
THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga-SoC Lab 3
Introduction to SweRVolf and

FuseSoC

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies

Table 1. RVfpga Terms

Name Description

Courses

RVfpga A course that shows how to use RVfpgaNexys and RVfpgaSim, RISC-V
system-on-chips (SoCs), to run programs and extend the system by adding
peripherals (RVfpga Labs 1-10), and explore the core and memory system by
running simulations, measuring performance, adding instructions, and
modifying the memory system (RVfpga Labs 11-20). Throughout the course,
users are also shown how to use the RISC-V toolchain (compilers and
debuggers) and simulators, the Verilator HDL simulator, and Western Digital’s
Whisper instruction set simulator (ISS).

RVfpga-SoC A course that shows how to build a subset SweRVolfX SoC from scratch using
building blocks such as the SweRV core, memories, and peripherals. The
course also shows how to load the Zephyr real-time operating system (RTOS)
onto SweRVolf and run programs including Tensorflow Lite’s hello world
example on top of the operating system.

Cores and SoCs

SweRV EH1
Core

Open-source commercial RISC-V core developed by Western Digital
(https://github.com/chipsalliance/Cores-SweRV).

SweRV EH1
Core Complex

SweRV EH1 core with added memory (ICCM, DCCM, and instruction cache),
programmable interrupt controller (PIC), bus interfaces, and debug unit
(https://github.com/chipsalliance/Cores-SweRV).

SweRVolfX The System on Chip that we use in the RVfpga course. It is an extension of
SweRVolf.
SweRVolf (https://github.com/chipsalliance/Cores-SweRVolf): An open-source
SoC built around the SweRV EH1 Core Complex. It adds a boot ROM, UART
interface, system controller, interconnect (AXI Interconnect, Wishbone
Interconnect, and AXI-to-Wishbone bridge), and an SPI controller.
SweRVolfX: It adds four new peripherals to SweRVolf: a GPIO, a PTC, an
additional SPI, and a controller for the 8 Digit 7-Segment Displays.

RVfpgaNexys The SweRVolfX SoC targeted to the Nexys A7 board and its peripherals. It
adds a DDR2 interface, CDC (clock domain crossing) unit, BSCAN logic (for
the JTAG interface), and clock generator.
RVfpgaNexys is the same as SweRVolf Nexys
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 2

https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf

RVfpgaSim The SweRVolfX SoC with a testbench wrapper and AXI memory intended for
simulation.
RVfpgaSim is the same as SweRVolf Sim,
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

1. Introduction

In this Lab, we will analyze SweRVolf in detail. We will also introduce FuseSoC and show
how to use it to build SweRVolf (https://github.com/chipsalliance/Cores-SweRVolf/).
In Lab 1, individual modules were written in Verilog/SystemVerilog. We then connected these
modules to create a subset of SweRVolfX using Vivado’s Block Design Tool. In industry,
designers use either visual methods of connecting modules or strictly Verilog/SystemVerilog
code.
The following table provides a brief overview of the advantages and disadvantages of the
Block Design approach.

Table 2. Pros and cons of Block Design

Advantages of Block Design Disadvantages of Block Design

Easy to understand Teamwork can be challenging

Learning curve Ecosystem is required(Vivado Block
Design)

Can combine complex modules in an
intuitive way

Upgrading tools can break the system

May struggle to go beyond FPGAs into real
SoC chips

Machine-generated code can be difficult to
read and understand.

Fine-tuning the SoC for fabrication or to
squeeze out more performance must be
done at the Verilog/SystemVerilog level.

IP core providers provide Verilog source
code but not necessarily in a form that will
work with a specific Vivado Block Design
tool.

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 3

https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf/releases/tag/v0.7

The following table provides a brief overview of the advantages and disadvantages of the
Hand-tuned approach.

