Q7

Imagination

THE IMAGINATION UNIVERSITY PROGRAMME

RVfpga-SoC Lab 4

Running Zephyr on SweRVolf

Version 1.1 — 7th July 2023
© Copyright Imagination Technologies

imagination
university programme
Table 1. RVfpga Terms

Name Description

Courses

RVfpga A course that shows how to use RVfpgaNexys and RVfpgaSim, RISC-V
system-on-chips (SoCs), to run programs and extend the system by adding
peripherals (RVfpga Labs 1-10), and explore the core and memory system by
running simulations, measuring performance, adding instructions, and
modifying the memory system (RVfpga Labs 11-20). Throughout the course,
users are also shown how to use the RISC-V toolchain (compilers and
debuggers) and simulators, the Verilator HDL simulator, and Western Digital’s
Whisper instruction set simulator (ISS).

RVfpga-SoC A course that shows how to build a subset SweRVolfX SoC from scratch using
building blocks such as the SweRV core, memories, and peripherals. The
course also shows how to load the Zephyr real-time operating system (RTOS)
onto SweRVolf and run programs including Tensorflow Lite’s hello world
example on top of the operating system.

Cores and SoCs

SweRV EH1 Open-source commercial RISC-V core developed by Western Digital
Core (https://github.com/chipsalliance/Cores-SweRV).

SweRV EH1 SweRV EH1 core with added memory (ICCM, DCCM, and instruction cache),
Core Complex | programmable interrupt controller (PIC), bus interfaces, and debug unit

(https://github.com/chipsalliance/Cores-SweRV).

SweRVolfX The System on Chip that we use in the RVfpga course. It is an extension of
SweRVolf.

SweRVolf (https://github.com/chipsalliance/Cores-SweRVolf): An open-source
SoC built around the SweRV EH1 Core Complex. It adds a boot ROM, UART
interface, system controller, interconnect (AXI Interconnect, Wishbone
Interconnect, and AXI-to-Wishbone bridge), and an SPI controller.
SweRVolfX: It adds four new peripherals to SweRVolf: a GPIO, a PTC, an
additional SPI, and a controller for the 8 Digit 7-Segment Displays.

RVfpgaNexys | The SweRVolfX SoC targeted to the Nexys A7 board and its peripherals. It
adds a DDR2 interface, CDC (clock domain crossing) unit, BSCAN logic (for
the JTAG interface), and clock generator.

RVfpgaNexys is the same as SweRVolf Nexys

(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

RVfpgaSim The SweRVolfX SoC with a testbench wrapper and AXI memory intended for
simulation.

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 2

https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf

@ imagination
university programme
RVfpgaSim is the same as SweRVolf Sim,

(https://github.com/chipsalliance/Cores-SweRVolf), except that the latter is
based on SweRVolf.

1. Introduction

In this Lab, we show how to run the Zephyr real-time operating system (RTOS) on
SweRVolf. A real-time operating system (RTOS) is an operating system intended to serve
real-time applications that process data as it comes in, mostly without buffer delay.

In Labs 2 and 3, we have been running simple programs written in the RISC-V assembly or
C language. In practical applications, an SoC will almost always be running an operating
system, and applications will be running on top of the operating system.

Two overall categories of operating systems for embedded systems exist: embedded
Linux-based operating systems and real-time operating systems (RTOS). When an SoC is
designed with a particular CPU, the design is usually tuned to use one or the other type of
operating system. SweRVolf was built with the intention of running a real-time operating
system. The SweRV EH1 CPU does not have a memory management unit and would, thus,
struggle to run embedded Linux.

Figure 1 shows an illustration of the different hardware/software layers in the overall system.

Programs in C / Assembly Language

o ZePhyr" Programs in C / Assembly Language
Project
SweRVolf SweRVolf

Layer 1 Layer 1

Nexys A7 Board Nexys A7 Board

SweRVolf + Zephyr \ SweRVolf

Figure 1. Layers on the top of FPGA Boards

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 3

https://github.com/chipsalliance/Cores-SweRVolf

imagination
university programme

In this Lab, we will describe the Zephyr RTOS, build and run the Zephyr RTOS on SweRVolf,
and build & run Zephyr applications.

2. Requirements

To complete this lab, you will need to install the following:

e Vivado 2019.2 Web Pack (Refer to Installation Guide (Page No.04))
e Verilator (v4.106) (Refer to Installation Guide (Page No.09))
e FuseSoC (Refer to Installation Guide (Page No.10))
e OpenOCD (RISC-V-specific version) (Refer to Installation Guide (Page No.10))
e ZephyrPrerequisites (Refer to Installation Guide (Page No.11))
e Zephyr SDK (v0.12.4) (Refer to Installation Guide (Page No.12))
e PuTTY (Refer to Installation Guide (Page No.12))

IMPORTANT: Before starting RVfpga-SoC Labs, we highly recommend completing the
RVfpga-SoC Installation Guide.

For example, if you have not already, install Xilinx’s Vivado and Verilator following the
instructions in the RVfpga-SoC Installation Guide. Make sure that you have copied the
RVfpga-SoC folder that you downloaded from Imagination’s University Programme to your
machine.

3. Zephyr Overview

The Zephyr Project is a scalable real-time operating system supporting multiple hardware
architectures, optimized for resource-constrained devices, and built with security in mind.
The Zephyr OS is based on a small-footprint kernel designed for use on
resource-constrained systems: from simple embedded environmental sensors and LED
wearables to sophisticated smart watches and IoT wireless gateways.

Zephyr offers a number of familiar services for development: Multi-threading, Interrupts,
Memory Allocation, Inter-thread Synchronization, Inter-thread Data Passing, and Power
Management.

Zephyr supports a wide variety of boards with different CPU architectures and developer
tools. Contributors have added support for an increasing number of SoCs, platforms, and
drivers.

The Zephyr kernel supports multiple architectures, including

e RISC-V (32- and 64-bit)

For more detailed information on the Zephyr Project, read the Zephyr project documentation
at http://docs.zephyrproject.org.

In this lab, we first show how to add Zephyr’s version 2.4 to our Workspace. Then we will
build the code for a few sample examples that come with Zephyr. This lab will show
examples of using Zephyr both in hardware and simulation.

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 4

http://docs.zephyrproject.org/

imagination
university programme

In Labs 2 and 3, our process of running programs on the FPGA board followed these steps:

4. Understanding the Hardware/Software Layers

Step 1. Download SweRVolf onto the FPGA board

First, we download the SweRVolf, the RISC-V system targeted to an FPGA, to the

Nexys A7 FPGA board. We download the SweRVolf onto the board by either uploading the
bitstream to the board using PlatformlO or by using the FuseSoC run command, which
uploads the generated bitstream to the board if it's connected.

