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For system designers trying to meet the ever-increasing challenges 
in the automotive industry, the need to reduce external DDR system 
bandwidth in hardware-accelerated inference systems rank high 
on the list. Not only does a decrease in DDR bandwidth equate to a 
reduction in power consumption, but it also reduces the processing 
latency of the networks running on the system.

This article focuses on how Imagination Tensor Tiling technology 
inside the IMG Series4 neural network accelerator (NNA) has been 
specifically designed to help SoC designers achieve these aims.

To be as efficient as possible, a deep neural network accelerator  
must use as little external memory bandwidth as it can: this reduces 
the overall power consumption of the system, and decreases the time 
to inference. In most cases the available DDR bandwidth figure given 
to a deep neural network accelerator is a theoretical maximum – in 
reality, this is often limited to a much lower value. 

Introduction
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Figure 1 – Goals of Imagination Tensor Tiling and layer fusion
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Introduction...

To help explain this, the diagram below shows how as we reach the 
upper limit in available bandwidth of the system, on-chip memory 
(OCM) size has little effect, as significant bandwidth usage allows the 
input and coefficient buffers to be serviced with minimum latency. 
Conversely, a lower limit in available bandwidth means very large OCM 
sizes are needed to execute the network without noticeable latency. 

By varying the input and coefficient buffer size, local minima for each 
network configuration can be found, but what we actually want is 
to shift this bandwidth/OCM plot for all networks to the left – DDR 
bandwidth usage and physical OCM size. 

From a silicon-area point of view, laying down OCM is costly and can 
end up negating other area optimisations to the core.
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Introduction...

The Imagination Tensor Tiling (ITT) process can  
be split into three phases:

Prediction of the tile size and subsequent tile creation

Phase 3b

Phase 3a

Phase 2

Phase 1

Creation of tile groups (TG) and allocation of on-chip-memory (OCM)

Runtime tile execution (single-core)

Runtime tile execution (multi-core)

Imagination Tensor Tiling (ITT) efficiently packages up tensors into 
tiles, processed in groups, where all the intermediate data is stored 
in local on-chip memory – thus minimising data transfers between 
consecutive layers of the neural network. 

The process described in this paper uses a combination of “tiling”, 
and “layer fusion”, where tiling divides a complete tensor into tiles for 
running in multiple processing passes and layer fusion merges the 
tiled operation from multiple layer groups together.

The combination of these two processes (termed Imagination Tensor 
Tiling) reduces external DDR bandwidth consumption by up to an 
incredible 96.25%, and perfectly complements Imagination’s highly 
scalable and flexible IMG Series4 multi-core architecture.

So, let us take a deeper look into how we have achieved this.
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Phase 1:  
Prediction of the tile size and subsequent tile creation

Figure 2 -Tile size prediction method

Lower Limit

The lower limit is given by a cost function  
on the bandwidth aiming to achieve a 
positive gain in terms of total bandwidth 
with a preference for reducing the required 
DDR bandwidth.

Upper Limit

The upper limit is given by a prediction model 
for the maximum number of tensor rows a 
tile can have, bounded by the OCM size, and 
includes continuous layer group buffer size 
prediction and degree of variation

Interpolation

Expected Tile Size

A “layer group” is a collection of layers, grouped together, matching 
the order with which they are processed by the hardware. This 
results in a map of data relationships and dependencies described 
in tile-formations, which are chosen to utilise the highest overlap of 
reusable data for the network case being compiled for. 

The ITT algorithm is based on a concept that we start with the final 
layer group configuration (the output from the network) and then 
propagate the confines of this configuration as a goal, backwards 
through the network layers, building up dependencies and tile size 
deltas as we approach the start of the network. 

Using a single-shot cost model for predicting the tile sizes, we divide 
the tensor to be tiled into base and sub-tiles, where the base tile 
expands, but the sub-tiles remain a constant size. 

Predicting Tile Sizes 
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Figure 3 - Phase 1: ResNetV1-50 layer groups

The tensor is tiled by lines, so each tile will always have the original 
tensor width. The prediction of tile sizes is based on tensor size, 
coefficient size, on-chip ram (OCM) size and some other pre-
computed gradients. We can demonstrate this with an example  
of how we might tile a ResNet V1-50 deep neural network to run  
on our IMG Series4 neural network accelerator:
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Figure 4 - Phase 1: Predict tile size and delineate tile

Figure 5 - Phase 1: Propagate tiles into preceding layer groups
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First, the algorithm would take layer group 4 (LG4 shown in the 
diagram above), which is at the end of the layer processing and has 
a tensor shape (batch, channel, height and width) of [1, 256, 56, 56], 
and subsequently create a tile arrangement comprising a base tile 
LG4#0 and sub-tiles LG4#1-LG4#5. 

LG4 needs to have 56 lines split into tiles, which for this example 
might be 5 sub tiles of 10 lines and 1 base tile of 9 lines. The tile  
sizes would depend on the output of the single-shot cost model 
shown in figure 1.
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Figure 6 - Phase 1: Expanding base tile to create overlap
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These tiles are then propagated back-wards through the network  
by one tensor processing step and data dependencies are created 
so that for example, base tile LG4#0 has a dependency on a base tile 
LG3#0 and sub-tiles LG4#1 and LG#2 have dependencies on sub-
tiles LG3#1 and LG3#2 respectively.

