
THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga-SoC Lab 4

Running Zephyr on SweRVolf

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies

Table 1. RVfpga Terms

Name Description

Courses

RVfpga A course that shows how to use RVfpgaNexys and RVfpgaSim, RISC-V
system-on-chips (SoCs), to run programs and extend the system by adding
peripherals (RVfpga Labs 1-10), and explore the core and memory system by
running simulations, measuring performance, adding instructions, and
modifying the memory system (RVfpga Labs 11-20). Throughout the course,
users are also shown how to use the RISC-V toolchain (compilers and
debuggers) and simulators, the Verilator HDL simulator, and Western Digital’s
Whisper instruction set simulator (ISS).

RVfpga-SoC A course that shows how to build a subset SweRVolfX SoC from scratch using
building blocks such as the SweRV core, memories, and peripherals. The
course also shows how to load the Zephyr real-time operating system (RTOS)
onto SweRVolf and run programs including Tensorflow Lite’s hello world
example on top of the operating system.

Cores and SoCs

SweRV EH1
Core

Open-source commercial RISC-V core developed by Western Digital
(https://github.com/chipsalliance/Cores-SweRV).

SweRV EH1
Core Complex

SweRV EH1 core with added memory (ICCM, DCCM, and instruction cache),
programmable interrupt controller (PIC), bus interfaces, and debug unit
(https://github.com/chipsalliance/Cores-SweRV).

SweRVolfX The System on Chip that we use in the RVfpga course. It is an extension of
SweRVolf.
SweRVolf (https://github.com/chipsalliance/Cores-SweRVolf): An open-source
SoC built around the SweRV EH1 Core Complex. It adds a boot ROM, UART
interface, system controller, interconnect (AXI Interconnect, Wishbone
Interconnect, and AXI-to-Wishbone bridge), and an SPI controller.
SweRVolfX: It adds four new peripherals to SweRVolf: a GPIO, a PTC, an
additional SPI, and a controller for the 8 Digit 7-Segment Displays.

RVfpgaNexys The SweRVolfX SoC targeted to the Nexys A7 board and its peripherals. It
adds a DDR2 interface, CDC (clock domain crossing) unit, BSCAN logic (for
the JTAG interface), and clock generator.
RVfpgaNexys is the same as SweRVolf Nexys
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

RVfpgaSim The SweRVolfX SoC with a testbench wrapper and AXI memory intended for
simulation.

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 2

https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf

RVfpgaSim is the same as SweRVolf Sim,
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

1. Introduction

In this Lab, we show how to run the Zephyr real-time operating system (RTOS) on
SweRVolf. A real-time operating system (RTOS) is an operating system intended to serve
real-time applications that process data as it comes in, mostly without buffer delay.
In Labs 2 and 3, we have been running simple programs written in the RISC-V assembly or
C language. In practical applications, an SoC will almost always be running an operating
system, and applications will be running on top of the operating system.

Two overall categories of operating systems for embedded systems exist: embedded
Linux-based operating systems and real-time operating systems (RTOS). When an SoC is
designed with a particular CPU, the design is usually tuned to use one or the other type of
operating system. SweRVolf was built with the intention of running a real-time operating
system. The SweRV EH1 CPU does not have a memory management unit and would, thus,
struggle to run embedded Linux.

Figure 1 shows an illustration of the different hardware/software layers in the overall system.

Figure 1. Layers on the top of FPGA Boards

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 3

https://github.com/chipsalliance/Cores-SweRVolf

In this Lab, we will describe the Zephyr RTOS, build and run the Zephyr RTOS on SweRVolf,
and build & run Zephyr applications.

2. Requirements

To complete this lab, you will need to install the following:
● Vivado 2019.2 Web Pack (Refer to Installation Guide (Page No.04))
● Verilator (v4.106) (Refer to Installation Guide (Page No.09))
● FuseSoC (Refer to Installation Guide (Page No.10))
● OpenOCD (RISC-V-specific version) (Refer to Installation Guide (Page No.10))
● ZephyrPrerequisites (Refer to Installation Guide (Page No.11))
● Zephyr SDK (v0.12.4) (Refer to Installation Guide (Page No.12))
● PuTTY (Refer to Installation Guide (Page No.12))

IMPORTANT: Before starting RVfpga-SoC Labs, we highly recommend completing the
RVfpga-SoC Installation Guide.