Step 2. Build and run programs on SweRVolf
The second step is to build RISC-V programs and then download them onto SweRVolf.

In this Lab, we will amend these steps to add another layer, the Zephyr RTOS (real-time
operating system) onto SweRVolf, and run programs on Zephyr. The steps for doing this are
as follows:

Step 1. Download SweRVolf onto the FPGA board
Same as above.

Step 2. Build Zephyr
In this step, build an application for Zephyr. The process of building an application also
builds the underlying Zephyr RTOS. The output is an elf file.

Step 3. Load programs on SweRVolf.
In this step, we load the elf file generated during Step 2 onto SweRVolf.

The side-by-side lllustration of both modes of running a program is shown in Figure 1 above.

Now we will show how to build Zephyr applications and then run those applications on
Zephyr.

5. Adding Zephyr Support In SweRVolf

In this section of the lab, we show how to add Zephyr to your WORKSPACE.
Open your Ubuntu terminal and complete the following steps:
Step 1. Navigate to the directory “SweRVolf” in which we created our workspace in the
previous lab, to use as the root of the project. We called it SWORKSPACE. Now we have to
set the same shell variables again. To do that, we run the following:

> export WORKSPACE=S (pwd)

> export SWERVOLF ROOT=SWORKSPACE/fusesoc libraries/swervolf

You can also enter the “printenv <variable-name>" command in the terminal window
to verify if the shell variables have been successfully set or not.

~/RVfpgaSoC/Labs/LabProjects/SweRVolfS export WORKSPACE=S(pwd)

oC/Labs/LabProject lolT$ export SWERVOLF_ROOT=$SWORKSPACE/fusesoc_libraries/swervolf
~/RVfpgasoC/Labs/LabProjects/swerVolfs [i

Figure 2 et te he vrables

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 5

imagination
university programme

Step 2. Add Zephyr & SweRVolf-specific drivers

Create a West (Zephyr's build tool) workspace in the same directory as the FuseSoC
workspace by running

> west 1nit

--- Cloning manifest repository from https://github.com/zephyrproject-rtos/zephyr, rev. master

Initialized empty Git repository in fhome/hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/.west/manifest-tmp/.git/
remote: Enumerating objects: 4, done.

remote: Counting objects: 100% (4/4), done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 551804 (delta 2), reused 1 (delta 1), pack-reused 551800

Receiving objects: 100% (551804/551804), 375.87 MiB | 435.00 KiB/s, done.

Resolving deltas: 100% (418833/418833), done.

From https://github.com/zephyrproject-rtos/zephyr
branch master FETCH_HEAD
[new branch] backport-23821-to-vi.14-branch origin/backport-23821-to-v1.14-branch
[new branch] backport-24971-to-v1.14-branch origin/backport-24971-to-v1.14-branch
[new branch] backport-25852-to-v1.14-branch origin/backport-25852-to-v1.14-branch
[new branch] backport-26571-to-v1.14-branch origin/backport-26571-to-v1.14-branch
[new branch] backport-29181-to-v2.4-branch origin/backport-29181-to-v2.4-branch
[new branch] backport-31759-to-v2.5-branch origin/backport-31759-to-v2.5-branch
[new branch] backport-31908-to-v2.4-branch origin/backport-319088-to-v2.4-branch

[new tag] zephyr-v2.2.

[new tag] zephyr-v2.2.

[new tag] zephyr-v2.3.

[new tag] zephyr-v2.4.
* [new tag] zephyr-v2.5.0
beb20112e80187705a08240919613ca99237baaeb refs}remotes}orlgtn}mastcr
Branch 'master' set up to track remote branch 'master' from 'origin'

Already on 'master’

- Scttlng manlfcst path to zephyr

=== Initi [e"

hamzamtmagtnatlon

zephyr-v2.2.
zephyr-v2.2.
zephyr-v2.3.
zephyr-v2.4.
zephyr-v2.5.

*
*
*
*

1
\." Vv vV

Figure 3. west initialized

Step 3. Add the SweRVolf-specific drivers and board support package (BSP) using the
following command:

> west config manifest.path fusesoc libraries/swervolf

Figure 4. west config

> west update

This may take several minutes to complete the downloading process, depending on your
Internet download speed.

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 6

imagination
university programme

bProject) 1f$ west update

initializing
Initialized empty Git repository in /fhome/hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/modules/hal/cmsis/.git/
--- cmsis: fetching, need revision 542b2296e6d515b265e25c6b7208e8fea3n14f90
remote: Enumerating objects: 563, done.
remote: Counting objects: 100% (563/563), done.
remote: Compressing objects: 100% (291/291), done.
remote: Total 563 (delta 288), reused 528 (delta 267), pack-reused @
Receiving objects: 1080% (563/563), 2.21 MiB | 618.00 KiB/s, done.
Resolving deltas: 108% (288/288), done.
From https://github.com/zephyrproject-rtos/cmsis
* [new branch] master -> refs/west/master

HEAD is now at 542b229 D
=== updating hal_atmel (

= initializing
Initialized empty Git repository in fhome/hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/modules/tee/tfm/.git/
--- trusted-firmware-m: fetching, need revision 143df675557305b61f7930a5045%9a53a8d2bbe97
remote: Enumerating objects: 1970, done.
remote: Counting objects: 100% (1970/1978), done.
remote: Compressing objects: 100% (1249/1249), done.
remote: Total 16030 (delta 633), reused 1498 (delta 536), pack-reused 14060
Receiving objects: 100% (16038/16030), 36.80 MiB | 872.00 KiB/s, done.
Resolving deltas: 100% (7538/7538), done.
From https://github.com/zephyrproject-rtos/trusted-firmware-m
* [new branch] master -> refs/west/master
HEAD is now at 143df67 CMakelLists.txt: make BL2 configurable
HEAD is now at 143df67 CMa ists.txt: make BL2 configurable
hamza@imagination:~ [| JLabProjects) Volf$

Figure 5. west update

The Workspace will now look like this:

SWORKSPACE
—fusesoc libraries

| I: ..
| swervolf
|:z ephyr

6. Building and Running Zephyr Applications on Verilator

In this section, we step through how to build programs that can run on Zephyr. Then we
show how to simulate such programs on the Verilator simulator. We show two example
programs in this section.

