]

Imagination

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga-SoC Lab 2

Running Software on
RVfpga-SoC

Version 1.1 — 7th July 2023
© Copyright Imagination Technologies

imagination
university programme

Table 1. RVfpga Terms

Name Description

Courses
RVfpga A course that shows how to use RVfpgaNexys and RVfpgaSim, RISC-V
system-on-chips (SoCs), to run programs and extend the system by adding
peripherals (RVfpga Labs 1-10), and explore the core and memory system by
running simulations, measuring performance, adding instructions, and
modifying the memory system (RVfpga Labs 11-20). Throughout the course,
users are also shown how to use the RISC-V toolchain (compilers and
debuggers) and simulators, the Verilator HDL simulator, and Western Digital’s
Whisper instruction set simulator (ISS).

RVfpga-SoC A course that shows how to build a subset SweRVolfX SoC from scratch using
building blocks such as the SweRV core, memories, and peripherals. The
course also shows how to load the Zephyr real-time operating system (RTOS)
onto SweRVolf and run programs including Tensorflow Lite’s hello world
example on top of the operating system.

Cores and SoCs
SweRV EH1 Open-source commercial RISC-V core developed by Western Digital

Core (https://qithub.com/chipsalliance/Cores-SweRV).

SweRV EH1 SweRV EH1 core with added memory (ICCM, DCCM, and instruction cache),

Core programmable interrupt controller (PIC), bus interfaces, and debug unit

Complex (https://github.com/chipsalliance/Cores-SweRV).

SweRVolfX The System on Chip that we use in the RVfpga course. It is an extension of
SweRVolf.

SweRVolf (https://github.com/chipsalliance/Cores-SweRVolf): An open-source
SoC built around the SweRV EH1 Core Complex. It adds a boot ROM, UART

interface, system controller, interconnect (AXI Interconnect, Wishbone
Interconnect, and AXI-to-Wishbone bridge), and an SPI controller.
SweRVolfX: It adds four new peripherals to SweRVolf: a GPIO, a PTC, an
additional SPI, and a controller for the 8 Digit 7-Segment Displays.

RVfpgaNexys | The SweRVolfX SoC targeted to the Nexys A7 board and its peripherals. It
adds a DDR2 interface, CDC (clock domain crossing) unit, BSCAN logic (for
the JTAG interface), and clock generator.

RVfpgaNexys is the same as SweRVolf Nexys
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

RVfpgaSim The SweRVolfX SoC with a testbench wrapper and AXI memory intended for
simulation.

RVfpgaSim is the same as SweRVolf Sim,
(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 2

https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf

imagination
university programme

This Lab shows how to run programs written in C or Assembly language on the SweRVolfX
subset we created in Lab 1 using the Vivado Block design tool. You may choose to simulate
the design using Verilator or run the design on the Nexys A7 board. If you do not have
access to an FPGA board, this lab may be completed only in simulation using Verilator. To

complete this lab, you will use the Block Design’s “BD.v” Verilog file and the “rvfpga.bit” bit
file that was generated in Lab 1 using Vivado’s Block Design.

1. Introduction

In this Lab, we will show how to generate the simulation binaries for RVfpgaSim, which will
be used later for creating the simulation trace of an example program. We will also analyze
the simulation trace using GTKWave.

As an optional step, we will show how to download the RVfpgaNexys, as defined by the
bitstream that we created in Lab 1, onto our Nexys A7 board using PlatformlO and then
debug an example program using PlatformlO. This step is optional but recommended.

2. Requirements

To complete this lab, you will need to install the following tools:

e VSCode (Refer to Installation Guide (Page No.06))
e PlatformlO (Refer to Installation Guide (Page No.06))
e GTKWave (Refer to Installation Guide (Page No.09))
e Verilator (Refer to Installation Guide (Page No.09))

Cygwin (For Windows User only) (Refer to Installation Guide (Page No.15))

IMPORTANT: Before starting RVfpga-SoC Labs, we highly recommend completing the
RVfpga-SoC Installation Guide.