For example, if you have not already, install Xilinx’s Vivado and Verilator following the
instructions in the RVfpga-SoC Installation Guide. Make sure that you have copied the
RVfpga-SoC folder that you downloaded from Imagination’s University Programme to your
machine.

3. Zephyr Overview

The Zephyr Project is a scalable real-time operating system supporting multiple hardware
architectures, optimized for resource-constrained devices, and built with security in mind.
The Zephyr OS is based on a small-footprint kernel designed for use on
resource-constrained systems: from simple embedded environmental sensors and LED
wearables to sophisticated smart watches and IoT wireless gateways.

Zephyr offers a number of familiar services for development: Multi-threading, Interrupts,
Memory Allocation, Inter-thread Synchronization, Inter-thread Data Passing, and Power
Management.

Zephyr supports a wide variety of boards with different CPU architectures and developer
tools. Contributors have added support for an increasing number of SoCs, platforms, and
drivers.

The Zephyr kernel supports multiple architectures, including

● RISC-V (32- and 64-bit)

For more detailed information on the Zephyr Project, read the Zephyr project documentation
at http://docs.zephyrproject.org.

In this lab, we first show how to add Zephyr’s version 2.4 to our Workspace. Then we will
build the code for a few sample examples that come with Zephyr. This lab will show
examples of using Zephyr both in hardware and simulation.

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 4

http://docs.zephyrproject.org/

4. Understanding the Hardware/Software Layers

In Labs 2 and 3, our process of running programs on the FPGA board followed these steps:

Step 1. Download SweRVolf onto the FPGA board
First, we download the SweRVolf, the RISC-V system targeted to an FPGA, to the
Nexys A7 FPGA board. We download the SweRVolf onto the board by either uploading the
bitstream to the board using PlatformIO or by using the FuseSoC run command, which
uploads the generated bitstream to the board if it's connected.

Step 2. Build and run programs on SweRVolf
The second step is to build RISC-V programs and then download them onto SweRVolf.

In this Lab, we will amend these steps to add another layer, the Zephyr RTOS (real-time
operating system) onto SweRVolf, and run programs on Zephyr. The steps for doing this are
as follows:

Step 1. Download SweRVolf onto the FPGA board
Same as above.

Step 2. Build Zephyr
In this step, build an application for Zephyr. The process of building an application also
builds the underlying Zephyr RTOS. The output is an elf file.

Step 3. Load programs on SweRVolf.
In this step, we load the elf file generated during Step 2 onto SweRVolf.

The side-by-side Illustration of both modes of running a program is shown in Figure 1 above.

Now we will show how to build Zephyr applications and then run those applications on
Zephyr.

5. Adding Zephyr Support In SweRVolf

In this section of the lab, we show how to add Zephyr to your WORKSPACE.

Open your Ubuntu terminal and complete the following steps:

Step 1. Navigate to the directory “SweRVolf” in which we created our workspace in the
previous lab, to use as the root of the project. We called it $WORKSPACE. Now we have to
set the same shell variables again. To do that, we run the following:

➢ export WORKSPACE=$(pwd)

➢ export SWERVOLF_ROOT=$WORKSPACE/fusesoc_libraries/swervolf

You can also enter the “printenv <variable-name>” command in the terminal window
to verify if the shell variables have been successfully set or not.

Figure 2. Set the shell variables

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 5

Step 2. Add Zephyr & SweRVolf-specific drivers

Create a West (Zephyr's build tool) workspace in the same directory as the FuseSoC
workspace by running

➢ west init

………..

Figure 3. west initialized

Step 3. Add the SweRVolf-specific drivers and board support package (BSP) using the
following command:

➢ west config manifest.path fusesoc_libraries/swervolf

Figure 4. west config

➢ west update

This may take several minutes to complete the downloading process, depending on your
Internet download speed.