1. Zephyr Hello World Example
This example prints “Hello World” + “Configured Board Name” on the terminal.
See Figure 6 for the source code.

1

2 #include <zephyr.h>

3 #include <sys/printk.h>

4

5 wvoid main (void)

6

7 printk ("Hello World! %s\n", CONFIG BOARD) ;
8 }

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 7

imagination
university programme

Figure 6. main.c of hello_world example

Step 1. Go to the directory for this example, which is located at the following path:

SWORKSPACE/zephyr/samples/hello world

To do so, use the following command:

> cd zephyr/samples/hello world

~f(RVfpgaSoC/LabsfLabProjects/SweRVolfS cd zephyr/samples/fhello world/

~/RVfpgaSoC/Labs/LabProjects/SweRVolf /zephyr/samples/hello_world$
Figure 7. Navigate to the hello_world directory

Step 2. Build the code for the “hello_world” Example using the following command:
> west build -b swervolf nexys

hamza@imagination: ojec Volf/zephyr/sampl 1ello_world$ west build -b swervolf_nexys
-- west build: gen ng m
Including boilerplate (Zephyr base): /home/hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/cmake/app/boilerplate.cm
ELG]
-- Application: /fhome/hamza/RVfpgaSeC/Labs/LabProjects/SweRVolf/zephyr/samples/hello_world
Zephyr version: 2.4.0 (/home/hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr)
Found Python3: fusr/bin/python3.6 (found suitable exact version "3.6.9") found components: Interpreter
Found west (found suitable version "0.9.0", minimum required is "9.7.1")
Board: swervolf nexys
-- Cache files will be written to: [home/hamza/.cache/zephyr
ZEPHYR_TOOLCHAIN_VARIANT not set, trying to locate Zephyr SDK
-- Found toolchain: zephyr (/home/hamza/zephyr-sdk-0.12.2)
-- Found dtc: /home/hamza/zephyr-sdk-8.12.2/sysroots/x86 64-pokysdk-1linux/usr/bin/dtc (found suitable version "1.5.8
", minimum required is "1.4.6")

- Cconfiguring done
- Generating done
- Build files have bee itte : fhome/hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/samples/hello_world/build

[1/189] Prep ng syscall dependency handling

[42/109] Building C object zephyr/CMakeFiles/zephyr.dir/drivers/interrupt_controller/intc_swerv_pic.c.obj
/home /hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/drivers/interrupt_controller/intc_swerv_pic.c: In function 'swerv_pic_read':
/home /hamza /RVfpgasoC/Labs/LabProjects/SweRVolf/zephyr/drivers/interrupt_controller/intc_swerv_pic.c:47:10: warning: cast to pointer
from integer of different size [-Wint-to-pointer-cast]
47 | return *(volatile uint32_t *)(DT_INST_REG_ADDR(®) + reg);
| A
/home /hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/drivers/interrupt_controller/intc_swerv_pic.c: In function 'swerv_pic_write':
/home /hamza /RVfpgasoC/Labs/LabProjects/SweRVolf/zephyr/drivers/interrupt_controller/intc_swerv_pic.c:52:3: warning: cast to pointer
from integer of different size [-Wint-to-pointer-cast]
52 | *(volatile uint32_t *)(DT_INST_REG_ADDR(O) + reg) = val;
| n
[104/189] Linking C executable zephyr/zephyr_prebuilt.elf
Memory region Used Size Region Size %age Used
AM: 17952 B 8 MB
DT H 2 KB
[189/189] L exe e zephyr/zephyr.e
hamza@imagination: bs/LabProje eRVo phy p 1ello_world$ I

Figure 8. hello_world build

This will create the zephyr.elf and zephyr.bin files for the hello_world example. We will use
the “.bin” file in a simulator, but it must first be converted into a suitable Verilog hex file.

Step 3. Convert the “.bin” file to “.hex” file:

To create the “.hex” file, run the following command from the hello_world directory:

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 8

imagination
university programme

> python3 $SWERVOLF ROOT/sw/makehex.py build/zephyr/zephyr.bin
>

/home/<username>/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/sa
mples/hello world/App.hex

(Replace <username> with your username)

hamza@imagination:~/RVfpgasoC/Labs/LabProjec weRVolf/zephyr /samples/hello_world$ python3 $SWERVOLF_ROOT/sw/makehex.py

build/zephyr/zephyr.bin /h:)me/hamza/Rprg oC/Labs/LabPro eRV:Jlf/zephyr/samplcs/hell:} _world/App.hex
hamza@imagination:~/RVfpgaSoC/Labs/LabProjec RVolf/zephyr/samples/hello_world$

Figure 9. hello_world hex file created

Step 4. Navigate to the WORKSPACE directory:

> cd SWORKSPACE

LabProjects/ Wolf/zephyr/samples/hello_world$ cd SWORKSPACE

.P”TPQi:Jk.L;hH.LﬁhPFH]H cts/sweRVolfs |
Figure 10. Navigate to the main Workspace directory

Step 5. Load the “.hex” file in the simulator:

> fusesoc run --target=sim swervolf
--ram init file=zephyr/samples/hello world/App.hex

@ 3 : Wolf$ fusesoc run --target=sim swervolf
--ram_init_file= Zcphyrfsamplesfhello world;App hex
WARNING: Unknown item compilation_mode in section Xsim
: Preparing ::cdc_utils:0.1-r1
: Preparing chipsalliance.org:cores:SweRV_EH1:1.8
: Preparing fusesoc:utils:generators:0.1.5
: Preparing ::jtag_vpi:0-r5
: Preparing pulp-platform.org::common_cells:1.20.0
: Preparing ::simple_spi:1.6.1
: Preparing ::uart16550:1.5.5-r1
: Preparing ::verilog-arbiter:0-r3
: Preparing ::wb_common:1.0.3
: Preparing pulp-platform.org::axi:0.25.0
: Preparing ::wb_intercon:1.2.2-r1
: Preparing ::swervolf:0.7.3
: Generating ::swervolf-intercon:8.7.3
master ifu
master lsu
master sb
slave io
slave ram

: Generating ::swervolf-swerv_default_config:0.7.3
: Generating ::swervolf-version:0.7.3
: Generating ::swervolf-wb_intercon:0.7.3

master io

slave rom

slave spi_flash

: Setting up project

Figure 11. fusesoc run

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 9

imagination
university programme

The terminal will show the following output (see Figure 12).

make[1]: Leaving directory '/home/hamza/SweRVolf/build/swervolf_8.7.3/sim-verilator'
INFO: Running

INFO: Running simulation

Loading RAM contents from fhome/hamza/SweRVolf/zephyr/samples/hello_world/App.hex

Releasing reset
*** Booting Zephyr 0S5 build zephyr-v2.4.8 **%*
Hello World! swervolf nexys

Figure 12. hello_world example output

Press “ctrl + ¢” to stop the program.

