sweny_wra (1 match)
® swenv_wrapper_verilog (swerv_wrapper_verilog.v)

[+ Hide incompatible modules

o

Figure 27. Add swerv_wrapper_verilog

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 19

imagination
university programme

A critical warning message will pop up (see Figure 28). Click OK to ignore this warning
message.

Critical Messages oo

There was one critical warning message while adding the module.

Messages

[HDL 9-806] Syntax error near "begin”.
[fhomejdchaverf/M_SharedFolder/Rvfpga_SoC/LabProjects/Labl/Labl.src
s/sources_lfimports/src/SweRVolfSoC/OtherSources/swervolf-swerv_defa
ult_config_0.7/configs/snapshots/default/pic_map_auto.h: 2]

| Open Messages View |

Figure 28. critical warning message

After we have added the module, we can visualize and access all the pins of “ifu_axi”,
“Isu_axi” or “sb_axi” by clicking on the “+” icon on the module.

swerv_wrapper_verilog_0

- clk
= rst_|
= nmi_int
= nmi_vec[31:0] . . -
.) ifu_axi - {::
- timer_int) -:
. Isu_axi = §::
= extintsrc_req[8:1] RTL . -
sb axi = e}

= dmi_reg_en
= dmi_reg_addr[6:0]

= dmi_reg_wr_en

dmi_reg_rdata[31:0]

= dmi_reg_wdata[31:0]
0 dmi_hard_reset

swerv_wrapper_verilog_v1_0

Figure 29. “swerv_wrapper_verilog” module

Similarly, we will now add the following modules:
e “intcon_wrapper_bd” (Interconnect Wrapper Module): It is a wrapper module that
contains all the three interconnect modules wrapped into it.

|. intcon_wrapper_bd (intcon_wrapper.v) | >
Now we will add the peripherals needed for our SoC :
e “bootrom_wrapper” (Boot-ROM Module)
|. bootrom_wrapper (bootrom_wrapper.v) | >

e “gpio_wrapper” (GPIO Top Module)

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 20

imagination
university programme

@ gpio_wrapper (gpio_wrapper.v)

e ‘“syscon_wrapper” (System Controller Module)

|i syscon_wrapper (syscon_wrapper.v)

We will add the 32 “bidirec” modules to attach with our GPIO module. 16 of these will be for
the LEDs, and 16 will be for the switches.
e “bidirec” (Bidirectional GPIO module)

@ bidirec (bidir.v) v

bidirec_0

oe outp
inp bidir

L

bidirec v1 0
Figure 30. bidir GPIO module
Similarly, we will add 32 of these modules to the block design.
A quick way to add these 32 modules is to copy-paste the blocks in the Diagram. First Copy
1 “bidirec” block then paste it, then copy 2 blocks and paste them, then repeat the process

of copying and pasting until you have 32 blocks of “bidirec” module added to your block
design.

1
i RTL &

I RTL
E ;
£

RTL

RTL
E
RTL ¢

Figure 31. Required modules have been added to the Block Design

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 21

imagination
university programme

(see Figure 31) Starting from the left-hand side, view the SweRV Core module
(swerv_wrapper_verilog_0); then, to the right, view the Interconnect Wrapper module
(intcon_wrapper_bd_0) and the four peripheral modules, which are the Boot-ROM
(bootrom_wrapper_0) module, System Controller (syscon_wrapper_0) module, GPIO
(gpio_wrapper_0) module. On the rightmost side, you will see the 32 Bidirec (bidirec_x)
modules.

Step 4. Wire up the modules
We now wire the modules to each other pin-by-pin or, in some cases, bus-by-bus. We will
begin connecting the “swerv_wrapper_verilog” with the “intcon_wrapper_bd”. Three
different sets of pins need to be connected between these modules related to the following
submodules of the core:

e IFU (Instruction Fetch Unit)

e LSU (Load Store Unit)

e SB (Store Byte)
We will first start with connecting the pins related to the IFU. Connect the pin “
ifu_axi_arid[2:0] " of the “swerv_wrapper_verilog” module to the “i_ifu_arid[2:0]” pin of the
‘intcon_wrapper_bd”.
Similarly,
ifu_axi_araddr[31:0] will be connected to i ifu_araddr{31:0],
ifu_axi_arlen[7:0] will be connected to i_ifu_arlen[7:0],
ifu_axi_arsize[2:0] will be connected to i_ifu_arsize[2:0] and so on (see Figure 32).

intcon_wrapper_bd_0

swerv_wrapper_verilog_0 o_ifu_arready =
= clk_i_wrapper o_ifu_rid[2:0] =

ifu_axi =— = rst_ni_wrapper o_ifu_rdata[63:0] =
ifu_axi_arid[2:0] P> i_ifu_arid[2:0] o_ifu_rresp[1:0] =
ifu_axi_araddr{31:0] » i_ifu_araddr{31:0] o_ifu_rlast =
ifu_axi_arlen[7:0] P i_ifu_arlen(7:0] o_ifu_rvalid =
ifu_axi_arsize[2:0] » i_ifu_arsize[2:0] o_lsu_awready M=
ifu_axi_arburst[1:0] » i_ifu_arburst[1:0] o_lsu_arready =
ifu_axi_arlock » i_ifu_arlock o_lsu_wready =
ifu_axi_arcache[3:0] » i_ifu_arcache([3:0] o_lsu_bid[3:0] =
ifu_axi_arprot[2:0] P = = i_ifu_arprot[2:0] 0_Isu_bresp[1:0] =
ifu_axi_arregion[3:0] »» = = i_ifu_arregion[3:0] o_lsu_bvalid =
ifu_axi_arqos[3:0] » = = i_ifu_arqos[3:0] o_lsu_rid[3:0] m=
ifu_axi_arvalid » — = i_ifu_arvalid o_lsu_rdata[63:0] m=
ifu_axi_arready €4 — = i_ifu_rready o_lsu_rresp[1:0] =
ifu_axi_rid[2:0] € = = i_Isu_awid[3:0] o_lsu_rlast =

Figure 32. Connect the relevant pin

Similarly, we will connect all the IFU (Instruction Fetch Unit) pins of
“swerv_wrapper_verilog” with the IFU’s pins of “intcon_wrapper_bd” (see Figure 33).