The tensor dimensions for LG3 and LG2 are still 56 lines, and the 
kernel size [1,1] remains unchanged between processing steps  
so the base tile size does not need to change for this step. 

However, when we propagate LG2 back to LG1, you can see that the 
kernel size changes from [1,1] to [3, 3], requiring an additional line to 
be brought forward from LG1 to LG2. 

The Base Tile Pass
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In response, we resize the base tile on this step from nine lines to 10 
lines, resulting in a new tile configuration of five sub tiles of 10 lines, 
and one sub tile of 10 lines instead of 9 as per the previous step. This 
allows the correct line data to be accessible for processing tensor 
LG2, with the kernel size of [3,3] as the network topology dictates.
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LG2
K:3x3
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K:1x1

LG1 output LG2 output LG4 output

Figure 7 - Phase 1: Process continues until all layers have been processed in this layer group

This operation continues until we reach the start of the network or a 
tile group boundary is hit, where all tile transitions and relationships 
will have been mapped.

The Sub Tile Pass
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Overlap

LG1#2
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Phase 2:  
Creation of tile groups (TG) and allocation of on-chip-memory (OCM)
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Figure 8 - Phase 2: Create tile groups and allocate OCM

Now that we have performed a goal-based back-propagation  
scan of the network, we are able to arrange the tiles that have been 
created into optimised tile groups based on tile size, current OCM 
space and other tile-grouping rules designed to minimise external 
DDR memory bandwidth, while maintaining maximum network 
execution performance.
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Figure 10 - Phase 2: Allocate OCM as we create optimised tile groups
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Figure 9 - Phase 2: Create optimised tile groups
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Step 2.B. Allocate OCM

Tile Group 1
While creating tile groups, 
allocate the OCM spaces.

Buffers are optimised depends 
on the life time of each region 
of any tiles.

We can see in this example that branches in the network flow can be 
fused into the same tile group; all layer groups LG0 to LG4 become 
one tile group – this is what we refer to as layer fusion.

As we create new tile groups, we partition and allocate the on-chip 
memory. Buffers are optimised based on the lifetime of the tiles and 
the region to which they have been allocated. 

In this example, normal tiles go into a SWAP region which services 
short lifetime buffers, overlap tiles go into a special HEAP region 
and the coefficients are stored in the OCM. The resultant memory 
configuration is created at compile time, so completely reproducible 
for debug purposes.
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Phase 3a:  
Runtime tile execution (single-core)
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Figure 11 - Phase 3: Execute base tile

In this phase we execute all base tiles, across all the layer groups 
inside the tile group while keeping the overlapped data in the buffer 
for the next tile pass.

We can see that the only overlap is LG1 which comes from LG2, and 
has a kernel size of [3,3] which requires overlap between tiles in LG1. 
We then continue to execute all until all sub-tiles in all layer groups 
have been processed.

Figure 11 - Phase 3: Execute base tile
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Figure 12- 4NX-MC, our scalable multicore architecture.

Phase 3b:  
Runtime tile execution (multi-core)

Where a tiled network can run on a multi-core cluster such as 4NX-
MC2, 4NX-MC4, 4NX-MC8 and 4NX-MC8, the tiles within each layer 
group get distributed across all available cores, where each core 
executes different parts in the same layer group.

Control and 
synchronisation
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Step 3.MC.A multi-core executing
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 Figure 13 - Phase 3b: Execute tiles on a multi-core system

Additionally, each core in the cluster has its own OCM providing the 
most optimised performance and power consumption for the tiles 
being executed.
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Bandwidth saving

Network Bandwidth Savings on 4NX-MC1 (1024 OCM)

ResnetV1-50 57.60%

InceptionV3 59.58%

MobileNetV1 1.0 224 61.63%

MobileNetV1 (1080p) 52.26%

SRCNN (AI Benchmark v3.0.2) 96.25%

SSD-MobileNetV1-FPN (COCO) 41.10%

YOLOV3 (COCO) 62.79%

2MB OCM, 8-bit data – percentage of original using ITT in brackets

So now that we have had a glimpse inside of Imagination’s Tensor 
Tiling algorithm, here is the bit you have all been waiting for – 
just how much bandwidth does this Imagination’s Tensor Tiling 
algorithm save? 

As you can see from the table below - the results are significant, 
hitting between 57 and 96% depending on the neural networking 
model.

Unsurprisingly, the ADAS and autonomous driving compute 
requirements trend is upwards with strong indications that these 
requirements will increase by an order of magnitude within the next 
3-5 years. If you’d like to find out more about our IMG Series4 NNA 
with Imagination Tensor Tiling then feel free to get in touch.

For more information visit: 
https://www.imaginationtech.com/vision-ai/img-series4-nna/

Contact us: 
https://www.imaginationtech.com/contact-us/
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