2. Zephyr Philosophers Example

An implementation of a solution to the Dining Philosophers Problem (a classic multi-thread
synchronization problem). This particular implementation demonstrates the usage of multiple
preemptible and cooperative threads of differing priorities, as well as dynamic mutexes and
causing a thread to sleep.

The philosopher always tries to get the lowest fork first (f1 then f2). When done, he will give
back the forks in the reverse order (f2 then f1). If he gets two forks, he is EATING.
Otherwise, he is THINKING. Transitional states are shown as well, such as STARVING when
the philosopher is hungry, but the forks are not available, and HOLDING ONE FORK when a
philosopher is waiting for the second fork to be available.

Each Philosopher will randomly alternate between the EATING and THINKING state.

Go to the following path to see the source code of this example:

SWORKSPACE/zephyr/samples/philosophers/src/main.c

For this example, we will repeat the same process again but in the philosophers directory

Step 1. This example program is in the following directory:

SWORKSPACE/zephyr/samples/philosophers

Change to that directory using the following command:

> cd zephyr/samples/philosophers

hamza@hamza-lenovo:~ Wolf$ cd zephyr/samples/philosophers/

hamza@hamza-lenovo:~/SweRVolf/zephyr/samples/philosopherss

Figure 13. Navigate to philosophers directory

Step 2. Build the code for the philosophers example using the following command:

> west build -b swervolf nexys

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 10

imagination
university programme

hamza mai.nation‘ g a Volf/zephy ples/philosophers$S west build -b swervolf _nexys

rplate (7ephyr base /home /hamza/RVfpgasoC/Labs/LabProjects/SweRVolf/zephyr/cmake/app/boilerplate.cmake
- Application: /home/hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/samples/philosophers
- Zephyr version: 2.4.0 (/home/hamza/RVfpgasoC/Labs/LabProjects/SweRVolf/zephyr)
- Found Python3: Jfusr/bin/python3.6 (found suitable exact version "3.6.9") found components: Interpreter
- Found west (found suitable version "0.9.0", minimum required is "0.7.1")
- Board: swervolf_nexys
Cache files will be written to: [home/hamza/.cache/zephyr
ZEPHYR_TOOLCHAIN_VARIANT not set, trying to locate Zephyr S
- Found toolchain: zephyr (/hemc[hamza/zephyr sdk-8.12.2)

-- Configuring done
-- Generating done
-- Build files have been written to: fhome/hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/ze

[1}110] Preparlng syscall pendency handling

[44/110] Building C object zephyr/CMakeFi...interrupt_controller/intc_swerv_pic.c.obj
/home /hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/drivers/interrupt controller/int
c_swerv_pic.c: In function 'swerv pic read':
/home /hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/drivers/interrupt controller/int
C_swerv_pic.c:47:10: warning: cast to pointer from integer of different size [-Wint-to-
pointer-cast]
47 | return *(volatile uint32 t *)(DT_INST REG ADDR(®) + reg);
| A
/home /hamza/RVfpgasoC/Labs/LabProjects/SweRVolf/zephyr/drivers/interrupt controller/int
c_swerv_pic.c: In function 'swerv_pic_write'’
/home /hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/drivers/interrupt controller/int
c_swerv_pic.c:52:3: warning: cast to pointer from integer of different size [-Wint-to-p
olnter-cast]
*(volatile uint32 t *)(DT_INST REG ADDR(®) + reg) = val;
| A
[185/110] Linking C executable Zephyerephyr prebutlt elf
Memory regilon Used Size chlon Size %
hamza@imagination:~/RVfpgasoC/Labs/LabPro: J WWolf/zephyr/samples/philosopherss$ I

Figure 14. philosophers build

This will create the zephyr.elf and zephyr.bin files for the philosophers example. Again we
will convert the “.bin” file into a suitable Verilog hex file.

Step 3. Convert the “.bin” file to “.hex” file
To create the “.hex” file, run the following command from the philosophers directory :

> python3 S$SWERVOLF ROOT/sw/makehex.py build/zephyr/zephyr.bin
>

/home/<Username>/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/sa
mples/philosophers/App.hex

hamza@imagination:~/R : abs/LabProjec /zephy nples/philc hers$ python3 SSWERVOLF_ROOT/sw/makehex.py

build/zephyr/zephyr S yr/sam les/philosophers/App.hex
hamza@imagination:~/RV : a j i

Flgure 15. Create phllosophers hex flle

Step 4. Navigate to the WORKSPACE directory:

> cd SWORKSPACE

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 1

imagination
university programme

Volf/zephyr/samples/philosophersS cd SWORKSPACE

Figure 16. main directory

Step 5. Load the .hex file in the simulator:

> fusesoc run --target=sim swervolf
--ram init file=zephyr/samples/philosophers/App.hex

hamza@imagination ja abProje 5 Volf$ fusesoc run --target=sim swervolf
--ram_init_file= zephyr}samples}phtlosophers}ﬂpp
WARNING: Unknown item compilation_mode in section Xsim
: Preparing ::cdc_utils:0.1-r1
: Preparing chipsalliance.org:cores:SweRV_EH1:1.8
: Preparing fusesoc:utils:generators:0.1.5
: Preparing ::jtag_wpi:0-r5
: Preparing pulp-platform.org::common_cells:1.20.0
: Preparing ::simple_spi:1.6.1
: Preparing ::uart16550:1.5.5-r1
: Preparing verilog-arbiter:0-r3
: Preparing ::wb_common:1.0.3
: Preparing pulp-platform.org::axi:0.25.0
: Preparing ::wb_intercon:1.2.2-r1
: Preparing ::swervolf:0.7.3
: Generating ::swervolf-intercon:0.7.3
master ifu
master lsu
master sb
slave io
ram

: Generating ::swervolf -SWerv_i default _config:0.7.3
: Generating ::swervolf-version:0.7.3
: Generating ::swervolf-wb_intercon:0.7.3

master io

slave rom

slave spi_flash

slave sys

uvart

: Setting up pro]ect

Figure 17. fusesoc run

Now you will see the following output:

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 12

imagination
university programme

make[1]: Leaving directory '/home/hamza/SweRVolf/build/swervolf 0.7.3/sim-verilator'
INFO: Running
INFO: Running simulation
Loading RAM contents from fhome/hamza/SweRVolf/zephyr/samples/philosophers/App.hex
Releasing reset

Zephyr 0S build zephyr-vz.4.0 *%*%*

e [P: 3] HOLDING ONE FORK
1 [P: 2] EATING [125 ms
2 [P: 1] THINKING [175 ms
3 [P: 8] EATING [325 ms
4 [C:-1] THINKING [460 ms
5 [C:-2] STARVING

Demo Description

An implementation of a solution to the Dining Philosophers
problem (a classic multi-thread synchronization problem).