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:
[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/InternalConnections/1 SwervW IntconW IFU.pdf

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 22

imagination
university programme

intcon_wrapper_bd_0

er_verilog_0

clk_i_wrapper

o_ifu_arready
o_ifu_rid[2:0]

ifu_axi — = rst_ni_wrapper o_ifu_rdatal63:0]
ifu_axi_arid[2:0] P i_ifu_arid[2:0] o_ifu_rresp[1:0]
ifu_axi_araddr[31:0] » i_ifu_araddr[31:0] o_ifu_rlast
ifu_axi_arlen[7:0] » i_ifu_arlen[7:0] o_ifu_rvalid

ifu_axi_arsize[2:0] »

ifu_axi_arburst[1:0] »

i_ifu_arsize[2:0]
i_ifu_arburst[1:0]

o_lsu_awready
o_lsu_arready

ifu_axi_arlock W i_ifu_arlock o_lsu_wready =
ifu_axi_arcache[3:0] » i_ifu_arcache[3:0] o_lsu_bid[3:0] =
ifu_axi_arprot{2:0] » i_ifu_arprot[2:0] o_lsu_bresp[1:0] =
ifu_axi_arregion[3:0] » i_ifu_arregion[3:0] o_lsu_bvalid =
ifu_axi_arqos[3:0] & i_ifu_arqos[3:0] o_lsu_rid[3:0] =
ifu_axi_arvalid » i_ifu_arvalid o_lsu_rdata[63:0] =
ifu_axi_arready = i_ifu_rready o_lsu_rresp[1:0]
ifu_axi_rid[2:0] « w i_su_awid[3:0] o_lsu_rlast =
ifu_axi_rdata[63:0] « w i |su_awaddr[31:0] o lsu_rvalid =
ifu_axi_rresp[1:0] < w= i su_awlen[7:0] o_sb_awready =
ifu_axi_rlast w i_lsu_awsize[2:0] o_sb_arready =
ifu_axi_rvalid « w i |su_awburst[1:0] o_sb_wready =
ifu_axi_rready P> = = i_lsu_awlock o_sb_bid[0:0] =
lsu_axi =— m i_lsu_awcache[3:0] 0_sb_bresp[1:0] =

Figure 33. Connect all the IFU pins

Now we will move to connect all the LSU (Load Store Unit) pins of the
“swerv_wrapper_verilog” to the LSU’s pins of “intcon_wrapper_bd”. We will perform the same
process as we did for the IFU pins, connecting each LSU pin of the “swerv_wrapper_verilog”

module with its respective pin on the “intcon_wrapper_bd” module (see Figure 34).

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/InternalConnections/2 SwervW IntconW LSU.pdf

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC

Version 1.1 — 7th July 2023
© Copyright Imagination Technologies

23

imagination
university programme

WTEON_WIAPPer_Da U
swern_wrap per_verilog 0 — — |

i — [
i asd 2] »

%

u_mvé_aecdc[31:0] B
20 aden{70) b
hu_xel_amizal20) &
s 140]

VLRI e LR A

st aweache(30] o_mm_araid
it swprat{20] o el atafia)
s awmqion(E:0] a_mm_wstb{70]

Figure 34. Connect all the LSU pins

I m 1m0
¥ %:
B

Now we proceed to connect the SB pins. We similarly connect all the SB pins of the
“swerv_wrapper_verilog” with its respective SB’s pins of “intcon_wrapper_bd” (see Figure
35).

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/InternalConnections/3 SwervW IntconW SB.pdf

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 24

imagination
university programme

RTL

RTL

Figure 35. Connect all the SB pins

Next, we will connect the peripherals with the “Intcon_wrapper_bd”. We start with the
“‘bootrom_wrapper” module by joining the “wb_rom_xxx_x" wires of the
“Intcon_wrapper_bd” (see Figure 36).

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/InternalConnections/4 BootRomW IntconW.pdf

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 25

imagination
university programme

— i_sb_wlast whb_rom_adr_o[31:0] = LLLLLLLLLL

— i_sb_wwvalid whb_rom_dat_o[31:0] jmm | II | I I | I ‘ ‘ ‘

— i_sb_bready wh_rom_sel_o[3:0] NINNANNRRN

= | sb_arid[0:0] wb_rom_we_o =

—mm i_sb_araddr[31:0] wh_rom_cyc o

—mm i_sb_arlen[7:0] wb_rom_stb_o =

— | sb_arsize[2:0] wh_spi_flash_adr_o[31:0] =

= | sb_arbursi[1.0] wh_spi_flash_dat_o[31:0] =

—= i_sb_arlock whb_spi_flash_sel_o[3:0] m=

— i _sb_arcache[3.0] wh_spi_flash_we_o =

= i_sb_arprot[2:0] wh_spi_flash_cyc o = bootromfwrapperj

== |_sb_arregion[3:0] whb_spi_flash_stb_o = .

—m= | sb_arqos[3:0] wb_spi_flash_cti_o[2:0] = !’dk

— i_sb_arvalid wb_spi_flash_bte_o[1:0] m= :’:; ad31:0]

——= i_sb_rready wh_sys adr_o[31:0] = I:Wb:dat[S'l:U] owb_ack -
= i_ram_awready whb_sys dat o[31:0] = i wh_sel[30] RTL e
= i_ram_arready whb_sys_sel_o[3:0] mm |7wb7we -
= i_ram_wready wb_sys we o = -
== i ram_bid[5:0] wb_sys cyc o = :_:i_;y;
= i_ram_bresp[1:0] wh_sys stb_o — -7
= i_ram_bvalid whb_sys_cti_o[2:0] = bootrom wrapper v1 0 g
== i_ram_rid[5:0] wh_sys_bte_o[1:0] =
== i_ram_rdata[63:0] whb_uart_adr_o[31:0] =
== i_ram_rresp[1:0] whb_uart_dat_o[31:0] =
= i_ram_rlast wh_uart_sel_o[3:0] m=
= i_ram_rvalid wh_uart_we_ o =
== wh_rom_dat_i[31:0] whb_uart_ cyc o =
~— wh_rom_ack_i wb_uart sth o =

Figure 36. Connect the BootROM module with the Interconnect Wrapper module

Now we will connect the “syscon_wrapper’” module with the “Intcon _wrapper_bd” module
(see Figure 37).