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 6

………..

Figure 5. west update

The Workspace will now look like this:

$WORKSPACE
├──fusesoc_libraries
| ├──...
| └──swervolf
├──...
└──zephyr

6. Building and Running Zephyr Applications on Verilator

In this section, we step through how to build programs that can run on Zephyr. Then we
show how to simulate such programs on the Verilator simulator. We show two example
programs in this section.

1. Zephyr Hello World Example
This example prints “Hello World” + “Configured Board Name” on the terminal.

See Figure 6 for the source code.

1
2 #include <zephyr.h>
3 #include <sys/printk.h>
4
5 void main(void)
6 {
7 printk("Hello World! %s\n", CONFIG_BOARD);
8 }

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 7

9

Figure 6. main.c of hello_world example

Step 1. Go to the directory for this example, which is located at the following path:

$WORKSPACE/zephyr/samples/hello_world

To do so, use the following command:

➢ cd zephyr/samples/hello_world

Figure 7. Navigate to the hello_world directory

Step 2. Build the code for the “hello_world” Example using the following command:

➢ west build -b swervolf_nexys

Figure 8. hello_world build

This will create the zephyr.elf and zephyr.bin files for the hello_world example. We will use
the “.bin” file in a simulator, but it must first be converted into a suitable Verilog hex file.

Step 3. Convert the “.bin” file to “.hex” file:

To create the “.hex” file, run the following command from the hello_world directory:

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 8

➢ python3 $SWERVOLF_ROOT/sw/makehex.py build/zephyr/zephyr.bin
>
/home/<username>/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/sa
mples/hello_world/App.hex

(Replace <username> with your username)

Figure 9. hello_world hex file created

Step 4. Navigate to the WORKSPACE directory:

➢ cd $WORKSPACE

Figure 10. Navigate to the main Workspace directory

Step 5. Load the “.hex” file in the simulator:

➢ fusesoc run --target=sim swervolf
--ram_init_file=zephyr/samples/hello_world/App.hex

Figure 11. fusesoc run

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 9

The terminal will show the following output (see Figure 12).

Figure 12. hello_world example output

Press “ctrl + c” to stop the program.

2. Zephyr Philosophers Example

An implementation of a solution to the Dining Philosophers Problem (a classic multi-thread
synchronization problem). This particular implementation demonstrates the usage of multiple
preemptible and cooperative threads of differing priorities, as well as dynamic mutexes and
causing a thread to sleep.

The philosopher always tries to get the lowest fork first (f1 then f2). When done, he will give
back the forks in the reverse order (f2 then f1). If he gets two forks, he is EATING.
Otherwise, he is THINKING. Transitional states are shown as well, such as STARVING when
the philosopher is hungry, but the forks are not available, and HOLDING ONE FORK when a
philosopher is waiting for the second fork to be available.

Each Philosopher will randomly alternate between the EATING and THINKING state.

Go to the following path to see the source code of this example:
$WORKSPACE/zephyr/samples/philosophers/src/main.c

For this example, we will repeat the same process again but in the philosophers directory

Step 1. This example program is in the following directory:

$WORKSPACE/zephyr/samples/philosophers

Change to that directory using the following command:

➢ cd zephyr/samples/philosophers

Figure 13. Navigate to philosophers directory

Step 2. Build the code for the philosophers example using the following command:

➢ west build -b swervolf_nexys

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 10

Figure 14. philosophers build

This will create the zephyr.elf and zephyr.bin files for the philosophers example. Again we
will convert the “.bin” file into a suitable Verilog hex file.