This particular implementation demonstrates the usage of multiple
preemptible and cooperative threads of differing priorities, as
well as dynamic mutexes and thread sleeping.

Figure 18. Zephyr philosophers Output

7. Building Zephyr Application for Hardware

Now we show how to build programs for the SwerVolf running Zephyr in hardware.
1. Zephyr Blinky Example
Blinky is a simple application that blinks an LED forever using the:"GPIO

API <gpio_api>". The source code shows how to configure GPIO pins as outputs,
then turn them on and off.

1

2 /%

3 * Copyright (c) 2016 Intel Corporation

4 *

5 * SPDX-License-Identifier: Apache-2.0

6 ey

-

8 #include <zephyr.h>

9 #include <device.h>

10 #include <devicetree.h>

11 #include <drivers/gpio.h>

12

13 /* 1000 msec = 1 sec */

14 #define SLEEP TIME MS 1000

15

16 /* The devicetree node identifier for the "led0" alias. */
17 #define LEDO NODE DT ALIAS (led0)

18

19 #if DT NODE HAS STATUS (LEDO NODE, okay)

20 #define LEDO DT _GPIO LABEL (LEDO NODE, gpios)
21 #define PIN DT GPIO PIN(LEDO NODE, gpios)

22 #define FLAGS DT_GPIO_FLAGS(LEDO_NODE, gpios)
23 #else

24 /* A build error here means your board isn't set up to blink an LED. */

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 13

imagination
university programme

25 #error "Unsupported board: led0 devicetree alias is not defined"
26 #define LEDO ne

27 #define PIN 0

28 #define FLAGS 0

29 #endif

30

31 void main (void)

32 {

33 const struct device *dev;

34 bool led is on = true;

35 int ret;

36

37 dev = device get binding(LEDO) ;

38 if (dev == NULL) ({

39 return;

40 }

41

42 ret = gpio pin configure(dev, PIN, GPIO OUTPUT ACTIVE | FLAGS);
43 if (ret < 0) {

44 return;

45 }

46

47 while (1) {

48 gpio pin set(dev, PIN, (int)led is on);
49 led is on = !led is on;

50 k msleep (SLEEP TIME MS) ;

51 }

52 }

Figure 19. main.c of blinky example
The path for this example is here:
SWORKSPACE/zephyr/samples/basic/blinky/
> cd zephyr/samples/basic/blinky/

Navigate to the above path, and then run the following command in the terminal to build the
example and generate “.elf’ and “.bin” files:

> west build -b swervolf nexys

After building the code, there will now be an executable .elf file in
build/zephyr/zephyr.elf and a.binfilein build/zephyr/zephyr.bin.

The executable file can be loaded into SweRVolf with a debugger, and the binary file can be
converted to a .hex file and loaded into RAM for simulations, as described in the next
section.

8. Running Zephyr Application on Hardware

To run the applications on the Nexys A7 board, we need to load the programs using
OpenOCD:

Step 1. Connect the Nexys A7 board to your computer and turn it on, then run the FPGA
build command in the Workspace directory.

> cd SWORKSPACE

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 14

imagination
university programme

> fusesoc run --target=nexys a7 --run swervolf

Xilinx cs_server v2019.2.0
Build date : Nov 07 2019-10:41:48
Copyright 2017-2819 Xilinx, Inc. All Rights Reserved.

Trying to use hardware target localhost:3121/xilinx_tcf/Digilent/210292BOEF83A
[Labtoolstcl 44-466] Opening hw_target localhost:3121/xilinx_tcf/Digilent/210292BOEF83A

Opened hardware target localhost:3121/xilinx_tcf/Digilent/210292BOEF83A on try 1.

Found xc7a1@0tcsg324-1 as part of xc7aleet_o.

Programming bitstream to device xc7a100t_© on target localhost:3121/xilinx_tcf/Digilent/210292BOEF83A.
[Labtools 27-3164] End of startup status: HIGH

[Labtoolstcl 44-464] Closing hw_target localhost:3121/xilinx_tcf/Digilent/210292BOEF83A

|ure 20. Rn FPGA Build

Step 2. Program the board with OpenOCD.

> openocd -c "set BITFILE
build/swervolf 0.7.3/nexys a7-vivado/swervolf 0.7.3.bit" -f
$SWERVOLF_ROOT/data/swervolf nexys program.cfg

hamza@imagination: a a oj 1f$ openocd -c "set BITFILE build/swervolf_6.7.3/nexys_a7-vivado/swervolf_06.7.3.bit"
-f SSWERVOLF RODT/data/sw:rvc VS_| q
Open On-Chip Debugger 0.11.0- rcl+dev-01535- g93651cbdfd (2021-01-30-12:10)
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
build/swervolf_0.7.3/nexys_a7-vivado/swervolf_0.7.3.bit
DEPRECATED! use 'adapter driver' not 'interface'
DEPRECATED! use 'adapter speed' not 'adapter_khz'
: ftdi: if you experience problems at higher adapter clocks, try the command "ftdi_tdo_sample_edge falling"
clock speed 10080 kHz
JTAG tap: xc7.tap tap/device found: 0x13631093 (mfg: 8x049 (Xilinx), part: 0x3631, ver: 0x1)
: gdb services need one or more targets defined
shutdnwn command 1nvokcd

175 I

Figure 21. Run OpenOCD

Step 3. Connect OpenOCD with SweRVolf.
> openocd -f SSWERVOLF ROOT/data/swervolf nexys debug.cfg

LELFEARELANEY ST H Fpgasc 3 ojec 1fS openocd -f SSWERVOLF_ROOT/data/swervolf_nexys_debug.cfg
Open On-Chip chuggcr 0.11.0- rc1+dcv—01535 g3051cbdfd (2021-01-30-12:10)
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
'adapter driver' not 'interface'
'adapter speed' not 'adapter_khz'
i: if you experience problems at higher adapter clocks, try the command "ftdi_tdo_sample_edge falling"
: clock speed 10000 kHz
: JTAG tap: riscv.cpu tap/device found: ©x13631093 (mfg: ©0x049 (Xilinx), part: 0x3631, ver: Ox1)
: datacount=2 progbufsize=0

3 We won't be able to e ute fence instructions on this target. Memory may not always appear consistent. (progbufsize=

Examtncd RISC-V core; found 1 harts
: hart @: XLEN=32, misa=0x40001104
: starting gdb server for riscv.cpu on 3333
: Listening on port 3333 for gdb connections
: Listening on port 6666 for tcl connections
: Listening on port 4444 for telnet connections

Figure 22. OpenOCD Connected

Step 4. Open a third terminal using “ctrl + shift + t” and connect to the debug session
through OpenOCD using the following command:

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 15

imagination
university programme

> telnet localhost 4444

hamza@imagination:~/RVfpgaSoC/Labs/LabProjectsfSweRVolfS telnet localhost 4444
Trying 127.0.06.1...

