]

Imagination

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga-SoC Lab 5

Running Tensorflow Lite on
SweRVolf

Version 1.1 — 7th July 2023
© Copyright Imagination Technologies

imagination
university programme

Table 1. RVfpga Terms

Name Description

Courses
RVfpga A course that shows how to use RVfpgaNexys and RVfpgaSim, RISC-V
system-on-chips (SoCs), to run programs and extend the system by adding
peripherals (RVfpga Labs 1-10), and explore the core and memory system by
running simulations, measuring performance, adding instructions, and
modifying the memory system (RVfpga Labs 11-20). Throughout the course,
users are also shown how to use the RISC-V toolchain (compilers and
debuggers) and simulators, the Verilator HDL simulator, and Western Digital’s
Whisper instruction set simulator (ISS).

RVfpga-SoC A course that shows how to build a subset SweRVolfX SoC from scratch using
building blocks such as the SweRV core, memories, and peripherals. The
course also shows how to load the Zephyr real-time operating system (RTOS)
onto SweRVolf and run programs including Tensorflow Lite’s hello world
example on top of the operating system.

Cores and SoCs
SweRV EH1 Open-source commercial RISC-V core developed by Western Digital

Core (https://qithub.com/chipsalliance/Cores-SweRV).

SweRV EH1 SweRV EH1 core with added memory (ICCM, DCCM, and instruction cache),

Core programmable interrupt controller (PIC), bus interfaces, and debug unit

Complex (https://github.com/chipsalliance/Cores-SweRV).

SweRVolfX The System on Chip that we use in the RVfpga course. It is an extension of
SweRVolf.

SweRVolf (https://github.com/chipsalliance/Cores-SweRVolf): An open-source
SoC built around the SweRV EH1 Core Complex. It adds a boot ROM, UART

interface, system controller, interconnect (AXI Interconnect, Wishbone
Interconnect, and AXI-to-Wishbone bridge), and an SPI controller.
SweRVolfX: It adds four new peripherals to SweRVolf: a GPIO, a PTC, an
additional SPI, and a controller for the 8 Digit 7-Segment Displays.

RVfpgaNexys | The SweRVolfX SoC targeted to the Nexys A7 board and its peripherals. It
adds a DDR2 interface, CDC (clock domain crossing) unit, BSCAN logic (for
the JTAG interface), and clock generator.

RVfpgaNexys is the same as SweRVolf Nexys
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

RVfpgaSim The SweRVolfX SoC with a testbench wrapper and AXI memory intended for
simulation.

RVfpgaSim is the same as SweRVolf Sim,
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 2

https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf

imagination
university programme

In this Lab, we show how to build a Tensorflow Lite project for Zephyr (a real-time operating
system) and then run that Zephyr program on SweRVolf. Similar to what we have seen in the
previous lab, we will be running a Tensorflow program on top of Zephyr instead of a basic C
or Assembly language program.

1. Introduction

1. Brief background of TensorFlow Lite

TensorFlow Lite is a set of tools that enables on-device machine learning by helping
developers run their models on mobile, embedded, and loT devices. It compresses a
TensorFlow model to a .tflite model that has a small binary size. This enables on-device
machine learning and uses hardware acceleration to improve performance.

Its key features are:

e Optimized for on-device machine learning by addressing five key constraints: latency
(there's no round-trip to a server), privacy (no personal data leaves the device),
connectivity (internet connectivity is not required), size (reduced model and binary
size), and power consumption (efficient inference and a lack of network connections).

e Multiple platform support, covering Android and iOS devices, embedded Linux, and
microcontrollers.

e Diverse language support includes Java, Swift, Objective-C, C++, and Python.
e High performance, with hardware acceleration and model optimization.

e End-to-end examples for common machine learning tasks such as image
classification, object detection, pose estimation, question answering, text
classification, etc., on multiple platforms.

For more information, visit https://www.tensorflow.org/lite/microcontrollers

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 3

https://www.tensorflow.org/lite/microcontrollers

imagination
university programme

SweRVolf and Tensorflow Lite

Figure 1 illustrates the hierarchical layers on top of the Nexys A7 board that we will
implement in this Lab.