For example, if you have not already, install VScode and Verilator following the instructions
in the RVfpga-SoC Installation Guide. Make sure that you have copied the RVfpga-SoC
folder that you downloaded from Imagination’s University Programme to your machine.

3. Running the SoC Created in Block Design

In the first Lab, we created a subset of the SweRVolfX SoC by connecting the processor
core, interconnects, and peripherals with each other using Vivado's Block Design tool. The
Block Design then generates a Verilog file of that Block Design module as a whole. In our
case, it was the “BD.v" file.

Now we have two options and pathways to run the Block Design’s SoC
e Run Block Design’s SoC on the Nexys A7 100T board.
e Run Block Design’s SoC on the Verilator simulator.

The Block Design’s SoC has two top-level modules that exist for each of those targets:
RVfpgaSim (rvfpgasim) and RVfpga Nexys (rvfpga), as described below:

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies

w

imagination
university programme

1. RVfpgaSim (rvfpgasim.v)
The RVfpgaSim module is used as the top module of the RVfpga system for Simulation. We
use Verilator (a hardware description language (HDL) simulator that simulates the Verilog
that defines RVfpga) for simulating the RVfpga system. Running the SoC in simulation
allows us to analyze the system’s internal signals in depth. Later in this Lab, when we
generate the simulation binary for RVfpgaSim, we will use “rvfpgasim.v” as the top module
file.

The top module “rvfpgasim” structure is illustrated in Figure 1.

‘_.dpram64 _‘ axi2wb | [swerv —> cru

axi_mem_wrapper.v | intcon_wrapper —> Interconnects
ram

| syscon_wrapper |

bootrom_wrapper |

:] d 5 % 1 Peripherals
jtag_tap | | dmi_jtag_to_core_sync| (eslowranmer)
I dmi_wrapper.v i ‘;bid\"rec:‘.xsz
dmi_wrapper
BD.v
Block Design

Figure 1. RVfpgaSim
It includes three modules:

e Block Design (BD.v)

This is the SoC module that we have created using Vivado’s Block Design.
e ram (axi_mem_wrapper.v)

This is the memory module.
e dmi_wrapper (dmi_wrapper.v)

This is the Debugging module interface.

In Lab 1, while connecting pins using Vivado’s Block Design, we made several external pin
connections. These external connections of the “Block Design” module are connected in
the top module “rvfpgasim” with other modules. For instance, the “DMI” external
connections in the “Block Design” module are connected with the “dmi_wrapper” module,
and the “RAM” external connections of the “Block Design” module are connected with the
“‘ram” module.

2. RVfpga Nexys (rvfpga.sv)
The RVfpga Nexys module is used as the top module of the RVfpga system for the
Hardware (On-Board Implementation), which is targeted to the Digilent Nexys A7 board (or,
interchangeably, the older Nexys 4 DDR board).
The top module “rvfpga.sv” structure is illustrated in Figure 2.

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 4

imagination
university programme

swerv —> cru

clk_gen_nexys.v
clk_gen

bscan_tap.sv | intcon_wrapper — Interconnects

tap éyscon_wrappe}'-

—~ ‘Irbcotrom_wrapper .
i_axi_cdc litedram_core — ; Peniphefals
o) u =) |_gpio_wrapper |

axi_cdc.sv fi il litedram_top.v | "bidirec) ¥32
cdc ddr2 -
Block Design

Figure 2. RVfpga Nexys
RVfpga Nexus includes five modules :

e Block Design(BD.v)

This is the SoC module that we have created using Block Design.
e ddr2 (litedram_top.v)

This is the DDR memory controller module.
e clk_gen (clk_gen_nexys.v)

This is the Clock generator module.
e tap (bscan_tap.sv)

This is the jtag debug module. For more information, see this link
e cdc (axi_cdc.sv)

This is the Clock Domain Crossing module.