Connected to localhost.

Escape character is '~]'.

Open On-Chip Debugger

=

Figure 23. telnet

OpenOCD supports loading ELF program files by running load_image /path/to/file.elf.
Remember that the path is relative to the directory from where OpenOCD was launched.

> load image
zephyr/samples/basic/blinky/build/zephyr/zephyr.elf

> load image zephyr/samples/basic/blinky/build/zephyr/zephyr.elf
14848 bytes written at address 0x00000000
downloaded 14848 bytes in 1.420706s (10.206 KiB/s)

Figure 24. load image .elf file

After the program has been loaded, set the program counter to address zero using the
following command:

> reg pc O

reg pc @
pc (/32): 6x00000000

Figure 25. Set program counter to zero
Now start the program using this command:

> resume

resume

VoW

Figure 26. Start the program

Now you will see the right-most LED of the Nexys A7 board will start blinking.

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 16

imagination
university programme

Loas Loz
iy 100+i0

NEXYS A7

1
LS. 00
1800

Figure 27.LED Blinking

Now you can press “ctrl + ¢” to exit out of the program.

9. Zephyr Application Development Overview

Zephyr’s build system is based on CMake. The build system is application-centric and
requires Zephyr-based applications to initiate building the kernel source tree. The application
build controls the configuration and builds a process of both the application and Zephyr itself,
compiling them into a single binary.

Zephyr’s base directory hosts Zephyr’s source code, its kernel configuration options, and its
build definitions.

The files in the application directory link Zephyr with the application. This directory contains
all application-specific files, such as configuration options and source code.

An application in its simplest form has the content listed here and described below:

/App
|-— CMakelLists.txt

|— prj.conf

L Src

L— main.c

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies

imagination
university programme

CMakelLists.txt: This file tells the build system where to find the other application
files and links the application directory with Zephyr's CMake build system. This link
provides features supported by Zephyr’s build system, such as board-specific kernel
configuration files, the ability to run and debug compiled binaries on real or emulated
hardware, and more.

Kernel configuration files: An application typically provides a Kconfig configuration
file (usually called prj.conf) that specifies application-specific values for one or more
kernel configuration options. These application settings are merged with
board-specific settings to produce a kernel configuration.

Application source code files: An application typically provides one or more

application-specific files written in C or assembly language. These files are usually
located in a subdirectory called src.

Follow these steps to create a new application directory.
Step 1. Change to the Samples directory:

> cd zephyr/samples
Step 2. Create a new directory for your application:

> mkdir my first app

eRVolfS cd zephyr/samples

weRVolf/zephyrfsamplesS mkdir my first_app

Figure 28. Make project directory

Step 3. It is recommended to place all application source code in a subdirectory named src.
This makes it easier to distinguish between project files and source files:

> cd my first app
> mkdir src

~ [RVF p_::; aSoCfLabs/LabProjects/SweRVolf/zeph u rfsamples$ cd my_f i_FEt_apE

~fRVTpg C/Labs/LabProjects/SweRVolf fzephyr mpl ny_first_app$ mkdir src
~f/RVfpgaSoCfLabs/LabProjects /SweRVolf /zephyr/samples/my_first_app$

Figure 29. Make src directory inside the project directory

Step 4. Enter the src directory and then create the application’s main source file, “main.c”.

> cd src
> nano main.c

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 18

imagination
university programme

~fSweRVolf/zephyr/samples/my_first_apps cd src/

~[SweRVolf /zephyr/samples/my_first_app/src$ nano main.c

Figure 30. create “main.c” file
Nano Editor will open up in your ubuntu terminal as shown in the figure below:

GNU nano 2.9.3 main.c

¢ Get Help Write Out Where Is Cut Text Justify W8 Cur Pos
AT

Wil Read File @\ Replace Uncut Text] To Spell @M Go To Line
Figure 31. GNU nano Editor

Step 5. Copy the following code in the nano editor. This code is the mixture of both the
“hello_world” and the “blinky” example source code.

#include <zephyr.h>
#include <sys/printk.h>
#include <device.h>
#include <devicetree.h>
#include <drivers/gpio.h>

/* 1000 msec = 1 sec */
#define SLEEP_TIME MS 1000

/* The devicetree node identifier for the "ledQ0" alias. */
#define LEDO NODE DT ALIAS (led0)

#if DT NODE HAS STATUS (LEDO_NODE, okay)

#define LEDO DT_GPIO_LABEL(LEDO_NODE, gpios)
#define PIN DT GPIO PIN(LEDO NODE, gpios)
#define FLAGS DT_GPIO_FLAGS(LEDO_NODE, gpios)
#else

/* A build error here means your board isn't set up to blink an LED. */
#error "Unsupported board: led0 devicetree alias is not defined"
#define LEDO mn

#define PIN 0
#define FLAGS 0
ffendif

void main (void)

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 19

imagination
university programme

const struct device *dev;
bool led is on = true;
int ret;

dev = device get binding (LEDO) ;
if (dev == NULL) {
return;

ret = gpio pin configure(dev, PIN, GPIO OUTPUT ACTIVE | FLAGS);
if (ret < 0) {
return;

}

while (1) {
gpio pin set (dev, PIN, (int)led is on);
led is on = !led is on;
k msleep (SLEEP_TIME MS) ;
printk ("This Zephyr Application is Running on %s\n", CONFIG BOARD) ;

Figure 32. “main.c” code

After you are finished writing the code, press “ctrl + x” to exit.