‘¢ TensorFlowlLite

N

P

- Zephyr”
Project

<@

SweRVolf

Layer 1

Nexys A7 Board

Figure 1. Layers on top of the FPGA board

The steps for running a TensorFlow Lite program on the Nexys A7 board are subtly different
from the ones in Lab 4.

Step 1. Download SweRVolf onto the FPGA board

First, we download the SweRVolf, the RISC-V system targeted to an FPGA, to the

Nexys A7 FPGA board. We download the SweRVolf onto the board by either uploading the
bitstream to the board using PlatformlO or by using the FuseSoC run command, which
uploads the generated bitstream to the board if it's connected.

Step 2. Build Tensorflow programs
In this step, we build a Tensorflow Lite application for Zephyr. The Zephyr RTOS is built as
part of this build. The output is an elf file.

Step 3. Load programs on SweRVolf.
In this step, we load the elf file generated during Step 2 onto SweRVolf.

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies

imagination
university programme

2. Requirements

To complete this lab, you will need to install the following:

e Vivado 2019.2 Web Pack (Refer to Installation Guide (Page No.04))
e Verilator (v4.106) (Refer to Installation Guide (Page No.09))
e FuseSoC (Refer to Installation Guide (Page No.10))
e OpenOCD (RISC-V-specific version) (Refer to Installation Guide (Page No.10))
e ZephyrPrerequisites (Refer to Installation Guide (Page No.11))
e Zephyr SDK (v0.12.4) (Refer to Installation Guide (Page No.12))
e PuTTY (Refer to Installation Guide (Page No.12))

IMPORTANT: Before starting RVfpga-SoC Labs, we highly recommend completing the
RVfpga-SoC Installation Guide.

For example, if you have not already, install Xilinx’s Vivado and Verilator following the
instructions in the RVfpga-SoC Installation Guide. Make sure that you have copied the
RVfpga-SoC folder that you downloaded from Imagination’s University Programme to your
machine.

3. Tensorflow’s Hello World Example

In this Lab, we will only set up the Tensorflow environment and run a simple Hello-World
tensor operation.

The Hello World example is designed to demonstrate the absolute basics of using
TensorFlow Lite for Microcontrollers. This program trains and runs a model that replicates a
sine function, i.e., it takes a single number as its input and outputs the number's sine value.

For more information, visit TensorFlow’s official documentation at this link.

4. Setting up The Environment For Tensorflow

Open your Ubuntu terminal and complete the following steps:

Step 1. Navigate to the directory “SweRVolf’. We have to set the following shell variables.
To do that, we run the following:

> export WORKSPACE=S$ (pwd)
> export SWERVOLF ROOT=SWORKSPACE/fusesoc libraries/swervolf
> export ZEPHYR BASE=SWORKSPACE/zephyr

You can also enter “brintenv <variable-name>" command in the terminal window to
verify if the shell variables have been successfully set or not.

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies

3

https://www.tensorflow.org/lite/microcontrollers/get_started_low_level

imagination
university programme

WORKSPACE=S(pwd)
SWERVOLF_ROOT=%(pwd) /fusesoc_libraries/swervolf

ZEPHYR_ BASE=S$WORKSPACE/zephyr

Figure 2. Set the shell variables
Step 2. Clone the Tensorflow GitHub repository.
> git clone https://github.com/tensorflow/tensorflow

hamza@imagination: 3 3 e Lf$ git clone https://github.com/tensorflow/tensorflow
Cloning into 'tensorflow 5

remote: Enumerating objects: 1155704, done.

remote: Counting objects: 180% (193/193), done.

remote: Compressing objects: 100% (141/141), done.

remote: Total 1155704 (delta 62), reused 118 (delta 51), pack-reused 1155511
Receiving objects: 100% (1155704/1155704), 683.05 MiB | 157.00 KiB/s, done.
Resolving deltas: 100% (942622/942622), done.

Checking out files: 100% (25049/25049), done.

Figure 3. Tensorflow

Now navigate to the “tensorflow” directory.