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/InternalConnections/5 SysconW IntconW.pdf

—— i sb_arvalid wh_spi_flash_bte_o[1:0] ‘ ‘ | | | | ‘ | | ‘ ‘ ‘ | ‘ | | || | ‘ | |
I P proupvonssanmnl N RARERRRE RRRRNANRY)
i byl e e A
= i_ram_arready wh_sys_sel _0[3:0] o
= i_ram_wready wh_sys_we_o P syscon_wrapper | .
= i_ram_bid[5:0] wh_sys_cyc o 1T
= ic
= i_ram_bresp[1:0] wh_sys_stb_o !'
A . =g irst
— i_ram_bvalid wb_sys_cti_o[2:0] L
— gpio_ir
= i_ram_rid[5:0] wb_sys_bte_o[1:0] gfl fl 9 o_timer_irq —
— ptc
= i_ram_rdata[63:0] whb_uart_adr_o[31:0] p . T o nmi_vec[31:0] m=
= i_ram_init_done
= i_ram_rresp[1:0] wb_uart_dat_o[31:0] o 'tﬁ o_nmi_int =
= i_ram_init_error
= i_ram_rlast wh_uart_sel_o[3:0] F n Jdl[;_‘ 0 RTL o wb_rdt[31:0] mm
= i_wb_adr[31:
= i_ram_rvalid wb_uart_we_o f' b_d {31:0) owb_ack =
= i_wb_dat[311
——== wb_rom_dat_i[31:0] wh_uart_cyc_o . bi o AN[7:0] w=
= i_wb_sel[3:
wb_rom_ack_i wb_uart_stb o F bi 13:0) Digits_Bits[6:0] m=
— i_wb_we
= wb_spi_flash_dat_i[31:0] wh_uart_cti_o[2:0] f_wb_c .
- 1,
— wb_spi_flash_ack_i wh_uart_bte_o[1:0] N b_ :’b
— i_wb_s
— whb_spi_flash_err_i whb_gpio_adr_o[7:0] Ly
= wh_spi_flash_rty_i wh_gpio_dat_o[31:0] syscon_wrapper_v1_0
= whb_sys_dat_i[31:0] wh_gpio_sel_o[3:0] - -7
— wb_sys_ack_i wb_gpio_we_o
— wh_sys_err_i whb_gpio_cyc_o

Figure 37. Connect the Syscon with the WB Interconnect Pins

The following pins of the “syscon_wrapper” will be connected to the
“swerv_wrapper_verilog’ (see Figure 38).

e 0_timer_irq

e 0 _nmi_vec[31:0]

e 0O _nmi_int

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 26

imagination
university programme

clk

rst

nmi_int
nmi_vec[31:0]
timer_int
dmi_reg_en
dmi_reg_addr[6:0]
dmi_reg_wr_en
dmi_reg_wdata[31:0]

dmi_hard_reset

Figure 38. Connect the syscon_wrapper with the swerv_wrapper_verilog pins

Now we will connect the “gpio_wrapper” module with the “intcon_wrapper_bd”. Connect the
“‘wb_gpio_xxx_x" pins of the “intcon_wrapper_bd” module with the “gpio_wrapper” module
pins (see Figure 39).

Connect the “wb_inta_o” pin of the “gpio_wrapper” module with the “gpio_irq” pin of the
“syscon_wrapper” module.

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:
[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/InternalConnections/6 GpioW IntconW.pdf

Lram_may 3 wu_sys cyr o
i_ram_bresp[1:0] wh_sys sth o
i_ram_bvalid wh_sys_cti_o[2:0) gpio_wrapper_0
i_ram_rid[5:0] wh_sys_bte_o[1:0] Wb dat o[37:0] e
i_ram_rdata[63:0] wh_uart_adr_o[31:0] wh_ack o =
i_ram_rresp[1:0] wh_uart_dat o[31:0] wb- nrr_s L
i_ram_rast wh_uart_sel_o[3:0] o ;‘m_s L
i_ram_rvalid wh_uart_we_o -) -
whb_rom_dat i[31:0] wh_uart_cyc o ::5'? :
whb_rom_ack i wh_uart_sth o - -
wh_spi_flash_dat_i[31:0] wh_uart_cti_o[2:0) ::5’; :
wib_spi flash_ack i wh_uart_bte_o[1:0] ”‘p"q L
wib_spi flash_em_i wh_gpio_adr_o[7:0] | | ” | ‘ I | ‘ I | ‘ | “I ‘ n‘p:S e
wh_spi_flash_rty_i wh_gpio_dat_o(310] I | “ | ‘ I | ‘ I | ‘ | I“ ‘ e .
wh_sys_dat_i[31:0] wh_gpio_sel_o[3:0] inp.7 f=
wb_sys ack i wh_gpio_we o o8 =
wib_sys _err i wh_gpio_cyc_o i\‘p-ﬂ L
wihb_sys_rty_i whb_gpio_stb_o - wih_clk i inp ;G =
wh_vart_dat_i[31:0] wh_ptc_adr_0[31:0) T) -
wh_uart ack i wh_ptc_dat_o[31:0] : :::rj_'l ::E::; :
w:_uart_err_l Wb_P‘;-S‘!LO[lC] el wh_adr i[7:0] inp_13 =
wh_uart_rty_i whb_ptc_we_o . .
wh_gpio_dat_i[31:0) wh_ptc_cyc_o g| SR inp_14 1=
h - vib_sel_i[310] inp_15 =
whb_gpio_ack i wh_pte_stb o e s |0
wh_gpio_er_i wib_pte_cti o[2:0]) b sth i e |
wib_ptc_dat_i[31:0] wh_pte_bte_o[1:0] 4 Qu{p C’ il‘piﬂ‘] L
wh_pte_ack i wh_spi_accel adr_o[314] B mp'1 ”\p'w C
wh_ptc_err | wh_spi_accel dat_o[314] e e