Step 3. Convert the “.bin” file to “.hex” file

To create the “.hex” file, run the following command from the philosophers directory :

➢ python3 $SWERVOLF_ROOT/sw/makehex.py build/zephyr/zephyr.bin
>
/home/<Username>/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/sa
mples/philosophers/App.hex

Figure 15. Create philosophers hex file

Step 4. Navigate to the WORKSPACE directory:

➢ cd $WORKSPACE

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 11

Figure 16. main directory

Step 5. Load the .hex file in the simulator:

➢ fusesoc run --target=sim swervolf
--ram_init_file=zephyr/samples/philosophers/App.hex

Figure 17. fusesoc run

Now you will see the following output:

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 12

Figure 18. Zephyr philosophers Output

7. Building Zephyr Application for Hardware

Now we show how to build programs for the SwerVolf running Zephyr in hardware.

1. Zephyr Blinky Example

Blinky is a simple application that blinks an LED forever using the:`GPIO
API <gpio_api>`. The source code shows how to configure GPIO pins as outputs,
then turn them on and off.

1
2 /*
3 * Copyright (c) 2016 Intel Corporation
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 */
7
8 #include <zephyr.h>
9 #include <device.h>
10 #include <devicetree.h>
11 #include <drivers/gpio.h>
12
13 /* 1000 msec = 1 sec */
14 #define SLEEP_TIME_MS 1000
15
16 /* The devicetree node identifier for the "led0" alias. */
17 #define LED0_NODE DT_ALIAS(led0)
18
19 #if DT_NODE_HAS_STATUS(LED0_NODE, okay)
20 #define LED0 DT_GPIO_LABEL(LED0_NODE, gpios)
21 #define PIN DT_GPIO_PIN(LED0_NODE, gpios)
22 #define FLAGS DT_GPIO_FLAGS(LED0_NODE, gpios)
23 #else
24 /* A build error here means your board isn't set up to blink an LED. */

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 13

25 #error "Unsupported board: led0 devicetree alias is not defined"
26 #define LED0 ""
27 #define PIN 0
28 #define FLAGS 0
29 #endif
30
31 void main(void)
32 {
33 const struct device *dev;
34 bool led_is_on = true;
35 int ret;
36
37 dev = device_get_binding(LED0);
38 if (dev == NULL) {
39 return;
40 }
41
42 ret = gpio_pin_configure(dev, PIN, GPIO_OUTPUT_ACTIVE | FLAGS);
43 if (ret < 0) {
44 return;
45 }
46
47 while (1) {
48 gpio_pin_set(dev, PIN, (int)led_is_on);
49 led_is_on = !led_is_on;
50 k_msleep(SLEEP_TIME_MS);
51 }
52 }

Figure 19. main.c of blinky example

The path for this example is here:

$WORKSPACE/zephyr/samples/basic/blinky/

➢ cd zephyr/samples/basic/blinky/

Navigate to the above path, and then run the following command in the terminal to build the
example and generate “.elf” and “.bin” files:

➢ west build -b swervolf_nexys

After building the code, there will now be an executable .elf file in
build/zephyr/zephyr.elf and a .bin file in build/zephyr/zephyr.bin.

The executable file can be loaded into SweRVolf with a debugger, and the binary file can be
converted to a .hex file and loaded into RAM for simulations, as described in the next
section.

8. Running Zephyr Application on Hardware

To run the applications on the Nexys A7 board, we need to load the programs using
OpenOCD:

Step 1. Connect the Nexys A7 board to your computer and turn it on, then run the FPGA
build command in the Workspace directory.

➢ cd $WORKSPACE

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 14

➢ fusesoc run --target=nexys_a7 --run swervolf

Figure 20. Run FPGA Build

Step 2. Program the board with OpenOCD.

➢ openocd -c "set BITFILE
build/swervolf_0.7.3/nexys_a7-vivado/swervolf_0.7.3.bit" -f
$SWERVOLF_ROOT/data/swervolf_nexys_program.cfg

Figure 21. Run OpenOCD

Step 3. Connect OpenOCD with SweRVolf.

➢ openocd -f $SWERVOLF_ROOT/data/swervolf_nexys_debug.cfg

Figure 22. OpenOCD Connected

Step 4. Open a third terminal using “ctrl + shift + t” and connect to the debug session
through OpenOCD using the following command:

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 15

➢ telnet localhost 4444

Figure 23. telnet

OpenOCD supports loading ELF program files by running load_image /path/to/file.elf.
Remember that the path is relative to the directory from where OpenOCD was launched.