> cd tensorflow

; cd tensorflow/
OPr “ts /SweF rfl
Figure 4. Navigate to the “tensorflow” directory

Check out the “v2.5.0” branch of the repository by the following command :
> git checkout v2.5.0

$ git checkout -b v2.5.0

s

Figure 5. git checkout

Step 3. In order to add support for Zephyr SweRVolf in TensorFlow, we must copy a couple
of files in this TensorFlow repository.

The first file is the “Makefile.inc” file for the hello_world example. Navigate to the following
path to copy “Makefile.inc”:

® [RVfpgaSoCPath]/RVfpgaSoC/Labs/LabResources/Lab5/Makefile.inc
Now paste the “Makefile.inc” file to the following location (see Figure 6)

e [RVfpgaSoCPath]/RVfpgaSoC/Labs/LabProjects/SweRVolf/tensorflo
w/tensorflow/lite/micro/examples/hello world/zephyr riscv/

&t Home RVfpgasoC Labs LabProjects SweRVolf tensorflow tensorflow lite micro examples hello_world zephyr_risev »

src

prj.conf

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 6

imagination
university programme

Figure 6. Makefile.inc

Note: If you cannot find the “example” folder at the following path:
[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabProjects/SweRVolf/tensorflow/ten
sorflow/lite/micro/examples

It means that you have not changed to v2.5.0 branch of tensorflow.

You can change to v2.5.0 by entering the following command in the terminal:
git checkout v2.5.0

The second file is the “zephyr_swervolf_makefile.inc” file. Navigate to the following path to
copy “zephyr_swervolf_makefile.inc”:

e [RVfpgaSoCPath]/RVfpgaSoC/Labs/LabResources/Lab5/
zephyr swervolf makefile.inc

Now paste the “zephyr_swervolf_makefile.inc” file to the following location (see Figure 7)

e [RVfpgaSoCPath]/RVfpgaSoC/Labs/LabProjects/SweRVolf/tensorflo
w/tensorflow/lite/micro/tools/make/targets/

ome RVfpgaSoC Labs LabProjects SweRVolf tensorflow tensorflow lite micro tools make targets

]]]]] k]

apollo3evb arc bluepill ceva ecm3531 hexagon stm32f4 apollo3evb arc_ arc_ bluepill_ ceva_ chre_ cortex.m_ cortexm_ disco. ecm3531
moakefile. custom emsdp_ makefile. makeflle. makefile. corstone_ generic_ f746ng_ makefile.
inc makefile.... makefile.... inc inc inc 300_mak... makefile.... makefile.... inc

nts
hds .
esp_ hexagon_ himax_ leon_ mcuriscv. sparkfun_ spresense_ stm32f4_ xcore_ xtensa_ zephyr_
makefile. makefile. wel_evb_ makefile. makefile: edge_ makefile. makefile. makefile. makefile. vexriscy_

inc inc makefile. inc inc makefile. inc inc inc inc makefile.
inc inc inc

Figure 7. zephyr_swervolf_makefile.inc
Step 4. Install the required packages.
Navigate to the “WORKSPACE” directory using the following command:

> cd

Figure 8. Navigate to the WORKSPACE directory

Install the required packages by the following command:

> sudo apt install git cmake ninja-build gperf ccache dfu-util
device-tree-compiler wget python python3-pip
python3-setuptools python3-tk python3-wheel xz-utils file
make gcc gcc-multilib locales tar curl unzip xxd make
autoconf g++ flex bison virtualenv

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 7

imagination
university programme

fhamza@imagination:~/RVT abProje VolfS$ sudo apt install git cmake ninja-build
gperf ccache dfu-util d e-compiler wget python python3-pip python3-setuptools python3-tk
| python3-wheel xz-utils file make gcc gcc-multilib locales tar curl unzip xxd make autoconf g++
[Tlex bison virtualenv

{[sudo] password for hamza:

IReading package lists... Done

[Building dependency tree

fRreading state information... Done

fautocont is already the newest version (2.69-11).

[bison is already the newest wversion (2:3.0.4.dfsg-1buildl).

ccache is already the newest version (3.4.1-1).

ldevice-tree-compiler is already the newest version (1.4.5-3).

[flex is already the newest version (2.6.4-6).