In the “rvfpga.sv” top module, the “RAM” external connections of the “Block Design”
module are connected with the “ddr2” module. The “DMI” external connections of “Block
Design” are connected with the “bscan_tap.sv’ module. The “clk” external connection is
connected with the “clk_gen” module (see Figure 3).

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 5

https://github.com/chipsalliance/Cores-SweRVolf/issues/29

imagination
university programme

[100 MHz
Clock |, [
Generator
_ 50 MHz
Y
SweRVolfX SoC e ey
Subset B B2 bscan TAP
oec s
- =
[AXI Interconnect
Q RAM Memory

Interconnect Wrapper [AXI-Wishbone Bridge }

[Wishbone Interconnect]

Boot-ROM_| [system-ctrl | [§E|| GPIO o-%b
=

i@

Figure 3. RVfpga Nexys (SweRVolfX SoC Subset)

4. Running a Program on Verilator

This section will take you through the process of how to run your first program
(AL_Operations) on RVfpgaSim using Verilator.

Note: All RVfpga Verilog source modules need to be prefixed with “BD_" to work with the
Block Design generated “BD.v” file. This “BD.v” file is used by the top module “rvfpgasim”
for simulation on verilator. The source modules are instantiated in the “BD.v” file and it
requires all the modules used to be prefixed with “BD_". We have already done that for
you in a separate “src” folder at the following path :

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Lab2/src.

First, we will need to move our “Block Design” module file, BD.v, to the folder containing all
of the other source files, including the top module file “rvfpgasim.v”.

When we created the HDL wrapper in the previous lab, we were provided with its full path
(see Figure 4). We will need to navigate this path and then copy the file.

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabProjects/Labl/Labl.srcs/sources
1/bd/BD/synth/BD.v

Diagram x| BD.v x
fhome/hamza/RvfpgaSoC/Labs/labProjects/labl/Labl srcs/sources_1/bd/BD/synth/BD.v

Q E B
Figure 4. The path of the “BD.v” Verilog file of “Block Design” module

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 6

imagination
university programme

Step 1. Copy the “BD.v” file from the path given in (Figure 4) and paste the “BD.v” file to the
following path (see Figure 5):

[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Lab2/src/SweRVolfSoC/

i Home RVfpgaSoC Labs LabResources Lab2 src SweRVolfSoC

a a a a B

BootROM Interconnec Peripherals SweRVEh1C bidir.v
t oreComple
X

Figure 5. “BD.v” Pasted in the “SweRVolfSoC” directory.

Step 2. Open the “BD.v” file and make sure the following module’s name ends with “_0_0"
(see Figure 6).

BD_bootrom_wrapper 0 0

BD_gpio_wrapper_0_0

BD_intcon_wrapper_bd 0 0

BD_swerv_wrapper_verilog 0 _0

BD_syscon_wrapper_0_0

Note: This is done to keep consistency in the naming of the modules for simulation. If they
are not consistent then we will receive an error while generating the simulation binary for
RvfpgaSim in the next step.

BD_bootrom wrapper_@ @ |bootrom_wrapper_ o
(.1 clk(clk &T7;

.i rst(rst o 1),

.1 wb_adr(intcon_wrapper_bd @ wb_rom_adr_o),

.1 wb_cyc(intcon wrapper_bd @ wb rom cyc o),

.1 wb_dat(intcon_wrapper_bd @ wb rom dat o),

3

.1 wb_sel(intcon wrapper_bd @ wb rom sel o)
.1 wb stb(intcon wrapper bd @ wb rom stb o)
.1 wb_we(intcon_wrapper _bd ® wb rom we o),
.0_wb_ack(bootrom wrapper_@ o wb_ack),
.0_wb_rdt(bootrom_wrapper_@ o wb rdt));

Figure 6. “BD.v”

Now we will start with the process of running the AL_Operations Program on our Block
Design’s SoC.