Table 3. Pros and cons of Hand-tuned code

Advantages of Hand-tuned code Disadvantages of Hand tuned code

Can hand tune it to be very specific to an
FPGA or an SoC fabrication process.

Steep learning curve

Can use version control systems Requires knowledge of
Verilog/SystemVerilog.

Can easily work in teams and collaborate
(various people work on different modules)

It takes a while to familiarize oneself with
how all the files/folders/modules are
structured together.

SweRVolf's modules (top module, swervolf_core, SweRV) have been written by hand. The
SweRV CPU core itself was created by Western Digital. The interconnect and other modules
are IP cores from various vendors who have released them under open-source licenses. The
top modules have been written by Olof Kindgren.

It is possible to connect all different modules and write Verilog by hand. But over time, this
can become tedious. Especially as larger teams work together, sharing some parts of the
code.

During the SoC design process, several large teams are working together simultaneously.
Different teams will be focused on different areas, but they also share various components
and IP blocks. For example, the simulation team will be concerned with the same IP code
(SoC+interconnect+CPU+Peripheral) but with wrappers for targeting it to the Instruction set
simulator or Verilator. Meanwhile, the FPGA team would like to use the same IP code
(SoC+Interconnect+CPU+Peripheral) but run their tests on various development boards with
different peripherals.

A build system facilitates different teams working on the same IP code
(SoC+Interconnect+CPU+Peripheral) but not step on each others' toes. The build system
must be flexible and dynamic enough to suit various teams and their various
constraints/requirements. SweRVolf has been created using such a build system called
FuseSoC (pronounced “fuse sock”). The FuseSoC build system pieces together a hardware
design from individual building blocks.

In this Lab, we will be looking at building versions of SweRVolf within FuseSoC. We will
show the step-by-step procedure of adding FuseSoC’s “SweRVolf” library and then targeting
it for both simulation and board implementation. Then we will run example programs on
SweRVolf.

2. Requirements

To complete this lab, you will need to install the following tools:

● Vivado 2019.2 Web Pack (Refer to Installation Guide (Page No.04))

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 4

● Verilator (V4.106) (Refer to Installation Guide (Page No.09))
● GTKWave (Refer to Installation Guide (Page No.09))
● FuseSoC (Refer to Installation Guide (Page No.10))
● OpenOCD (RISC-V-specific version) (Refer to Installation Guide (Page No.10))

IMPORTANT: Before starting RVfpga-SoC Labs, we highly recommend completing the
RVfpga-SoC Installation Guide.

For example, if you have not already, install Verilator and Xilinx’s Vivado by following the
instructions in the RVfpga-SoC Installation Guide. Make sure that you have copied the
RVfpga-SoC folder that you downloaded from Imagination’s University Programme to your
machine.
3. What is FuseSoC

FuseSoC is an award-winning package manager and a set of build tools for HDL (Hardware
Description Language) code. Its primary purpose is to increase the reuse of IP (Intellectual
Property) cores and create, build, and simulate SoC solutions.

A fundamental entity in FuseSoC is a core. Cores can be discovered by the FuseSoC
package manager in local or remote locations and combined into a full hardware design by
the build system.

A FuseSoC core is not necessarily a processor but instead is a reasonably self-contained,
reusable piece of IP, such as a FIFO implementation. FuseSoC also refers to these as
packages. In other systems, these reusable pieces of hardware are called modules.

For more detailed information on FuseSoC, you can read its documentation at
https://fusesoc.readthedocs.io/en/latest/user/overview.html#understanding-fusesoc

FuseSoC provides the “SweRVolf” (FuseSoC-based SoC for the SweRV RISC-V core) as a
package in its library. We can add the “swervolf” library using FuseSoC and then build it for
any specific target such as “sim” (Simulation) or “Nexys_a7” (Board).