Imake is already the newest version (4.1-9.1lubuntul).

Ipython is already the newest version (2.7.15~rc1l-1).

Ipython3-setuptools is already the newest version (39.08.1-2).

[xz-utils is already the newest version (5.2.2-1.3).

jdfu-util is already the newest version (0.9-1).

Figure 9. Install packages

Step 5. Create a virtual environment.
First Navigate to the zephyr directory using the following command:

> cd zephyr

-fﬂvfpéaﬁmrﬁLab5fLahPrmjezt5fSweRUm1f5 cd zephyr/f
~/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyrs i
Figure 10. Navigate to the zephyr directory

Create a virtual environment inside the zephyr directory using the following command:

> virtualenv venv-zephyr

hamza@imagination:~/RVfpgaSoC/Labs/LabProjer WWolf/zephyrS virtualenv venv-zephyr
created virtual cnvtrnnmunt (Fythmn} 6.9.final.@-64 in 374ms
creator CPython3Posix(dest=/home/hamza/RvfpgaScoC/Labs/LabProjects/SweRVolffzephyr/venv-zephyr, clear=False, no_vcs_ignore=False, global=False)

seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data_dir=/home/hamza/.local/share/virtualenv)

activators BashActivator,CShellActivator,FishActivator,PowershellActivator,PythonActivator,XonshActivator
hamza@imagination:~/RVfpgas bs/LabProje Volf/zephyr$

Figure 11. Creating venv-zephyr

Step 6. Enter the following command to activate the virtual environment created in the last
step.

> source venv-zephyr/bin/activate

phyr$ source venv-zephyr/binfactivate

Volf/zephyrs$

Figure 12. Activating venv-zephyr

Step 7. Install the required packages listed in the “requirements.txt” file using the following
command.

> pip3 install -r scripts/requirements.txt

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023
© Copyright Imagination Technologies 8

imagination
university programme

(venv-zephyr) hamza@imagination:~/RVfpga [La LabProjec Jolf fzephyrSs pip3 install
-r scripts/requirements.txt
Ignoring windows-curses: markers 'sys_platform == "win32"' don't match your environment
Collecting pyelftools>=0.26
Using cached pyelftools-0.27-py2.py3-none-any.whl (151 kB)
Collecting PyYAML>=5.1

Using cached PyYAML-5.4.1-cp36-cp36m-manylinux1 x86 64.whl (640 kB)
Collecting canopen

Using cached canopen-1.2.1-py3-none-any.whl (52 kB)
Collecting packaging

Using cached packaging-20.9-py2.py3-none-any.whl (40 kB)
Collecting progress

Figure 13. Installing required packages

Now we can close this terminal tab and return to our main terminal tab, where we will be
building the “hello_world” example.

5. Building Hello World Example for Swervolf

In this section, we will be building the “hello_world” example for SweRVolf. We will be
generating the “zephyr.bin” and “zephyr.elf” files for the “hello_world” example.

Step 1. First, we will navigate to the tensorflow directory.

> cd ../tensorflow/

~/RVfpgaSoC/Labs/LabProjects/SweRVolf /zephyr$ cd .. /tensorflow/
~f/RVfpgaSoC/Labs/LabProjects/SweRVolf/tensorflows
Figure 14. Navigating to the “tensorflow” directory

Step 2. For this Lab, we are going to build Hello world for SweRVolf. This is done with the
following command:

> make -f tensorflow/lite/micro/tools/make/Makefile
TARGET=zephyr swervolf BUILD TYPE=debug hello world bin

(venv-zephyr) hamza@imagination:~ 3 abProje olf/tensorflow$ make -f tensorflow/lite/micro/tools/make/Makefile
TARGET=zephyr_swervolf BUILD_TYPE= g | ||

--2021-05-20 19:44:08-- http://mirror.tensorflow.org/github.com/google/flatbuffers/archive/dcal2522a9f9e37f126ab925fd385c807ab4f84e
.zip

Resolving mirror.tensorflow.org (mirror.tensorflow.org)... 216.58.210.80, 2a00:1450:4018:803::2010

Connecting to mirror.tensorflow.org (mirror.tensorflow.org)|216.58.210.80|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1760478 (1.7M) [application/zip]