First, we will generate the simulation trace using PlatformlO and then add the clock,
instructions for both ways of the superscalar processor, and register x28 (i.e., register t£3)
signals to the simulation waveform, and view with GTKWave of the instruction and register
signals change as the program executes.

To do so, complete the following steps:

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 7

@ imagination
university programme
Step 3. Generate the Simulation Binary for RvfpgaSim

The directory [RVifpgaSoCPath]/RVipgaSoC/Labs/LabResources/Lab2/verilatorSIM contains
the Makefile and the script (swervolf_0.7.vc) for generating the simulator binary for
RVfpgaSim. The script contains information for Verilator to know, among other things, where
to find the sources for the SoC, which in our case are available at:
[RVfpgaSoCPath]/RVfogaSoC/Labs/LabResources/Lab2/src.

Next, generate the binary for RVfpgaSim, which will later be used to create the simulation
trace of program AL-Operations running on RVfpga.

In a terminal window, generate the simulator binary by executing the following commands:

> cd
[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Lab2/verilat
orSIM
> make clean
> make
File Vrvfpgasim (the RVfpga simulation binary) should be generated inside the directory
[RVifpgaSoCPath]/RVfogaSoC/Labs/LabResources/Lab2/verilatorSIM.

Windows: if you are using Windows, you must do these same steps inside the Cygwin
terminal (refer to RVfpga-SoC’s Getting Started Guide Appendix B for the detailed
instructions). Note that the C: Windows folder can be found inside Cygwin at: /cygdrive/c. All
the other instructions from this section are the same as those described for Linux.

Step 4. Generate the Simulation Trace From PlatformlO

Once the simulator binary (Vrvfpgasim) has been generated, you will use it inside PlatformlO
for generating the simulation trace (frace.vcd) of program AL_Operations.

1. Open VSCode and then PlatformlO on your computer.

2. On the top bar, click on File—Open Folder (Figure 7), and browse into directory
[RVfpgaSoCPath]/RVfpgaSoC/Labs/LabResources/Lab2/examples/

File Edit Selection View Go Debug Terminal Help
New File Ctrl+N
New Window cerl+shift+N

Open File... Ctrl+0
Open Folder... [Ctrl+K Ctrl+O] |
Open Workspace...

Open Recent

Add Folder to Workspace...
Save Workspace As...

Save As... Ctrl+shiftss

Auto Save
Preferences b

Close Editor Cerl+w 4.

Close Window Ctrl+w

Exit cerl+Q

Figure 7. Open the AL_Operations.S example

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 8

imagination
university programme

3. Select directory AL_Operations (do not open it, but just select it) and click OK. The
example will open in PlatformlO.

4. Open file platformio.ini. Establish the path to the RVfpga simulation binary generated in
the first step (Vrvipgasim) by editing the following line (see Figure 8).

board debug.verilator.binary =
[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Lab2/verilatorSIM/Vrvfpgasim

Figure 8. PlatformlO initialization file: platformio.ini

Windows: in Windows, the RVfpga simulation executable is called vrvfpgasim.exe. Thus:

board debug.verilator.binary =
[RVfpgaSoCPath] \RVfpgaSoC\Labs\LabResources\Lab2\verilatorSIM\Vrvfpgasim.exe

5. Run the simulation by clicking on the PlatformlO icon in the left menu ribbon . then
expand Project Tasks — env:swervolf _nexys — Platform and click on Generate Trace,
as shown in Figure 9.

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 9

imagination
university programme

PLATFORMIO $ platformio.ini X
~ PROJECT TASKS [(ORN= T
> @3 Default
v @3 swervolf_nexys
~ General
Build