4. SweRVolf : FuseSoC based SoC for SweRV Eh1

SweRVolf is a FuseSoC-based SoC for the SweRV RISC-V core. SweRVolf can run the
RISC-V compliance tests, Zephyr OS, or other software in simulators or on FPGA boards.
FuseSoC aims to support and increase portability, extendability, and ease of use; to allow
SweRV users to get the software running quickly, modify the SoC to their needs or port it to
new target devices.

Figure 1 shows a high-level block diagram of SweRVolf.

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 5

https://fusesoc.readthedocs.io/en/latest/user/overview.html#understanding-fusesoc

Figure 1. SweRVolf Core

The core of SweRVolf consists of a SweRV CPU with a boot ROM, AXI4 interconnect,
UART, SPI, RISC-V timer, and GPIO. The core does not include any RAM but instead
exposes a memory bus that the target-specific wrapper will connect to an appropriate
memory controller. Other external connections are clock, reset, UART, GPIO, SPI, and DMI
(Debug Module Interface).

Table 4 gives the memory-mapped addresses of the peripherals that are connected to the
SweRV EH1 core via the Wishbone interconnect & AXI interconnect.

Table 4. MEMORY-MAPPED Addresses of SweRVolf

System Address

RAM 0x00000000-0x07FFFFFF

Boot ROM 0x80000000-0x80000FFF

System Controller 0x80001000-0x80001FFF

UART 0x80002000-0x80002FFF

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 6

GPIO 0x80001010-0x80001013

Similar to the SystemVerilog modules RVfpgaSim and RVfpgaNexys in Lab 2, SweRVolf also
provides the equivalent two versions of SweRVolf: SweRVolf Sim for simulation and
SweRVolf Nexys for Digilent Nexys A7 board.

1. SweRVolf Sim

SweRVolf Sim is a simulation target that wraps the SweRVolf core in a testbench to be used
by verilator or other event-driven simulators such as QuestaSim. It can be used for
full-system simulations that execute programs running on a SweRV processor. It also
supports connecting a debugger through OpenOCD and JTAG VPI (see Figure 2).

Figure 2. SweRVolf Sim

2. SweRVolf Nexys

SweRVolf Nexys is a version of the SweRVolf SoC targeted to the Digilent Nexys A7 board.
It uses the on-board 128MB DDR2 for RAM, has GPIO connected to the LED, supports
booting from SPI Flash, and uses the micro-USB port for UART and JTAG communication.
The default bootloader for the SweRVolf Nexys target will attempt to load a program stored
in SPI Flash by default (see Figure 3).

Figure 3. SweRVolf Nexys

The SweRVolf SoC can be run in simulation or on hardware – that is, on the Digilent Nexys
A7 board. In either case, FuseSoC can be used to either launch the simulation or build and
run the FPGA build.

Like the RVfpgaSim in the previous lab, SweRVolf Sim is a simulation target that wraps the
SweRVolf core in a testbench to be used by the verilator. Similarly, the RVfpgaNexys in the

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 7

previous lab is similar to the SweRVolf Nexys that is a version of the SweRVolf SoC
targeted to the Digilent Nexys A7 board.

5. Setting up the Environment

In this section, we show how to set up the environment for the Sim build and Nexys build.

Step 1. Navigate to the directory named “SweRVolf” to use as the root of the project.
This directory will from now on be called $WORKSPACE. All further commands will
be run from $WORKSPACE unless otherwise stated. After entering the workspace
directory, run.

➢ export WORKSPACE=$(pwd)

To set the $WORKSPACE shell variable (see Figure 4). You can use the following
command to verify if the shell variable was successfully added.