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 20

imagination
university programme

GNU nano 2.9.3

#include <zephyr.h=
#include <sys/printk.h>
#include <device.h>
#include =devicetree.h>
#include <drivers/gpio.h>

1000

etree node identifier for the "ledo" ali
(ledo)

, okay)
, gpios)
, gplos)
(, gplos)

f[* A build error here mea our board isn't set up to blink an LED. */
#terror "Unsupported board: led® devicetree alias is not defined”

device *dev;
led_is_on = true;
ret;

dev = device_get_binding(
if (dev ==) {

3

ret = gpio_pin_configure(dev,
if (ret < 0) {

}

while (1) {
gpio_pin_set(dev, , (Jled_is_on);
led_is_on = !led_is_on;
k msleep():
printk("This Zephyr Application is Running on %s\n",

e Get Help Write Out Where Is Cut Text Justify
il Read File W\ Replace WY Uncut Text Wl To Spell
Figure 33. main.c file code

[T 1]

Then it will ask you if you want to save the file, and you have to press “y” for Yes.

Save modified buffer? (Answering "No" will DISCARD changes.)

Cancel
Figure 34. save main.c file

Press “Enter” to save the file with the name “main.c”.

File Mame to Write: main.c

Figure 35. confirm the name main.c

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 21

imagination
university programme

Step 6. Now we need to navigate out of the src directory and then create the
“CMakelLists.txt” and “prj.conf” files :

> cd
> nano CMakelists.txt

~[SweRVolf[zephyr/samples/my_first_app/srcs cd ..

~fSweRVolf/zephyr/samples/my_first_app$ nano EMakeLiStS.txtI

Figure 36. Create CMakelLists.txt

Copy the following code to the nano editor:

cmake minimum required (VERSION 3.13.1)

find package (Zephyr REQUIRED HINTS S$ENV{ZEPHYR BASE})
project (my first app)

target sources (app PRIVATE src/main.c)

Figure 37. “CMakelLists.txt” file code

Now perform the same steps that you have done in order to save the “main.c” file.

GNU nano 2.9.3 CMakelists.txt Modified
(VERSION 3.13.1)

(Zephyr REQUIRED HINTS
(my first app)

{(app PRIVATE src/main.c)

WY Get Help WY Write Out Wl Where Is Wd Cut Text Wl Justify
Wi Read File Wl Replace Uncut Text @l To Spell

Figure 38. nano editor

Now create the project configuration file.

> nano prj.conf

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 22

imagination
university programme

~[SweRVolf /zephyr/samples/my_first_app$ nano prj.conf

~fSweRVolf fzephyr/samples/my first
Figure 39. create a project configuration file

Application configuration options are set in prj.conf in the application directory. Since we are
using an LED in our source code, we have to set the “CONFIG_GPIO” parameter as yes.

CONFIG GPIO=y

Figure 40. “prj.conf”’ code

GWU nano 2.9.3 nrj.conf Modified

CONFIG_GPIO=yj]

¢ Cet Help gv Write Outgl Where Is @d Cut Text
Wi Read Filegg) Replace g8 Uncut Text

Figure 41. “prj.conf”’ nano editor

Now save the “prj.conf” file.

Step 7. Build the code for “my_first_app”:

> west build -b swervolf nexys

_first_apps west build -b swervolf_nexys
- T bt

Including boilerplate (/home /hamza /RVfpgaSoC/Labs/LabProjects/SweRvVolf/zephyr/cmake/app/boilerplate.cmake|
-- Application: /home/hamza/RVfpgaScoC/Labs/LabProjects/SweRVolf/zephyr/samples/my_first_app

Zephyr version: 2.4.0 (/homefhamza/RVfpgaSoC/Labs/LabProjects/SweRVolf /zephyr)

Found Python3: jfusr/bin/python3.6 (found suitable exact version "3.6.9") found components: Interpreter

Found west (found suitable version "0.9.8", minimum required is "0.7.1")

Board: swervolf_nexys
-- Cache files will be written to: fhomefhamza/.cache/zephyr
ZEPHYR_TOOLCHAIN_VARIANT not set, trying to locate Zephyr SDK
-- Found toolchain: zephyr (/home/hamza/zephyr-sdk-0.12.2)
-- Found dtc: /home/hamza/zephyr-sdk-0.12.2/sysroots/x86_64-pokysdk-1linux/usr/bin/dtc (found suitable version "1.5.0",
red is "1.4.6")

-- Configuring done
-- Generating done
-- Build files have been written to: /home/hamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/samples/my_first_app/build

[1/109] Preparing syscéll dependency handling

[43/169] Building C object zephyr/CMakeFiles/zephyr.dir/drivers/interrupt_controller/intc_swerv_pic.c.obj
/home fhamza /RVfpgasSoC/Labs/LabProjects/sSweRvolf/zephyr/drivers/interrupt_controller/intc_swerv_pic. In function 'swerv_pic_read':
/home fhamza /RVfpgaSoC/Labs/LabProjects/sweRVolf/zephyr/drivers/interrupt_controller/intc_swerv_pic.c:47:10: warning: cast to pointer
from integer of different size [-Wint-to-pointer-cast]
47 | return *(volatile uint32_t *)(DT_INST_REG_ADDR(®) + reg);
| "
/home fhamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/drivers/interrupt_controller/intc_swerv_pic. In function 'swerv_pic_write':
/home fhamza/RVfpgaSoC/Labs/LabProjects/SweRVolf/zephyr/drivers/interrupt_controller/intc_swerv_pic.c:52:3: warning: cast to pointer
from integer of different size [-Wint-to-pointer-cast]
52 | *(volatile uint32_t *)(DT_INST_REG_ADDR(®) + reg) = val;
| ~
[104/169] Linking C executable zephyr/zephyr
Memory region Used Size Regilon Size
RAM: 17968 B 8 MB
IDT_LIST: 41 B 2 KB
[189/109] nking C e utable zephyr/zephyr
hamza@imagination: F ak bProjec

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 23

imagination
university programme

Figure 42. “my_first_app” build

The binaries have been generated successfully. Now we will run the “my_first_app” program
on the Nexys A7 board.

Step 9. Navigate to the WORKSPACE directory:

> cd SWORKSPACE

[fmy_first_app$ cd SWORKSPACE

Figure 43. Navigate to the Workspace directory

Step 10. Connect the Nexys A7 board to your computer and then run the FPGA build
command in the Workspace directory.

> fusesoc run --target=nexys a7 —--run swervolf

*kkkkk ¥{1linx cs_server v2019.2.0
**%*%* Build date : Nov O7 2019-10:41:48
** Copyright 2017-2019 Xilinx, Inc. All Rights Reserved.