Upload

Upload and Monitor

(o]
o
© Monitor
o
o

Clean
[env:swervolf nexys]
= chipsalliance
= swervolf_nexys
= wd-riscv-sdk

~ Platform

TERMINAL

Compiling .pio\build\swervolf nexys\BoardBSP\bsp\bsp version.o
Compiling .pio\build\swervolf nexys\BoardBSP\startup.o
ompiling .pio\build\swervolf_ nexys\PSP\psp_corr_err_cnt_ehl.o
Compiling .pio\build\swervolf nexys\PSP\psp_ext interrupts_ehl.o
Compiling .pio\build\swervolf nexys\PSP\psp_int vect ehl.o
Compiling .pio\build\swervolf_nexys\PSP\psp_interrupts ehi.o
Compiling .pio\build\swervolf nexys\PSP\psp_nmi_ehl.o
Compiling .pio\build\swervolf nexys\PSP\psp_performance monitor ehl.o
.pio\build\swervolf_nexys\PSP\psp_pmc_:
-.pio\build\swervolf nexys\PSP\psp timers_ehl.o
.pio\build\swervolf nexys\PSP\psp version.o
.pio\build\swervolf_nexys\libBoard
-pio\build\swervolf nexys\libPSP.a
uild\swervolf nexys\libBoardBsP.a
uild\swervolf_nexys\libPsp.a
Linking .pio\build\swervolf nexys\firmware.elf
Generating disassembly
i own-elf-objdump -d ".pio\build\swervolf_nexys\firmware.elf" > ".pio\build\swervolf_nexys\firmware.dis"
ild\: s\firmware.bin

> Remote Development

55] Took 4.81 seconds

Figure 9. Generating trace from Verilator

You can generate the trace from a PlatformlO terminal window as an alternative. For that

purpose, click on the E button (PlatformlO: New Terminal button) at the bottom of the
PlatformlO window for opening a new terminal window, and then type (or copy) the
following command into the PlatformlO terminal: pio run --target

generate trace

6. A few seconds after the previous step, file trace.ved should have been generated inside
[RVfpgaSoCPath]/RVfogaSoC/Labs/LabResources/Lab2/examples/AL_Operations/.pio/b
uild/swervolf_nexys, and you can open it with GTKWave. Open Ubuntu terminal and

type:

gtkwave
[RVfpgaSoCPath] /RVfpgaSoC/Labs/LabResources/Lab2/examples/AL Opera
tions/.pio/build/swervolf nexys/trace.vcd

WINDOWS: folder gtkwave64 that you downloaded includes an application called

gtkwave.exe inside the bin folder. Launch GTKWave by double-clicking on that application.

On the top part of the application, click on File — Open New Tab, and open the trace.vcd file

generated in the folder

[RVifpgaSoCPath]/RVfpgaSoC/Labs/LabResources/Lab2/examples/AL _Operations
/.pio/build/swervolf _nexys.

Step 5. Analyze the simulation in GTKWave

1. Now we will add a clock, instruction, and register signals. On the top left pane of
GTKWave, expand the SoC hierarchy so that you can add signals to the graph. Expand
the hierarchy into TOP — rvfpgasim — swervolf — swerv_wrapper_verilog_0 —
swerv_eh1_2 — swerv, and click on module ifu (it will highlight as shown in Figure 10),

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 10

imagination
university programme

select signal clk (which is the clock used for the core), and drag it into the white Signals
pane or the black Waves pane on the right.

v SST Signals Waves
e intcon_wrapper_bd_0 (4] | Time :

3} swerv_wrapper_verilog_0

swerv_ehl_2

mem
= swerv
active_cg

B ... dbg
Bl . dec
Bl . dma_ctrl
B exu
I ..ufree_cg

] c.iifu

aln
bp
ifc
mem_ctl

B oLlsu
Bl s pic_ctrl_inst
B3 svscon wrapper 0 =

Type |Signa|5 |j

wire IDWIDTH[31:0]

wire TAGWIDTH[31:0]

wire clk_override

wire dec_ib0_valid_eff_d
wire dec_ib1_valid_eff_d
wire dec_ib2_valid_d

wire dec_ib3_valid_d

wire dec_tlu_bpred_disable

wire dec_tlu_bro_wb_pkt[15:0]

Filter:

Figure 10. Add signal clk to the graph

2. Do a Zoom Fit and then Zoom in several times so that you can view the clock signal
change (Figure 11).

@9 |:|I C)\ Gj\ E)\ | | JL H JL [From:ll] sec T0:|3SDEGD fs @ Marker: —- | Cursor: 2 fs

Figure 10. Zoom in

3. Now add the signals that show the instructions that execute each way of the two-way
superscalar RISC-V core. In the same module (ifu) look for signals ifu_i0O_instr[31:0] and
ifu_i1_instr[31:0] (Figure 12), and drag them into the black Waves pane. The prefix ifu
indicates the instruction fetch unit, i0 indicates superscalar way 0, and i1 indicates
superscalar way 1; instr{31:0] indicates the 32-bit instruction.

4. You can use the search filter to find the signals quickly (see Figure 12).

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 1

imagination
university programme

Type | Signals

wire ifu_i0_instr[31:0]
wire ifu_i1_instr[31:0]

wire ifu_pmu_instr_aligned[1:0]

Fifterl‘instd

Append | Insert | Replace |

Figure 12. Add signals ifu_i0_instr[31:0] and ifu_i1_instr[31:0] to the timing waveform

5. Now add the signal that holds the value of register t 3 (i.e., register number 28, x28).
Expand the hierarchy under swerv into dec — arf — gpr_banks(0) — gpr(28) and click
on module gprff (it will highlight as shown in the following figure), select signal dout[31:0]
(which shows the contents of register x28, used in the AL_Operations.S example) and
drag it into the black Waves pane (Figure 13).

= gpr(29)
Spr30) o)

-

Type |Signals

wire WIDTH[31:0]

wire clk

I wire dout[31:0]

wire en |

Figure 13. Add signal dout[31:0] to the graph

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 12

imagination
university programme

6. Another way of showing signals in GTKWave is to use a .tcl file. File gtkwave_signals.tcl
is provided at [RVfpgaSoCPath]/RVipgaSoC/Labs/LabResources/Lab2/. Open that file
and analyze it. In each line, you will see the path and the name of each signal that we
want to show in the graph.

gtkwave::addSignalsFromList rvfpgasim.eclk

gtkwave::addSignalsFromList
rvfpgasim.swervolf.swerv_wrapper_verilog O.swerv_ehl 2.swerv.ifu.ifu iO_instr

yjtkwave: :addSignalsFromList

rvfpgasim.swervolf.swerv_wrapper verilog O.swerv_ehl 2.swerv.ifu.ifu_il_instr
gtkwave::addSignalsFromList

rvfpgasim.swervolf.swerv wrapper verilog O.swerv_ehl 2.swerv.dec.arf.gpr banks (0) .gpr(28) .gprff.dout

For using the .tcl file on GTKWave, you can simply click on File — Read Tcl Script File
and select the
RVipgaSoCPath]/RVfpgaSoC/Labs/LabResources/Lab2/gtkwave+tsignals.tcl file.

Figure 14 shows the AL_Operations.S program and its equivalent machine instructions.

RISC-V assembly # comment (t3 = x28) # machine code
1i t3, 0x0 # t3 =0 # 0x00000E13

REPEAT :
addi t3, t3, 6 # t3 = t3 + 6 # 0x006EOE13
addi t3, t3, -1 # t3 =1t3 -1 # OXFFFEOE13
andi t3, t3, 3 # t3 = t3 AND 3 # O0xO003E7E13
beq =zero, zero, REPEAT # Repeat the loop # OxFEOOOCE3
nop # nop # 0x00000013

Figure 14. AL_Operations.S with equivalent machine code

Now view the signals change as the program executes. We expect the instructions and t 3
(register x28) to become the values shown in Figure 15 as the program runs:

13i t3, 0x0 # t3 =0 # 0x00000E13
REPEAT : addi t3, t3, 6 # t3 =0+ 6 =6 # 0x006EOQOEL3
addi t3, t3, -1 # t3 =5 # OxXFFFEOE13
andi t3, t3, 3 # t3 =58 3=1 # 0x003E7E13
beq zero, zero, REPEAT # Repeat the loop # OxXFEOOOCE3
nop # nop # 0x00000013
REPEAT: addi t3, t3, 6 # t3 =1+ 06 =17 # 0x006EO0EL13
addi t3, t3, -1 #t3=7-1=26 # OxFFFEOE13
andi t3, t3, 3 # t3 =6 & 3 2 # 0x003E7EL13
beq =zero, zero, REPEAT # Repeat the loop # OxXFEOOOCE3

Figure 15. Instruction flow and values of register t3 (x28) during AL_Operations
execution

7. Zoom in around 10,100 ns, where you will analyse the execution of the three
arithmetic-logic instructions of the first and second iterations of the loop (Figure 16). The
first two instructions (11 t3, 0x0=0x00000E13 and addi t3, t3, 6=
0x006EO0E13) are fetched first, one in each way of the superscalar RISC-V processor as
shown on signals ifu_i0 _instr{31:0] and ifu_i1_instr{31:0]. The next two instructions
(addi t3, t3, -1=0xFFFEOEI13andand.i t3, t3, 3=0x003E7E13)are
fetched in the next cycle. The last two instructions are fetched (beq zero, zero,
REPEAT = 0xFEOOOCE3 and nop = 0x00000013) in the next cycle.

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 13

imagination
university programme

Because of the SweRV core’s 9-stage pipelined processor and dependencies, the
instructions’ effects are seen eight or more cycles after the instructions are fetched. Eight
cycles after the first and second instructions are fetched, x28 (t3) becomes 0 (which it
was already) because of the first instruction: 11 t3, 0x0 (0x00000E13). One cycle
later, x28 is updated to 0x6 because of the next instruction: addi t3, t3, 6
(0x006EO0E13). Next, x28 updates to 5 because of the next instruction: addi t3, t3,
-1 (0xFFFEOE13). Finally, x28 updates to 1 because of the next instruction: andi t3,
t3, 3 (0x003E7E13). The next two instructions are fetched: beq zero, =zero,
REPEAT (0xFEOOOCE3), and nop (0x0000001 3); the branch is taken, and the loop
repeats.

Signals Waves
Time

clk
ifu_ie_instr[31:e]
ifu il instr[31:0]

Figure 16. Execution of the three Arithmetic-Logic instructions from the example

5. Running A Program on Nexys A7 Board

This section will program the FPGA with the RVfpgaNexys, which uses Platforml|O. Follow
the next steps for programming the FPGA with the RVfpgaNexys:

Follow the following steps :
Step 1. Connect the Nexys A7 board to your computer.

Figure 17. Nexys A7 Board ON/OFF Button
Step 3. Open VSCode and PlatformlO if it is not already open.

Step 4. On the top menu bar, click on File — Open Folder (see Figure 18) and browse into
directory [RVfpgaSoCPath]/RVfpgaSoC/Labs/LabResources/Lab2/examples/

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 14

New File
New Window

Open File...
Open Folder... [Ctrl+K Ctrl+O]

Open Workspace...
Open Recent

Add Folder to Workspace...
Save Workspace As...

Save As...

Auto Save
Preferences

Close Editor

Close window

Exit

Figure 18. Open Folder

File Edit Selection View Go Debug Terminal Help

Cerl+N
Cerl+Shift+N

Ctrl+0

Cerl+Shift+s

Cerl+w

Cerl+w

cerl+Q

imagination
university programme

Step 5. Select the directory Blinky (do not open it, but just select it and click OK at the top of
the window. PlatformlO will now open the example.

Step 6. Open file platformio.ini by clicking on platformio.ini in the left sidebar (see Figure 19).
Establish the path to the RVfpga bitstream in your system by editing the following line (see

Figure 19).