Figure 39. Connect the gpio_wrapper with the intcon_wrapper pins

We will connect the 32 GPIO “bidirec” modules with our “gpio_wrapper” module that we
have already connected. Specifically, we will connect the “gpio_wrapper” module with the
“bidirec_x" modules, where x is a number from 1 to 32. The connections will go as follows:

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 27

imagination
university programme

‘inp_0” pin of “gpio_wrapper_0" will be connected to “inp” of “bidirec_0",

‘inp_1” pin of “gpio_wrapper_0” will be connected to “inp” of “bidirec_1", and similarly
these connections will go till the last “inp” connection, which is “inp_31" of “gpio_wrapper”
will be connected to “inp” of “bidirec_31".

Similarly,

“oe_0" pin of “gpio_wrapper_0” will be connected to “oe” of “bidirec_0",

“oe_1"pin of “gpio_wrapper_0" will be connected to “oe” of “bidirec_1", and similarly
these connections will go till the last “oe” connection, which is “oe_31" of “gpio_wrapper”
will be connected to “oe” of “bidirec_31".

And similarly again,

“outp_0” pin of “gpio_wrapper_0” will be connected to “outp” of “bidirec_0",

“outp_1” pin of “gpio_wrapper_0” will be connected to “outp” of “bidirec_1", and similarly
these connections will go till the last “outp” connection, which is “outp_31" of
“gpio_wrapper” will be connected to “outp” of “bidirec_31".

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:
[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs

/InternalConnections/7 GpioW 32xBidirec.pdf

RTL

RTL

RTL
RTL

RTL

Figure 40. All GPIO Bidirec Modules connected to gpio_wrapper module

Now that we have connected all the internal connections between the modules, we will now
make the external connections.

Step 5. Make External Connections for I/OPins

Now it is time to connect the pins coming into our block design as an Input or going out of
our block design as an Output. We will connect these pins as the external Pins/Ports. These

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 28

imagination
university programme

external pins include the pins of RAM (DDR), CLK (Clock), RST (Reset), and DMI (Debug
Module interface).

We begin by connecting the “clk” pin. Go to the “swerv_wrapper_verilog” module,
right-click on the “clk” pin, and you will see a dropdown (see Figure 41). Select the option of
Make External from among all the dropdown options. You can also left-click on the pin and
use the shortcut key “CTRL + T” to make the pin External.

IE Copy

Q, Search..
W Select All

4+ Addip.
Add Module..
€ rst % Make External CirlT

nmi * Run Connection Automation...

nmi Pinning 3
tmy IP Settings...
exti
| @ validate Design
dmi
dmi Start Connection Mode
dmi Make Connection...

Figure 41. Make “clk” an external connection

You will now see the “clk” pin of “swerv_wrapper_verilog” connected to an external pin
“clk_0" (see Figure 42).

clk
£ rst

nmi_int

nmi_vec[31:0]

’—— timer int

Figure 42. “clk” becomes an external connection

Now we can connect the “clk” external pin to the rest of the modules, including the
intcon_wrapper_bd, syscon_wrapper, bootrom_wrapper, and gpio_wrapper.

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/ExternalConnections/1 Clock.pdf

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 29

3 RTL

Al

imagination
university programme

=

Figure 43. Signal clk Connected to all modules

Similarly, we can connect the “rst” pin to all the modules.

Like the external pin we created for “clk”, we will create one for “rst”. Now again, go to the

“swerv_wrapper_verilog” module and right-click on the “rst” pin, and make it external.

ck 0 [>—

rst0 [)—0

R

clk

rst

nmi_int
nmi_vec[31:0]
timer_int
dmi_reg_en
dmi_reg_addr{6:0]
dmi_reg_wr_en
dmi_reg_wdata[31:0]

dmi_hard_reset

Figure 44. Make rst_| as an external pin

Now we will connect the “rst_0” external pin to the rest of the modules, including the
intcon_wrapper, syscon_wrapper, bootrom_wrapper, and gpio_wrapper.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC

Version 1.1 — 7th July 2023
© Copyright Imagination Technologies

imagination
university programme

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/ExternalConnections/2 Reset.pdf

71

el

RTL

RTL

RTL

RTL

1

Figure 45. Connect the Inverted “rst_0” pin with the rest of the modules

Now we will connect all the RAM (DDR) pins of the “Intcon_wrapper_bd” module to the
external RAM pins by completing the following steps.

|

o_sh_rvalid

RTL

wh_rom_adr_o[31:0 1

Figure 46. Intcon wrapper right-hand side RAM pins

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 31

imagination
university programme

We will now make all the right-hand side RAM pins in the “Intcon_wrapper_bd”’ module as
external pins (See Figure 47).

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/ExternalConnections/3 RAM R.pdf

RTL

RTL

A

|

Figure 47. Make all the right-hand side RAM pﬁs as External

Now we will make the left-hand side RAM pins of “Intcon_wrapper_bd” into external pins.

i_sb_arvalid

i_sb_rready

- :}

| 3 S 0]
= 5] alid

w i_ram_rid[5:0]

ww i_ram_rdata[63:0]
w i_ram_rresp[1:0]

== i ram dast
== i_ram_rvalid
wb_rom_dat_i[31:0]
wb rom ack i

Figure 48. Left Side RAM Pins of Interconnect Wrapper

We will make all these RAM pins as external pins (see Figure 49).