: Trying to use hardware target localhost:3121/xilinx_tcf/Digilent/210292BBEF83A
[Labtoolstcl 44-466] Opening hw_target localhost:3121/xilinx_tcf/Digilent/210292BOEF83A

: Opened hardware target localhost:3121/xilinx_tcf/Digilent/210292BOEF83A on try 1.

: Found xc7al@0tcsg324-1 as part of xc7aleet_o.

: Programming bitstream to device xc7a100t_0 on target localhost:3121/xilinx_tcf/Digilent/210292BOEF83A.
[Labtools 27-3164] End of startup status: HIGH
[Labtoolstcl 44-464] Closing hw_target localhost:3121/xilinx_tcf/Digilent/210292BOEF83A

|ure 44, Run FPGA Build

Step 11. Program the board with OpenOCD.

> openocd -c "set BITFILE
build/swervolf 0.7.3/nexys a7-vivado/swervolf 0.7.3.bit" -f
$SWERVOLF ROOT/data/swervolf nexys program.cfg

hamza@imagination:~ Pg /L3 veRVolf$ openocd -c "set BITFILE build/swervolf_0.7.3/nexys_a7-vivado/swervolf_0.7.3.bit"
-f SSWERVOLF_ROOT/ program.cfg
Open On-Chip Debugger 0.11.0- rci+de 1535-g3651cbdfd (2021-01-30-12:10)
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
build/swervolf_0.7.3/nexys_a7-vivado/swervolf_8.7.3.bit
DEPRECATED! use 'adapter driver' not 'interface'
DEPRECATED! use 'adapter speed' not 'adapter_khz'
Info : ftdi: if you experience problems at higher adapter clocks, try the command "ftdi_tdo_sample_edge falling"
: clock speed 10000 kHz
: JTAG tap: xc7.tap tap/device found: ©0x13631093 (mfg: 0x049 (Xilinx), part: 0x3631, ver: 0x1)
: gdb services need one or more targets defined
shutdown command 1
hamza@imagination Pg ab bProjec $ I

Figure 45. Run OpenOCD

Step 12. Connect OpenOCD with SweRVolf.

> openocd -f SSWERVOLF ROOT/data/swervolf nexys debug.cfg

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 24

imagination
university programme

hamza@imagination:~/RVfpgaSoC/ LabProjects; RVolfS openocd -f SSWERVOLF_ROOT/data/swervolf_nexys_debug.cfg
Open On-Chip Debugg .11.8- v-081535-g3651cbdfd (2621-01-30-12:10)
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
DEPRECATED! use 'adapter driver' not 'interface'
DEPRECATED! use 'adapter speed' not 'adapter_khz'
: ftdi: if you experience problems at higher adapter clocks, try the command "ftdi_tdo_sample_edge falling"
: clock speed 100600 kHz
: JTAG tap: riscv.cpu tap/device found: 8x13631093 (mfg: @x849 (Xilinx), part: 8x3631, ver: 6x1)
: datacount=2 progbufsize=0
: We won't be able to execute fence instructions on this target. Memory may not always appear consistent. (progbufsize=
, impebreak=0)
: Examined RISC-V core; found 1 harts
: hart 8: XLEN=32, misa=0x40001104
: starting gdb server for riscv.cpu on 3333
: Listening on port 3333 for gdb connections
: Listening on port 6666 for tcl connections
: Listening on port 4444 for telnet connections

Figure 46. OpenOCD Connected

Step 13. Open a third terminal using “Ctrl + Shift + t” & connect to the debug session
through OpenOCD using the following command:

> telnet localhost 4444

hamza@imagination:~/RVfpgaSoC/Labs/LabProjectsfSweRVolfS telnet localhost 4444
Trying 127.0.0.1...

Connected to localhost.

Escape character is '~]'.

Open On-Chip Debugger

-

Figure 47. telnet

OpenOCD supports loading ELF program files by running load_image /path/toffile.elf.
Remember that the path is relative to the directory from where OpenOCD was launched.

> load_ image
zephyr/samples/my first app/build/zephyr/zephyr.elf

> load image zephyr/samples/my first app/build/zephyr/zephyr.elf
14672 bytes written at address Ox00000000
downloaded 14672 bytes in 1.410859s (10.156 KiB/s)

}I

Figure 48. load image .elf file

After the program has been loaded, set the program counter to address zero using the
following command:

> reqg pc O

reg pc @
pc (/32): Ox0000000O

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 25

imagination
university programme

Figure 49. Set program counter to zero
Now start the program using this command:

> resume

resume

W

-

Figure 50. Start the program
The LED on the board will start blinking.

Step 14. Open a new terminal tab using “Ctrl + Shift + t” and open PuTTY using the
following command:

> sudo putty

hamza@imagination:~/RVfpgaSoC/Labs/LabProjects/SweRVolfS sudo putty

(putty:3263): Gtk- g : gtk_box_gadget_distribute: assertion 'size == @' failed in GtkScrollbar

Figure 51. open PuTTY
We will be using PUTTY here as a serial console for our Nexys A7 board.

Step 15. Set the following configuration:
Select the connection type as “serial”, then enter “/dev/ttyUSB1” as the serial line, and set
the speed equal to “115200”. Now click “Open” to start the serial console.

PuTTY Configuration (<]

Category: Basic options for your PUTTY session
- Specify the destination you want to connect to
Logging Serial line Speed

» Terminal /dev/ttyUSB1 || 115200
Keyboard Connection type:
Bell Raw Telnet Rlogin SSH © Serial
Features Load, save or delete a stored session

* Window Saved Sessions
Appearance
Behaviour
Translation Default Settings Load
Selection Save
Colours
Fonts Delete

* Connection

Data
Prox
y Close window on exit:
Telnet O Always Never Only on clean exit
Rloain
About Open Cancel

Figure 52. PuTTY Configuration

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 26

imagination
university programme

In the serial console, we can see the output of our program “my _first_app” (see Figure 53).

Jdev/ttyUSB1 - PuTTY

)
)
)
¥
¥
¥
)
)
-y
iy
¥
¥
)
)
)
¥
¥
¥

Figure 53. serial console output

Note: If you are unable to open a serial console, try “/dev/ttyUSBO0” as the serial line.

As we can see in the output text on the serial console, this zephyr application is running on
SweRVolf Nexys.

Imagination University Programme — RVfpga-SoC Lab 4: Running Zephyr on SweRVolf
Version 1.1 — 7th July 2023

© Copyright Imagination Technologies 27