➢ printenv WORKSPACE

Figure 4. Establish Workspace

Step 2. Make sure you have FuseSoC installed already. If you do not have FuseSoC
installed on your machine, install it by running the following:

➢ sudo pip3 install fusesoc

Step 3. Add the FuseSoC base library to the workspace:

➢ fusesoc library add fusesoc-cores
https://github.com/fusesoc/fusesoc-cores

Figure 5. Add FuseSoC base library

Step 4. Add the swervolf library:

➢ fusesoc library add swervolf
https://github.com/chipsalliance/Cores-SweRVolf

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 8

Figure 6. Add Swervolf library

Step 5. Set the swervolf directory as the “SWERVOLF_ROOT” shell variable:

➢ export
SWERVOLF_ROOT=$WORKSPACE/fusesoc_libraries/swervolf

Figure 7. Set shell variable

6. Simulation Build

In this section, we show how to build SweRVolf Sim using FuseSoC using the following
steps.

To select what to run, use the “fusesoc run” command with the --target parameter.

Step 6. To run in simulation use

➢ fusesoc run --target=sim swervolf

This command generates the simulation binary called “Vswervolf_core_tb” inside the
following path: SweRVolf/build/swervolf_0.7.3/sim-verilator/

Note that this is similar to what we did in Lab 2 when we generated the “Vrvfpgasim”
simulation binary with the make command in the following path:
[RVfpgaSoCPath]/RVfpgaSoC/Labs/LabResources/Lab2/verilatorSIM

However, the SoC used in Lab 2 was a subset of the SweRVolfX, whereas the SoC used
here is the complete SweRVolf.

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 9

………

Figure 8. SweRVolf Sim Build

This command will create the following hierarchy in our Workspace directory:

● $WORKSPACE
○ fusesoc_libraries
○ build

■ swervolf_0.7.3
● sim-verilator

○ Vswervolf_core_tb
● src

7. Nexys A7 Build

In this section, we show how to build SweRVolf Nexys using FuseSoC.

Step 1. To build (and optionally program) an image for a Nexys A7 board, run

➢ fusesoc run --target=nexys_a7 swervolf

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 10

Note: Be sure to connect the Nexys A7 board to your machine before running this
command and make sure the board is turned ON.

If you receive the following error that means that you have not entered Vivado’s path to
you “bashrc” file as mentioned in the RVfpgaSoC’s Installation Guide.

You can add the following line to your ~/.bashrc file so that it runs each time you launch
a terminal or you can type it in the terminal each time you launch a new one.

➢ source /tools/Xilinx/Vivado/2019.2/settings64.sh

This command generates the bitstream file used to program the FPGA (ending in “.bit”)
called “swervolf_0.7.3.bit” inside the following path:
SweRVolf/build/swervolf_0.7.3/nexys_a7-vivado/

It also uploads the bitstream to the Nexys A7 Board connected to our machine.

This is similar to what we did in lab 1 when we generated the “rvfpga.bit” file in Vivado after
creating the block design using the “Generate Bitstream” option. Later in Lab 2, we uploaded
the “rvfpga.bit” file to our Nexys A7 board using PlatformIO.

FuseSoC does all of this tedious work that we manually did in Lab 1 and Lab 2 with
the command mentioned above.

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 11

……….

Figure 9. SweRVolf Nexys build

After the completion of the commands as mentioned earlier, our Workspace directory will
look like as follows:

● $WORKSPACE

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 12

○ fusesoc_libraries
○ build

■ swervolf_0.7.3
● sim-verilator
● nexys_a7-vivado

○ swervolf_0.7.3.bit
● src

FuseSoC uses Vivado and creates the project, sets global variables, adds constraint files,
and generates the bitstream automatically.

We can open the Vivado project to visualize the hierarchy as we saw in Lab 1.
Step 2. Enter the “nexys_a7-vivado” directory by the following command:

➢ cd build/swervolf_0.7.3/nexys_a7-vivado/

Figure 10. Navigate to “nexys_a7-vivado” Directory

Step 3. Enter the following command to open the Vivado Project:

➢ vivado swervolf_0.7.3.xpr

Figure 11. Open Vivado Project

We can visualize the global variables and constraints files set in the sources panel.

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 13

Figure 12. Sources panel
In the “Design Runs” tab, we can see that the synthesis and implementation have already
been completed successfully.