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 32

imagination
university programme

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/ExternalConnections/4 RAM L.pdf

i RTL

RTL

1 N
[&

Figure 49. Make all the left-hand side RAM pins as External

PTTRL

Now we will connect the DMI pins of the “swerv_wrapper_verilog” module with the
external pins.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 33

cdk 0 [>

rst 0 [>

imagination
university programme

clk

rst

nmi_int
nmi_vec[31:0]

timer_int

Figure 50. dmi pins op swerv_wrapper_verilog (Left Side)

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/ExternalConnections/5 DMI.pdf

clk 0

rst_0

dmi_reg_en_0
dmi_reg_addr_0[6:0]
dmi_reg_wr_en_0
dmi_hard_reset_0

dmi_reg_wdata_0[31:0]

y

[

clk

(i
O
([
[
o

-Q rst

nmi_int

nmi_vec[31:0]

timer_int

— dmi_reg_en

== dmi_reg_addr[6:0]
— dmi_reg_wr_en

= dmi_reg_wdata[31:0]
-0 dmi_hard reset

Figure 51. Making dmi pins as External Pins

We will connect one more pin with the external pin on the bottom right-hand side of the
“swerv_wrapper_verilog” module. This pin is “dmi_reg_rdata[31:0]".

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC

Version 1.1 — 7th July 2023
© Copyright Imagination Technologies

34

imagination
university programme

sb_axi rlast «
sb_axi_rvalid <

sb_axi_rready P

swerv_wrapper_verilog_v1_0

Figure 52. “dmi_reg_rdata[31:0]” Pin (Right Side of swerv_wrapper_verilog)

We will make “dmi_reg_rdata[31:0]” as an external pin as well.

TR PN I R TRV VRO

dmi_reg_rdata_0[31:0] <J sb_axi_rresp[1:0] <
sb_axi_rlast <
sb_axi_rvalid 4
sb_axi_rready P
dmi_reg_rdata[31:0] =

swerv_wrapper_verilog_v1_0

[
Figure 53. Make “dmi_reg_rdata[31:0]” Pin as an External Pin

We will now make the following pins of the “syscon_wrapper’ module as external pins.
e i _ram_init_done

i_ram_init_error

AN[7:0]

Digital_Bits[6:0]

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/ExternalConnections/6 SysconW External.pdf

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 35

imagination
university programme

syscon_wrapper_0

~
J/

i_clk
—0 j_rst
————== gpio_irg . .
. o_timer_irg
= ptc_irg)
o_nmi_vec[31:0] mm—
o _nmi_int
. RTL o_wb_rdt[31:0] mem—
—m | wb_adr[31:0]
. o wb_ack
— i wb_dat[31:0]
— | Wb _sel[3:0]
—— i wb we
i_wb_cyc
i wb stb

Ve
.

syscon_wrapper_v1_0

Figure 54. syscon_wrapper’s external pins

The last connection left is to make all the “bidir” pins of all the “bidirec” modules as external
pins.

Note: Make these connections external one by one starting from the “bidirec_0" module
so the “bidir’ pin of the “bidirec_0" module will be connected to an external pin
“bidir_0". Then go to the “bidir” pin of “bidirec_1", and so on.

bidirec_1
bidirec_0 —
*‘ oe outp
—_— RTL
oe outp inp bidir
RTL
——= inp bidir %]
) bidirec_v1_0
bidirec_v1_0
bidirec_3
bidirec_2 idirec_.
‘ oe outp
- D oo @ o
q L) . inp bidir =
—=Inp bidir %
“bidrec 10 " bidirec V10
bidirec_v1_0 iairec_vi_
bidirec_5
bidirec_4
N oe outp
RTL
‘ inp bidir =
— = oce outp
. RTL L.)
" r % bidirec_v1_0

Figure 55. Make “bidir” Pin of our GPIO Bidirec Modules as External Pins

PDF: High-quality PDFs of the Block Design showing close-up details of the wiring are

available here:

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/BlockDesignPDFs
/ExternalConnections/7 Bidir.pdf

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 36

J

I IE

: ”H
T
el

=

: LF_L

R ¥
=
1
|
I my [
] =
=

fr
T
[

e
=
=

-
E et
I

|

_dd
_— [
=10]

®

imagination
university programme

ooooonQg

Q

é
I
:

e
[P
=10

=

I

-
=
1

=
ko

i

Figure 56. Make “bidir” External connections

ggpoooRooon 0

Now we have completed all of both internal and external connections for the Block design
SoC. Press “Ctrl + S” to save the block design.

Our block design, which is modeled after the SweRVolfX SoC has been completed, It now

contains the following connected modules:

e 1 SweRV Core

1 Boot-ROM
1 GPIO Top Module
1 System Controller

(See Figure 57).

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC

Version 1.1 — 7th July 2023
© Copyright Imagination Technologies

1 Interconnect Wrapper

32 Bidirec Gpio Module

(
(
(
(
(
(

swerv_wrapper_verilog)
intcon_wrapper_bd)
bootrom_wrapper)
gpio_wrapper)
syscon_wrapper)
bidirec)

37

imagination
university programme

:[:

[

I

=

qﬂﬁ'ﬂ]
=
=~
L
=
=
-
=
=
-
T
[
1]
[

TITIILT

Figure 57. Block design SoC completed

5. Generating The Block Design Module Verilog File

We will now generate the Verilog module file of the block design that we have created.

Step 1. Navigate to the sources panel and find the block design module “BD” that we just
created.