Saving to: ‘/tmp/tmp.kvIHESzFqo/dcal2522a9f9e37f126ab925fd385c807ab4f84e.zip’

mp/tmp.kvIHESZFqo/dca a % > .6 o s in 0.9s
tmp/tmp.kvIHESzFqo/dcal2522a9f9 10869 1.68M 1.83MB in 0.9

2021-85-20 19:44:09 (1.83 MB/s) - ‘/tmp/tmp.kvIHESzFqo/dcal2522a9f9e37f126ab925fd385c807ab4f84e.2z1p’ saved [1760478/1760478]

Cloning into 'tensorflow/lite/micro/tools/make/downloads/pigweed’...
ending approximately 15.02 MiB ...
ounting objects: 33, done
remote: Finding sources: 100% (33/33)
remote: Total 22687 (delta 9753), reused 22681 (delta 9753)
Receiving objects: 100% (22687/22687), 15.81 MiB | 1.78 MiB/s, done.
Resolving deltas: 100% (9753/9753), done.
: checking out '47268dff45019863e20438ca3746c6c62df6efag’ .

Figure 15. Building hello_world example

This will take a few minutes since it has to download some toolchains for the dependencies.
Once it has finished, you should see some folders created inside a path like

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023
© Copyright Imagination Technologies 9

imagination
university programme
e tensorflow/lite/micro/tools/make/gen/zephyr swervolf x86 64 d

ebug/hello world/

These folders contain the generated project and source files.

Linking CXX executable zephyr.elf

ting files from zephyr.elf for board: rolf

make[3]: Leaving directory 'fhome}hamza}Rprga;oC}LaBs} abProjects/SweRVolf/tensorflow/
tensorflow/lite/micro/tools/make/gen/zephyr swervolf x86 64 debug/hello world/build’

[100%] Built target zephyr final

make[2]: Leaving directory '/home/hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/tensorflow/
tensorflow/lite/micro/tools/make/gen/zephyr_swervolf_x86 64 debug/hello_world/build’
make[1]: Leaving directory '/home/hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/tensorflow/
tensorflow/lite/micro/tools/make/gen/zephyr_swervolf_x86 64 debug/hello_world/build’

Figure 16. Building hello_world example completed

The resulting binaries (zephyr.bin and zephyr.elf) will be generated in the following path:

e tensorflow/lite/micro/tools/make/gen/zephyr swervolf x86 64 d
ebug/hello world/build/zephyr

Step 3. Now you can exit out of the virtual environment by entering the following command:

> deactivate

6. Running Hello World Example on Verilator

In this section, we will be converting the “zephyr.bin” file into a “.hex” file and then load it in
as the initial ram file while running the simulator for SweRVolf.

Step 1. Navigate to the “hello_world” project directory. Enter the following command to enter
that directory:

> cd
tensorflow/lite/micro/tools/make/gen/zephyr swervolf x86 64 d
ebug/hello world/

sorflowsS cd tensorflow/litefmicro,:’too'l_s,!make,:‘gen,r‘zephyr_swer\.rolf_xat’;_c';-:l:debug/heflo_ﬁorfd;’

sorflow/tensorflow/lite/micro/tools/make/gen/zephyr_swervolf_ 64_debug/hello_world$

Figure 17. “hello_world” project path

Step 2. Convert the “.bin” file to the “.hex” file. To create the “.hex” file, run the following
command from the hello_world directory :

> python3 $SWERVOLF ROOT/sw/makehex.py build/zephyr/zephyr.bin
>
/home/<username>/RVfpgaSoC/Labs/LabProjects/SweRVolf/hello wor
1d tensorflow.hex

(Replace the <username> with your username)

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 10

imagination
university programme

hamza@imagination:~/RVfpgaSoC/Labs/LabProjects/ RVolf/tensorflow/tensorflow/lite/micro/tools/ ephyr_swervolf_x 54_debug/hello_world
$ python3 $SWERVOLF_ROOT/sw/makehex.py build/zephyr/zephyr.bin > fhome/hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/hello_world_tensorflow.hex

haiza@imagination:—fﬁvfpgaﬁu(jLa} /LabProjects/ RVolf/tensorflow/tensorflow/lite/micro/tools/make/g ephyr_swervolf_x 4_debug/hello_world
S