Figure 13. Design runs

8. Running AL_Operations Example on SweRVolf Sim

In this section, we show how to run the AL_Operations program on SweRVolf Sim using
Verilator.

Step 1. Enter the examples directory whose path is:

[RvfpgaSoCPath]/RvfpgaSoC/Labs/LabResources/Lab3/examples/
AL_Operations/CommandLine/

➢ cd
~/RVfpgaSoC/Labs/LabResources/Lab3/examples/AL_Operations/comman
dLine/

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 14

Figure 14. AL_Operations directory

Step 2. Create the hexadecimal program for simulation:

➢ make clean

Figure 15. make clean

➢ make AL_Operations.vh

Figure 16. create AL_Operations.vh file

Note: The first time that an example is opened in PlatformIO, the Chips Alliance platform
gets automatically installed.

If you see the following error that means that the Chips Alliance platform did not install
automatically.

You can install it manually following steps mentioned in RVfpgaSoC Installation Guide’s
“Installation for Lab 2” section.

Step 3. Execute the simulator:

➢ ../../../../../LabProjects/SweRVolf/build/swervolf_0.7.3/sim-
verilator/Vswervolf_core_tb +ram_init_file=AL_Operations.vh
+vcd=1

The “ram_init_file” parameter loads a Verilog hex file to use as initial on-chip RAM contents.
So we load the Verilog hex file “AL_Operations.vh” that we have just created using that
option (+ram_init_file) and execute the simulation binary “Vswervolf_core_tb”. We also set
the vcd (value change dump) as 1 to dump all variables within the module.

Figure 17. Execute the simulator

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 15

Press “ctrl + c” to stop the simulation. The “trace.vcd” file should be generated.

Step 4. Open the trace file :

➢ gtkwave trace.vcd

Figure 18. open trace.vcd file in gtkwave

Now, gtkwave will be launched. You will now need to repeat the process of Lab 2 to add the
signals to the graph and analyze them.

Step 5. On the top left pane of GTKWave, expand the SoC hierarchy so that you can add
signals to the graph. Expand the hierarchy into TOP → swervolf_core_tb→ swervolf →
rvtop → swerv, and click on module ifu, select signal clk (which is the clock used for the
core), and drag it into the white Signals pane or the black Waves pane on the right.

Step 6.Make sure the ifu module is highlighted (see Figure 19), then type “inst” in the filter
search and then insert the “ifu_i0_instr[31:0]” and “ifu_i1_instr[31:0]” signals.

Figure 19. “instr” signals

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 16

Step 7. Now navigate to: TOP → swervolf_core_tb→ swervolf → rvtop → swerv → dec
→ arf → gpr_banks(0) → gpr(28) → gprff, and click on “dout[31:0]” signal and insert it in
(see Figure 20).

Figure 20. “dout” signal

Now you can zoom in on the signals using the “+” button and analyze the waveforms (see
Figure 21).

Figure 21. analyze the signals

9. Running Blinky Example on SweRVolf Nexys

In this section, we show how to run the Blinky program on the SweRVolf Nexys. We will be
using the “.bit” file generated by FuseSoC earlier in this Lab.

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 17

Note: The address memory maps for LEDs and I/O for SweRVolfX modules used in Lab 1
and Lab 2 are different from SweRVolf (FuseSoC-based SoC for SweRV EH1). Hence
there are separate example directories of the same Example Program (Blinky) in Lab 2
and Lab 3 with changed memory addresses.

Table 5. MEMORY-MAPPED GPIO Addresses of SweRVolf & SweRVolfX

SoC System Address

SweRVolfX (Lab 1) GPIO 0x80001400 - 0x8000143F

SweRVolf (Lab 3) GPIO 0x80001010 - 0x80001013

Complete the following steps to program your Nexys A7 board with SweRVolf Nexys and
then run the Blinky Program:

Step 1. Connect the Nexys A7 board to your computer.