Sources % Design Signals Board ?_00
a = = + 2 &
) B - T B o ~

> @ axi_uart_wrapper (axi_uart_wrapper.v) (2)
> @ popcount (popcountsv) (2)
> @ whb_cdc (wh_cdcv) (2)
[E BD (BD.bd) (38)
> @ axi_atop_filter_intf (axi_atop_filtersy) (1)
> @ axi_cut_intf (axi_cutsv) (1)
> @ axi_delayer_intf (axi_delayer.sv) (1)
> @ axi_demux_intf (axi_demuxsy) (1)
> @ axi_dw_converter_intf (axi_dw_converter.sv) (1)
> @ axi_intercon_bd (axi_intercon_wr.v) (1)

> @ axi_isolate_intf (axi_isolatesv) (1)

Hierarchy |P Sources Libraries Compile Order

Figure 58. Find “BD” in Sources

Step 2. Now right-click on that Block Design (BD) and then select “Create HDL Wrapper”
(see Figure 59).

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 38

imagination
university programme

S}

> @ axi_uart_wrapper (axi_uart_wrapperv) (2)

> @ popcount (popcol .
pop Source Mode Properties...

> @ wb_cdc (wb_cdc.v]

> @ BD (BD.bd) (38) = Open File

> @ axi_atop_filter_inti Create HDL Wrapper...

> @ axi_cut_intf (axi_cu View Instantiation Template
> @ axi_delayer_intf (3 Generate Output Products...
> @ axi_demux_intf (a) Reset Output Products..

Figure 59. Create HDL Wrapper

Step 3. Select the “Let Vivado manage wrapper and auto-update” option and click OK to

proceed.
Create HDL Wrapper o

You can either add or copy the HOL wrapper file to the project. Use
copy option if you would like to modify this file.

Options
() Copy generated wrapper to allow user edits

@I:et Vivado manage wrapper and auto-update

Famet -
2) oK Cancel

Figure 60. Select the second Option

You will see a pop-up of critical warnings because we have left several pins in our block
design unconnected so that these pins will be automatically connected to “0” (ground).

Click OK.

There was one critical warning message while Create HOL Wrapper.

Messages

[BD 41-759] The input pins (listed below) are either not connected or
do not have a source port, and they don't have a tie-off specified.

These pins are tied-off to all 0's to avoid error in Implementation flow.
Please check your design and connect them as needed:
fintcon_wrapper_bd_0/wb_spi_flash_dat_i
fintcon_wrapper_bd_O/wb_spi_flash_ack i
fintcon_wrapper_bd_0/wb_spi_flash_err_i
fintcon_wrapper_bd_0/wh_spi_flash_rty_i

fintcon_wrapper_bd_0/wb_sys_err i

fintcon_wrapper_bd_0fwb_sys_rty i

fintcon wrapper bd Ofwb uart dat i b

oK | QOpen Massages View

Figure 61. Warning Pop-Up

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 39

imagination
university programme

Now the Block design’s HDL Wrapper has been created. You can navigate to the Sources
panel and scroll down until you see “BD_wrapper”. Click on the dropdown icon next to it and
then again for “BD_i".

Now open the “BD (BD.v)” file by double-clicking on it (see Figure 62).

Sources x Design Signals Board 2 _ 0O
Q = £ 4+ B 2]
~ @ & rvfpga (vfpgasy) (5) ~

@ clk_gen: clk_gen_nexys (clk_gen_nexys.v)
> @ cdc; axi_cde_intf (axi_cdcsv) (1)
> @ ddr2 : litedram_top (litedram_top.v) (1)
@ tap:bscan_tap (bscan_tap.sv)
~ @ swervolf: BD_wrapper (BED_wrapperv) (1)
~ @ BD.i:BD (BD.bd) (1)
-

> @ [bidirec_0: BD_bidirec_0_0 (Module Reference Wrapper) (1)
> @[bidirec_1: BD_bidirec_0_1 (Module Reference Wrapper) (1)
> @ [E bidirec_10: BD_bidirec_2_1 (Module Reference Wrapper) (1)
> @ @ bidirec_11: BD_bidirec_3_1 (Module Reference Wrapper) (1)
> @ E bidirec_12 : BD_bidirec_4_0 (Module Reference Wrapper) (1)
> @ [E bidirec_13 : BD_bidirec_5_0 (Module Reference Wrapper) (1)
> @ [bidirec_14: BD_bidirec_6_0 (Module Reference Wrapper) (1)
> @ [bidirec_15: BD_bidirec_7_0 (Module Reference Wrapper) (1)
> @ [bidirec_16: BD_bidirec_0_5 (Module Reference Wrapper) (1)
> @[bidirec_17 : BD_bidirec_1_3 (Module Reference Wrapper) (1)
> @[bidirec_18: BD_bidirec_10_0 (Module Reference Wrapper) (1)
> @ = bidirec_19: BD_bidirec_11_0 (Module Reference Wrapper) (1)
> @ E bidirec_2 : BD_bidirec_0_2 (Module Reference Wrapper) (1)
> @ E bidirec_20: BD_bidirec_12_0 (Module Reference Wrapper) (1)
> @[bidirec_21: BD_bidirec_13_0 (Module Reference Wrapper) (1)
> @[bidirec_22 : BD_bidirec_14_0 (Module Reference Wrapper) (1)

3 @@ hidirer 22 - BN hidirer 15 N (Module Refarence Wranner (11 hd

Hierarchy |P Sources Libraries Compile Order

Figure 62. Find “BD.v” in the sources panel

Here you see the “BD.v” Verilog file that has been created using Vivado’s Block Design tool.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 40

imagination
university programme

Diagram x|BD.v x

Jhomethamza/RvipgaSaoCiLlabs/LabProjects/Labl/Labl sres/sources_1/bd/BD/synth/BD.v

Q B m 9

“timescale 1 ps / 1 ps

module BD
(AN O,
Digits_Bits 0O,
bidir_o,

1
o

=
oo
=

E

—

[yt
o
b=
o
fn
=
—
=

bidir 16,
bidir_ 17,
bidir_l8,
7 bidir_19,
bidir 2,

P N T et = it

31 bidir 22,

32 bidir_23,

33 bidir_24,

34 bidir_25,

35 bidir_ 28,
<

12 (*# CORE_GEMERATION_INFO = “BD,IP_Imtegrator,{x_ipVendor=xilinx.com,x_ipLibrary-BlockDiagram,x_ipName=BED,x_ipVersion=1.80.a,x_ipLanguage='

00

x

Read-only &
o~

Figure 63. “BD.v”

You can see this newly created file’s path at the top of the file. In the next Lab, we will use

this path to access this “BD.v” file.