➢ load_image
zephyr/samples/basic/blinky/build/zephyr/zephyr.elf

Figure 24. load image .elf file

After the program has been loaded, set the program counter to address zero using the
following command:

➢ reg pc 0

Figure 25. Set program counter to zero

Now start the program using this command:

➢ resume

Figure 26. Start the program

Now you will see the right-most LED of the Nexys A7 board will start blinking.

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 16

Figure 27.LED Blinking

Now you can press “ctrl + c” to exit out of the program.

9. Zephyr Application Development Overview

Zephyr’s build system is based on CMake. The build system is application-centric and
requires Zephyr-based applications to initiate building the kernel source tree. The application
build controls the configuration and builds a process of both the application and Zephyr itself,
compiling them into a single binary.

Zephyr’s base directory hosts Zephyr’s source code, its kernel configuration options, and its
build definitions.

The files in the application directory link Zephyr with the application. This directory contains
all application-specific files, such as configuration options and source code.

An application in its simplest form has the content listed here and described below:

/App
├── CMakeLists.txt
├── prj.conf
└── src

└── main.c

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 17

CMakeLists.txt: This file tells the build system where to find the other application
files and links the application directory with Zephyr’s CMake build system. This link
provides features supported by Zephyr’s build system, such as board-specific kernel
configuration files, the ability to run and debug compiled binaries on real or emulated
hardware, and more.

Kernel configuration files: An application typically provides a Kconfig configuration
file (usually called prj.conf) that specifies application-specific values for one or more
kernel configuration options. These application settings are merged with
board-specific settings to produce a kernel configuration.

Application source code files: An application typically provides one or more
application-specific files written in C or assembly language. These files are usually
located in a subdirectory called src.

10.Creating a New Zephyr Application

Follow these steps to create a new application directory.

Step 1. Change to the Samples directory:

➢ cd zephyr/samples

Step 2. Create a new directory for your application:

➢ mkdir my_first_app

Figure 28. Make project directory

Step 3. It is recommended to place all application source code in a subdirectory named src.
This makes it easier to distinguish between project files and source files:

➢ cd my_first_app
➢ mkdir src

Figure 29. Make src directory inside the project directory

Step 4. Enter the src directory and then create the application’s main source file, “main.c”.

➢ cd src
➢ nano main.c

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 18

Figure 30. create “main.c” file

Nano Editor will open up in your ubuntu terminal as shown in the figure below:

Figure 31. GNU nano Editor

Step 5. Copy the following code in the nano editor. This code is the mixture of both the
“hello_world” and the “blinky” example source code.

#include <zephyr.h>
#include <sys/printk.h>
#include <device.h>
#include <devicetree.h>
#include <drivers/gpio.h>

/* 1000 msec = 1 sec */
#define SLEEP_TIME_MS 1000

/* The devicetree node identifier for the "led0" alias. */
#define LED0_NODE DT_ALIAS(led0)

#if DT_NODE_HAS_STATUS(LED0_NODE, okay)
#define LED0 DT_GPIO_LABEL(LED0_NODE, gpios)
#define PIN DT_GPIO_PIN(LED0_NODE, gpios)
#define FLAGS DT_GPIO_FLAGS(LED0_NODE, gpios)
#else
/* A build error here means your board isn't set up to blink an LED. */
#error "Unsupported board: led0 devicetree alias is not defined"
#define LED0 ""
#define PIN 0
#define FLAGS 0
#endif

void main(void)

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 19

{
const struct device *dev;
bool led_is_on = true;
int ret;

dev = device_get_binding(LED0);
if (dev == NULL) {

return;
}

ret = gpio_pin_configure(dev, PIN, GPIO_OUTPUT_ACTIVE | FLAGS);
if (ret < 0) {

return;
}

while (1) {
gpio_pin_set(dev, PIN, (int)led_is_on);
led_is_on = !led_is_on;
k_msleep(SLEEP_TIME_MS);
printk("This Zephyr Application is Running on %s\n", CONFIG_BOARD);

}
}

Figure 32. “main.c” code

After you are finished writing the code, press “ctrl + x” to exit.