Step 2. Turn on the Nexys A7 board using the switch at the top left. (see Figure 22)

Figure 22. Nexys A7 Board ON/OFF Button

Step 3. Open VSCode and PlatformIO if it is not already open.

Step 4. On the top menu bar, click on File→ Open Folder (see Figure 23) and browse into
directory [RVfpgaSoCPath]/RVfpgaSoC/Labs/LabResources/Lab3/examples/.

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 18

Figure 23. Open Folder

Step 5. Select the directory Blinky_FuseSoC (do not open it, but just select it) and click OK
at the top of the window. PlatformIO will now open the example.

Step 6. Open file platformio.ini by clicking on platformio.ini in the left sidebar (see Figure 24).
Establish the path to the RVfpga bitstream in your system by editing the following line (see
Figure 24).

Step 7. The “swervolf_0.7.3.bit” file created using FuseSoC is in the following path :

board_build.bitstream_file =
/home/<Username>/RVfpgaSoC/Labs/LabProjects/SweRVolf/build/swervolf_0.
7.3/nexys_a7-vivado/swervolf_0.7.3.bit

Figure 24. Platformio initialization file: platformio.ini

Step 8. Click on the PlatformIO icon in the left menu ribbon (see Figure 25).

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 19

Figure 25. PlatformIO icon

In case the Project Tasks window is empty (Figure 26), you must refresh the Project

Tasks first by clicking on . This can take several minutes.

Figure 26. PROJECT TASKS window empty – Refresh

Step 9. Expand Project Tasks → env:swervolf_nexys → Platform and click on Upload
Bitstream, as shown in Figure 27.

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 20

Figure 27. Upload Bitstream

Now that the bitstream has been uploaded, we will start the debugging process.

Figure 28. blinky.S in PlatformIO

Step 10. Click on to run and debug the program; then start debugging by clicking on

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 21

the play button . PlatformIO sets a temporary breakpoint at the

beginning of the main function. So, click on the Continue button to run the program.

Step 11. On the board, you will see the right-most LED start to blink.

Figure 29. rightmost LED Blinking

Step 12. Pause the execution by clicking on the pause button

. The execution will stop somewhere inside the infinite loop
(probably, inside the time1 delay loop).

Step 13. Establish a breakpoint by clicking to the left of line number 18. A red dot will
appear, and the breakpoint will be added to the BREAKPOINTS tab (see Figure 30).

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 22

Figure 30. Setting a breakpoint in blinky.S

Step 14. Then, continue execution by clicking on the Continue button

. Execution will continue, and it will stop after the store word
(sw) instruction, which writes 1 (or 0) to the right-most LED.

Step 15. Continue execution several times; you will see that the value-driven to the
right-most LED changes each time.

Step 16. Stop debugging and go back to the Explorer

window by clicking on . Close the program by selecting File→ Close Folder.

10.Debugging SweRVolf

SweRVolf supports debugging both on hardware and in simulation. There are different
procedures on how to connect the debugger, but once connected, the same commands can
be used (although programs run much slower in simulation).

SIMULATION:

Step 1. Enter the WORKSPACE directory “SweRVolf” and then run the simulation command:

➢ fusesoc run --target=sim swervolf --jtag_vpi_enable

The “--jtag_vpi_enable” parameter enables the JTAG server to which OpenOCD can
connect to. When a SweRVolf simulation is launched with the “--jtag_vpi_enable”, it will
start a JTAG server waiting for a client to connect and send JTAG commands.

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 23

Figure 31. Run the simulation command

Step 2. Open a new terminal using “Ctrl + Shift + t”, then from the Workspace directory,
navigate to the data directory by running:

➢ cd fusesoc_libraries/swervolf/data/

Step 3. Now, run the following command to connect OpenOCD to the simulation instance.