Diagram x| BD.v X

Q E B

Figure 64. Path of the “BD.v” file

fhomefhamza/RvfpgaSol/labs/LabProjects/labl/Labl. sres/sources_1/bd/BD/synth/BD.v

6. Generate Bitstream

Now that we have created the SweRVolfX subset using Vivado’s Block Design tool and
generated a Verilog wrapper, we are ready to generate the bitstream which we will use to
configure the FPGA. To generate the bitstream, we will first need to adjust some settings in

Vivado by completing the following steps.

Step 1. Navigate to Settings.

Go to “Tools” in the upper left side of the Navigation Bar of Vivado, then select “Settings”

from the options.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies

41

Tools

Reports Window Layout View He

™

Validate Design

Create and Package Mew IP...

Create Interface Definition...

Enable Partial Reconfiguration...

Run Tcl Script...

Property Editor

Associate ELF Files...

Generate Memaory Configuration File...

Compile Simulation Libraries...

Download Latest Boards...
Download Latest Example Projects...
Xilinx Tcl Store...

Custom Commands »

Launch Vitis

9O __language Templates
£+ Settings.. I

Figure 65. Go to Settings

Step 2. Navigate to the General tab
Go to the “General” tab, then select “Verilog options” from the language options section.

Project Settings
| General I
imulation

Elaboration

Synthesis
Implementation
Bitstream

P

Tool Settings
Project
|P Defaults
Board Repositary
Example Project Repository
Source File
Display
WebTalk
Help

General

imagination
university programme

Specify values for various settings used throughout the design flow. These settings '

apply to the current project.

Name: Lab1
Project device: B Nexys A7-100T (xc7a100tcsg324-1)
Target language: Verilog
Default library: xil_defaultlib

Top module name: rvfpga
Language Options

Verilog options: verilog_version=Verilog 2001

Generics/Parameters:

Loop count:

Figure 66. General Settings

Step 3. Add the path to the include files.

Click on the “+” button to add the Verilog search path Include Files.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC

Version 1.1 — 7th July 2023
© Copyright Imagination Technologies

-

1,000 .

42

imagination
university programme

Verilog Options b

Specify compilation options for Verilog files. ‘

Verilog Include Files Search Paths

MNo content

Defines

+

MNo content

[[] uppercase all identifiers
P
o

Figure 67. Verilog Options

Now add the following three paths :

e [RVfpgaSoCPath]/RvfpgaSoC/Labs/LabProjects/Labl/Labl.srcs
/sources_1/imports/src/SweRVolfSoC/Interconnect
/AxiInterconnect/pulp-platform.org axi 0.25.0/include

e [RVfpgaSoCPath]/RvfpgaSoC/Labs/LabProjects/Labl/Labl.srcs
/sources 1/imports/src/OtherSources
/pulp-platform.org common cells 1.20.0/include

e [RVfpgaSoCPath]/RvfpgaSoC/Labs/LabProjects/Labl/Labl.srcs
/sources_1/imports/src/SweRVolfSoC/SweRVEhlCoreComplex/includ
e

Verilog Options -

Specify compilation options for Verilog files. ‘

Verilog Include Files Search Paths

+

Jhomerhamza/RvfpgaSoC/Labs/LabProjects/Labl/Labl.sres/sources_l/imports/src/OtherSources/pulp-platform. org__common_cells_1.20.0/include
fhomerhamza/RVfpgaSoC/Labs/LabProjects/Labl/labl.srcs/sources_l/imports/src/SweRVolfSoC/nterconnect/Axilnterconnect/pulp-platform.org__axi_0.25.0/include
Jhomefhamza/RvfpgaSoC/Labs/LabProjects/Labl/Labl.sres/sources_l/imports/sre/SweRVolfSoC/SweRVERI CoreComplexfinclude

Figure 68. Verilog Include Files Paths
Click OK.

Step 4. Navigate to the Bitstream tab
Go to the “Bitstream” tab, then click on“tcl.pre” button.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 43

imagination
university programme

-readback:_file
Board Repository

-logic_location_file

Bitstream
Project Settings Specify various settings related to writing Bitstream ‘
=12 =" =1 1 TTYYS"————————
simulation (@ Note: Additional bitstream settings will be available once you open an implemented design.
Elzaboration
svnthesi “Write Bitstream (write_bitstream)
nthesis
4) tel.pre II
I Bitstream I tcl.pos.t - - =
T -raw_bitfile I:I
-mask_file J
Tool Settings -no_binary_bitfile O
Project bin_file @)
IP Defaults 0O

Example Project Repository

~verbose J
Source File
. More Options
Display
WebTalk

Figure 69. Bitstream setting

Select the “New script” option.

Select A Tcl Script £

Create a new Tcl file and add it to your project

() Existing script | Mo Existing Utility Sources «

I (®) New script I H

[) Copy sources jnto project

Figure 70. New Tcl script

Navigate to the following path and select the “script.tcl” file. (see Figure 71)
[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Labl/script.tcl

Select A File X

Look in: Labl v taldds @XC A=
Block Design PDFs Recent Directories
Eis Jhome/hamza v
[serptcl]

File Preview
set_property SEVERITY {Warning} [get_drc_checks NSTD-1] ~

set_property SEVERITY {Warning} [get_drc_checks UCIO-1] o
< >

File name: script.tel

Files of type: | Tcl Files (.tcl) w

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023
© Copyright Imagination Technologies 44

imagination
university programme

Figure 72. import “script.tcl” file
Click OK and apply the changes.