Figure 18. convert “.bin” to “.hex”
Step 3. Navigate back to the “WORKSPACE?” directory

> cd SWORKSPACE

v/lite/micro/tool ake/gen/ y v 64_debug/hello_worldS cd SWORKSPACE

Figure 19. Installing packages in venv-zephyr

Step 4. Load the “.hex” file in the simulator:

> fusesoc run --target=sim swervolf
-—-ram_init file=hello world tensorflow.hex

hamza@imagination:~/ g y /LabProject olf$ fusesoc run --target=sim swervolf --ram_init_file=hello_world_tensorflow.hex
WARNING: Unknown item compilation_mode in section Xsim
: Preparing ::cdc_utils:0.1-r1
: Preparing chipsalliance.org:cores:SweRV_EH1:1.8
: Preparing fusesoc:utils:generators:0.1.5
: Preparing ::jtag_vpi:0-rs
: Preparing pulp-platform.org::common_cells:1.20.0
: Preparing ::simple_spi:1.6.1
: Preparing ::uart16550:1.5.5-r1
: Preparing ::verilog-arbiter:0-r3
: Preparing ::wb_common:1.0.3
: Preparing pulp-platform.org::axi:0.25.0
: Preparing ::wb_intercon:1.2.2-r1
: Preparing wervolf:0.7.3
: Generating ::swervolf-intercon:0.7.3
master ifu
master lsu
master sb
slave io
slave ram

Figure 20. Loading “.hex” file in the simulator

We can see the output of the hello_world example (see Figure 21). The program prints out
the X and Y values of the “sine” function.

g++ jtagServer.o jtag_common.o tb.o verilated.o verilated_dpi.o verilated_vcd_c.o Vswervolf_core_tb__AlLL.a -0 Vswervolf_core_tb
make[1]: Leaving directory '/home/hamza/RvVfpgaSoC/Labs/LabProjects/SweRVolf/build/swervolf_08.7.3/sim-verilator

INFO: Running

INFO: Running simulation

Loading RAM contents from /fhome/hamza/RvfpgaSoC/Labs/LabProjects/sweRvVolf/hello_world_tensorflow.hex

Releasing reset

*** Booting Zephyr 0S build zephyr-v2.4.8 ***

x_value: 1.0%27~-127, y_value: 1.0*27-127

x_value: 1.2566366*27-2, y_value: 1.4910772%27-2
x_value: 1.2566366*2~-1, y_value: 1.1183078*2~-1

x_value: 1.8849551*27-1, y value: 1.677462%27-1

x_value: 1.2566366*270, y_value: 1.9316229%2~-1

Figure 21. “hello_world” output

Press “ctrl + ¢” to exit out of the program.

7. Running Hello World Example on the Nexys A7 Board

In this section, we will be running the “hello_world” project on the board using OpenOCD.

Step 1. Connect the Nexys A7 board to your computer and then run the FPGA build
command in the Workspace directory.

> fusesoc run --target=nexys a7 --run swervolf

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 1

imagination
university programme

hamza@imagination:~/RVfpga abProjec Volf$ fusesoc run --target=nexys_a7 --run swervolf
WARNING: Unknown item compilation_mode in section Xsim

INFO: Running

export HW_TARGET=; \

export JTAG_FREQ=; \
vivado -quiet -nolog -notrace -mode batch -source swervolf_©.7.3_pgm.tcl -tclargs xc7a100tcsg324-1 swervolf_0.7.3.bit
FuseSoC Xilinx FPGA Programming Tool