➢ openocd -f swervolf_sim.cfg

If successful, OpenOCD should output the following (see Figure 32).

Figure 32. Run OpenOCD

Step 4. Open a third terminal using “Ctrl + Shift + t” and connect to the debug session
through OpenOCD.

➢ telnet localhost 4444

Figure 33. telnet

Step 5. Now enter commands to give instructions. We can now provide live instructions to
SweRVolf through the third terminal.

In this FuseSoC based SoC, 16 LEDs are controlled by memory-mapped GPIO at address
0x80001010-0x80001011. These addresses are different from the RVfpga system
modules that we used in Labs 1 and 2.

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 24

So we can write a value of “1” at that address in the memory.

> mwb 0x80001010 1

Now open up the first terminal, and you will see that gpio0 is now ON (see Figure 34).

Figure 34. gpio0 is ON.

Again, go back to the third terminal and write a value of “0” at the same memory address to
turn OFF gpio0.

> mwb 0x80001010 0

Figure 35. gpio0 is OFF.

Now we will complete this same process on the Nexys A7 board.

HARDWARE:

Step 1. Connect the Nexys A7 board to your computer and then run the FPGA build
command in the Workspace directory. To upload the bitstream without rebuilding for the
Nexys A7 board again, you can add the “--run” parameter.

➢ fusesoc run --target=nexys_a7 --run swervolf

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 25

Figure 36. Run FPGA Build

Step 2. Program the board using OpenOCD

➢ openocd -c "set BITFILE
build/swervolf_0.7.3/nexys_a7-vivado/swervolf_0.7.3.bit" -f
$SWERVOLF_ROOT/data/swervolf_nexys_program.cfg

It should give the output as shown in Figure 37.

Figure 37. Run OpenOCD

Step 3. Connect OpenOCD to SweRVolf

➢ openocd -f $SWERVOLF_ROOT/data/swervolf_nexys_debug.cfg

Figure 38. OpenOCD Connected

Step 4. Open a third terminal using “Ctrl + Shift + t” and connect to the debug session
through OpenOCD:

➢ telnet localhost 4444

Figure 39. telnet

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 26

Step 5. Now enter commands to give instructions to the board directly. We can now give live
instructions to SweRVolf through the third terminal.

The 16 LEDs are controlled by memory-mapped GPIO at addresses 0x80001010 -
0x80001011.

We write a value of “1” to 0x80001010 in memory to turn ON the right-most LED:

➢ mwb 0x80001010 1

Now run the following command to turn the right-most LED OFF:

➢ mwb 0x80001010 0

This will turn OFF the right-most LED on the board.

To quickly recap this Lab, we first compared the Block Design code with the Hand-tuned
code. Then we were introduced to FuseSoC, a package manager containing the SweRVolf
(FuseSoC based SoC for SweRV Eh1) package.

We then explored its two versions, “SweRVolf Sim” and “SweRVolf Nexys”.

Like the RVfpgaSim in the previous lab, SweRVolf Sim is a simulation target that wraps the
SweRVolf core in a testbench to be used by the verilator. Similarly, the RVfpgaNexys in the
previous lab is similar to the SweRVolf Nexys that is a version of the SweRVolf SoC
targeted to the Digilent Nexys A7 board.

We then built the SweRVolf Sim for simulation and SweRVolf Nexys for the Nexys A7 board
using FuseSoC run. Later we run the same examples on these builds that we ran in the
previous lab on RVfpgaSim and RVfpgaNexys.

Note: Save time in Labs 4 and 5 by storing export commands in a file. Simply export the
commands to a text file, save it (e.g., "my_exports.sh"), and source it in new terminal
sessions or add it to your .bashrc. Streamline your workflow and effortlessly create additional
terminal sessions when needed.

Imagination University Programme – RVfpga-SoC Lab 3: Introduction to SweRVolf and FuseSoC
Version 1.1 – 7th July 2023
© Copyright Imagination Technologies 27