Step 4. Generate Bitstream.
Now Click on Flow — Generate Bitstream, as shown in Figure 73.

Flow Tools Reports Window L
Project Manager
Settings »

IP Integrator
Create Block Design

Open Block Design 4

Run Simulation »

Open Static Simulation...

Open Elaborated Design

MNew Elaborated Design...

P Run Synthesis

P Runlmplementation

Open Hardware Manager

1% | Generate Bitstream |

Create Runs...

Figure 73. Generate Bitstream

A window might pop up that says there are no implementation results available and ask to
launch synthesis and implementation.

Click Yes (see Figure 74).

Mo Implementation Results Available x

There are no implementation results available. OK to launch synthesis and
implementation? ‘Generate Bitstream' will automatically start when synthesis
and implementation completes.

Don't show this dialog again
Figure 74. Launch synthesis and implementation window

The Launch Runs window will pop up on the screen (see Figure 75). Click OK.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 45

imagination
university programme

Launch Runs

Launch the selected synthesis or implementation runs.

Launch directory: | & =Default Launch Directory= v
Options
(®) Launch runs on local host: Number of jobs: 4 v

() Launch runs on remote hosts
() Launch runs on Cluster

() Generate scripts only

[] Don't show this dialog again

Figure 75. Launch Runs

Now we will see a list of warnings that tell us about the pins we left unconnected will be
automatically connected to "0”. We will click OK. (see Figure 76).

There was one critical warning message launching implementation run.

Messages

[BD 41-759] The input pins (listed below) are either not connected or do not have a ~

source port, and they don't have a tie-off specified. These pins are tied-off to all
(s to avoid error in Implementation flow.

Please check your design and connect them as needed:
fintcon_wrapper_bd_0/wb_spi_flash_dat_i
fintcon_wrapper_bd_0/wb_spi_flash_ack_i
fintcon_wrapper_bd_0/wb_spi_flash_err_i
fintcon_wrapper_bd_0/wb_spi_flash_rty_i

fintcon_wrapper_bd_0/wb_sys_err_i
fintran umrannar A Nhsdr e e

“ l Cancel Run l l Open Messages View

Figure 76. Launch Runs Warning Messages

This step synthesizes RVfpgaNexys (as defined by the Verilog and SystemVerilog files in
the project), maps it onto the FPGA, and creates the bitstream.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023
© Copyright Imagination Technologies 46

imagination
university programme

Tcl Console Messages Log Reports Design Runs x

a T = %
Name Constraints ~ Status WNS TNS WHS THS TPWS Total Power Failed Routes LUT FF BRAM URAM DSP Start Elapsed
synth_1 (active constrs_1 Queued... 00:00:00
impl_1 canstrs_1 Queued... 00:00:00
Out-of-Context Module Runs.
) BD Running Submodule Runs 3/3/21, 2255 PM 00:01:50
2 BD_bidirec_ BD_bidirec_7 Running synth_design... 3/3/21, 255 PM 00:01:50
) BD_bidirec_ BD_bidirec_5 Running synth_design... 3/3/21,255PM 00:01:50
) BD_bidirec_ BD_bidirec_8 Running synth_design... 3/3/21,255PM 00:01:50
2 BD_bidirec_ BD_bidirec_4 Running synth_design... 3/3/21, 255 PM 00:01:50
J BD_bidirec_ BD_bidirec_2 Running synth_design. 3/3/21, 2:55 PM 00:01:50
J BD_bidirec_ BD_bidirec_3 Running synth_design. 3/3/21, 255 PM 00:01:50
J BD_bidirec_ BD_bidirec_9 Running synth_design. 3/3/21, 255 PM 00:01:50
2 BD_bidirec_ BD_bidirec_5 Running synth_design... 3/3/21, 2255 PM 00:01:50
BD_bidirec_ BD_bidirec_7 Queued.. 00:00:00
BD_bidirec_ BD_bidirec 0 Queued.. 00:00:00
BD_bidirec_ BD_bidirec_3 Queued.. 00:00:00
BD_bidirec_ BD_bidirec 2 Queued.. 00:00:00

Figure 77. Design Runs

Note: If you get an error like: Gtk-Message: Failed to load module
"canberra-gtk-module"

Install a package by the following command to solve the issue.
sudo apt install libcanberra-gtk-module libcanberra-gtk3-module

If you are using a VM, Vivado might crash while synthesis due to low RAM allocation. It is
recommended to allocate more RAM to the VM if Vivado crashes.

This process may take several minutes, depending on your computer’s speed.

TclConsole | Messages |Log |Reports | DesignRuns x 2 _00
Q = 2 + %
Name Constraints ~ Status WNS TNS WHS THS TPWS Total Power Failed Routes LUT FF BRAM URAM DSP Start Elapsed Run Strateg|
+ synth_1 (active constrs_1 synth_design Complete! 3368 3331 13.0 0 0 5/4/21,3:22PM 00:02:13 Vivado Syn
V' impl_1 constrs_1 write_bitstream Complete! 0327 0000 0050 0000 0000 0934 0 33637 18546 440 0 4 5/4/21,3:25 PM 00:12:32 Vivado Imp)
Out-of-Context Module Runs
< BD Submodule Runs Complete 5/4/21, 3:03 PM 00:19:17
< 2

Figure 78. Verilog Include Files Path

After the bitstream has been generated, a window will pop up, as shown in Figure 79. Click
on the X button in the top-right corner to close the window.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 47

imagination
university programme

Bitstream Generation Completed it

o Bitstream Generation successfully completed.

Next
' Open Implemented Design
View Reports
Open Hardware Manager
Generate Memory Configuration File

Don't show this dialog again

Figure 79. Bitstream Generation Completed

Now that the bitstream has been created, in the next Lab, we will show how to upload this
bitstream onto a Nexys A7 board via PlatformlO, and then we will show how to run example
programs on the SweRVolfX subset that we have just built in this lab.

Imagination University Programme — RVfpga Lab 1: Introduction to RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 48