Step 7. The “rvfpga.bit” file created using Vivado Block Design is at the following path :

board build.bitstream file =
[RVEfpgaSoCPath] /RVfpgaSoC/Labs/LabProjects/Labl/Labl.runs/impl 1/

rvfpga.bit

EXPLORER & platformio.ini @

> OPEN EDITORS 1UNSAVED

= README.rst

Figure 19. Platformio initialization file: platformio.ini

= 115200

There are many different commands that you can use in the Project Configuration File

(platformio.ini), and for which you can find information at

https://docs.platformio.org/en/latest/projectconf/.

Step 8. Click on the PlatformlO icon . in the left menu ribbon (see Figure 20).

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC

Version 1.1 — 7th July 2023
© Copyright Imagination Technologies

https://docs.platformio.org/en/latest/projectconf/

imagination
university programme

P

Figure 20. PlatformlO icon

In case the Project Tasks window is empty (Figure 21), you must refresh the Project

Tasks first by clicking on E This can take several minutes.

File Edit Selection View Go Run Terminal Help
PLATFORMIO & PIO Home X
v PROJECT TASKS —
¥ F [@ O
Welcome to
Quick Access
+ New Project
3 Import Arduino Project

[Open Project

@ Project Examples

:)) PlatformlO labs

Nov: latformlO

Recent Projects

Project Examples] L, Open Existing Projec

enjo g PlatformlO, please star our projects on GitHub!

Figure 21. PROJECT TASKS window empty — Refresh

Expand Project Tasks — env:swervolf_nexys — Platform and click on Upload Bitstream,
as shown in Figure 22. After one or two seconds, the FPGA will be programmed
with our Block Design SoC (the 7-Segment Displays available on the board should
output 8 zeros).

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 16

imagination
university programme

~ PROJECT TASKS
» @1 Default

Generate Trace

Start Verilator

Generate Bitstream
anced

ote Development

Figure 22. Upload Bitstream
Now that the bitstream has been uploaded, we will start the debugging process.

File Edit Selection View Go Run Terminal Help

@ XPLORER > platform) BlinkyS X @ PIOH

> OPEN EDITORS
* BLINKY

include
main
main:
OxXFFFF

0 INOUT
0(a0)

v t1, DELAY
= README.rst

timel:

Figure 23. blinky.S in PlatformlO

A
to run and debug the program; then start debugging by clicking on
> PIO Debug

Step 9. Click on

the play button . PlatformlO sets a temporary breakpoint at the

beginning of the main function. So, click on the Continue button |ﬂ to run the program.

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 17

imagination
university programme

Step 10. On the board, you will see the right-most LED start to blink.

{{
1{:. : Ro . E.w
J aono)
'AUDIO OUT
.

NEXYS A7
SR o

on CAU BESET

1 e e e A e

Figure 24. rightmost LED Blinking

Step 11. Pause the execution by clicking on the pause button
[D

. The execution will stop somewhere inside the infinite loop
(probabily, inside the time1 delay loop).

Step 12. Create a breakpoint by clicking to the left of line number 18. A red dot will appear,
and the breakpoint will be added to the BREAKPOINTS tab (see Figure 25).

File Edit Selection View Go Run Terminal Help

@ R & platf . Blinky.s

> OPEN EDITORS
~ BLINKY

main
main:

FFFF

a®, GPIO LEDs
10)

Figure 25. Setting a breakpoint in blinky.S

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 18

imagination
university programme

Step 13. Then, continue execution by clicking on the Continue button
< ¥ T O 0O

. Execution will continue, and it will stop after the store word
(sw) instruction, which writes 1 (or 0) to the right-most LED.

Step 14. Continue execution several times; you will see that the value-driven to the
right-most LED changes each time.

> <& ¥ T O

Step 15. Stop debugging and go back to the Explorer

window by clicking on . Close the program by selecting File — Close Folder.

So we have successfully run the example programs on the RVfpgaSIM and RVfpgaNexys
using the Block Design module that we had created in lab 1.

Imagination University Programme — RVfpga Lab 2: Running Software on RVfpga-SoC
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 19