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 20

Figure 33. main.c file code

Then it will ask you if you want to save the file, and you have to press “y” for Yes.

Figure 34. save main.c file

Press “Enter” to save the file with the name “main.c”.

Figure 35. confirm the name main.c

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 21

Step 6. Now we need to navigate out of the src directory and then create the
“CMakeLists.txt” and “prj.conf” files :

➢ cd ..
➢ nano CMakeLists.txt

Figure 36. Create CMakeLists.txt

Copy the following code to the nano editor:

cmake_minimum_required(VERSION 3.13.1)

find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
project(my_first_app)

target_sources(app PRIVATE src/main.c)

Figure 37. “CMakeLists.txt” file code

Now perform the same steps that you have done in order to save the “main.c” file.

Figure 38. nano editor

Now create the project configuration file.

➢ nano prj.conf

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 22

Figure 39. create a project configuration file

Application configuration options are set in prj.conf in the application directory. Since we are
using an LED in our source code, we have to set the “CONFIG_GPIO” parameter as yes.

CONFIG_GPIO=y

Figure 40. “prj.conf” code

Figure 41. “prj.conf” nano editor

Now save the “prj.conf” file.

Step 7. Build the code for “my_first_app”:

➢ west build -b swervolf_nexys

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 23

Figure 42. “my_first_app” build

The binaries have been generated successfully. Now we will run the “my_first_app” program
on the Nexys A7 board.

Step 9. Navigate to the WORKSPACE directory:

➢ cd $WORKSPACE

Figure 43. Navigate to the Workspace directory

Step 10. Connect the Nexys A7 board to your computer and then run the FPGA build
command in the Workspace directory.

➢ fusesoc run --target=nexys_a7 --run swervolf

Figure 44. Run FPGA Build

Step 11. Program the board with OpenOCD.

➢ openocd -c "set BITFILE
build/swervolf_0.7.3/nexys_a7-vivado/swervolf_0.7.3.bit" -f
$SWERVOLF_ROOT/data/swervolf_nexys_program.cfg

Figure 45. Run OpenOCD

Step 12. Connect OpenOCD with SweRVolf.

➢ openocd -f $SWERVOLF_ROOT/data/swervolf_nexys_debug.cfg

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 24

Figure 46. OpenOCD Connected

Step 13. Open a third terminal using “Ctrl + Shift + t” & connect to the debug session
through OpenOCD using the following command:

➢ telnet localhost 4444

Figure 47. telnet

OpenOCD supports loading ELF program files by running load_image /path/to/file.elf.
Remember that the path is relative to the directory from where OpenOCD was launched.

➢ load_image
zephyr/samples/my_first_app/build/zephyr/zephyr.elf

Figure 48. load image .elf file

After the program has been loaded, set the program counter to address zero using the
following command:

➢ reg pc 0

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 25

Figure 49. Set program counter to zero
Now start the program using this command:

➢ resume

Figure 50. Start the program

The LED on the board will start blinking.

Step 14. Open a new terminal tab using “Ctrl + Shift + t” and open PuTTY using the
following command:

➢ sudo putty

Figure 51. open PuTTY
We will be using PuTTY here as a serial console for our Nexys A7 board.

Step 15. Set the following configuration:
Select the connection type as “serial”, then enter “/dev/ttyUSB1” as the serial line, and set
the speed equal to “115200”. Now click “Open” to start the serial console.

Figure 52. PuTTY Configuration

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 26

In the serial console, we can see the output of our program “my_first_app” (see Figure 53).

Figure 53. serial console output

Note: If you are unable to open a serial console, try “/dev/ttyUSB0” as the serial line.

As we can see in the output text on the serial console, this zephyr application is running on
SweRVolf Nexys.

Imagination University Programme – RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 27