Figure 22. Run the FPGA build

Step 2. Connect OpenOCD with SweRVolf.
> openocd -f SSWERVOLF ROOT/data/swervolf nexys debug.cfg

hamza@imagination 3 abPro T bLfS openocd -f $SWERVOLF_ROOT/data/swervolf_nexys_debug.cfg
Open On-Chip Debugger ©.11. d (2021-01-30-12:10)
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
DEPRECATED! use 'adapter driver' not 'interface'
DEPRECATED! use 'adapter speed' not 'adapter_khz
: ftdi: if you experience problems at higher adapter clocks, try the command "ftdi_tdo sample_edge falling"
: clock speed 10800 kHz
: JTAG tap: riscv.cpu tap/device found: ©0x13631093 (mfg: 0x049 (Xilinx), part: ©x3631, ver: 0x1)
: datacount=2 preogbufsize=0
: We won't be able to execute fence instructions on this target. Memory may not always appear consistent. (progbufsize=8, impebreak=0

: Examined RISC-V core; found 1 harts
hart ©: XLEN=32, misa=0x40001104
: starting gdb server for riscv.cpu on 3333
: Listening on port 3333 for gdb connections
: Listening on port 6666 for tcl connections
: Listening on port 4444 for telnet connections

Figure 23. OpenOCD connected

Step 3. Open a new terminal using “Ctrl + Shift + t* & connect to the debug session through
OpenOCD using the following command:

> telnet localhost 4444

hamza@imagination:~/RVfpg
Trying 127.0.0.1...
Connected to localhost.
Escape character is '~]'.
Open On-Chip Debugger

-

[LabsfLabProjects/SweRVolfS$ telnet localhost 4444

Figure 24. telnet localhost 4444

OpenOCD supports loading ELF program files by running load_image /path/to/file.elf.
Remember that the path is relative to the directory from where OpenOCD was launched.

> load image
tensorflow/tensorflow/lite/micro/tools/make/gen/zephyr swervo
1f x86 64 debug/hello world/build/zephyr/zephyr.elf

> load_image tensorflow/tensorflow/lite/micro/tools/make/gen/zephyr_swervolf_x86_64_debug/hello_world/build/zephyr/zephyr.elf
287072 bytes written at address ©x00000000
downloaded 287072 bytes in 27.439606s (10.217 KiB/s)

Figure 25. loading the “.elf” file

After the program has been loaded, set the program counter to address zero using the
following command:

> reg pc O

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 12

imagination
university programme

> reg pc 0

pc (/32): 0x00000000

Figure 26. Set program counter to zero
Now start the program using this command:

> resume

W
|

Figure 27. Start the program
Step 4. Open a new terminal using “Ctrl + Shift + t*. Open “PuTTY” using the command
> sudo putty

hamza@imagination:~/RVfpgaSoC/Labs/LabProjects Wolf$ sudo putty

(putty:3263): Gtk-CRITICAL **: : gtk_box_gadget_distribute: assertion 'size »= @' failed in GtkScrollbar

Figure 28. Open PuTTY
We will be using PUTTY here as a serial console for our Nexys A7 board.

Step 5. Set the following configuration:
Select the connection type as “Serial’, then enter “/dev/ttyUSB1” as the serial line, and set
the speed equal to “115200”. Now click “Open” to start the serial console.

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 13

imagination
university programme

PuTTY Configuration

Category: Basic options For your PUTTY session
m specify the destination you want to connect to
Logging Serial line Speed

¥ Terminal J/dev/ttyUsB1 I|I 115200 | |

Keyboard Connection type:
Bell Raw Telnet Rlogin SSH | O Serial |
Features Load, save or delete a stored session

¥ Window Saved Sessions
Appearance (|
Behaviour
Translation Default Sektings ~ Load
Selection Save
colours —_—
Fonks Delets

+ Connection

Data
Proxy . -
Close window on exit:
Telnet © Always Never Only on clean exit
Rloain
About Open Cancel

Figure 29. PuTTY configuration

In the serial console, we can see the output of the hello_world example (see Figure 30).

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies

imagination
university programme

Jdev/ttyUSB1 - PUTTY

Figure 30. serial console

Again as we saw in the simulation section, the program prints the “X” and “Y” coordinates of
the sine function that the TensorFlow model is plotting.

Note: If you are unable to open a serial console, try “/dev/ttyUSBO0” as the serial line.

So in this lab, we have successfully build the “hello_world” example of TensorFlow as a
Zephyr application and then run that example on SweRVolf.

Imagination University Programme — RVfpga-SoC Lab 5: Running Tensorflow Lite on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 15

