
By Alex Pim, Vice President of AI
Research & Architecture, Imagination.

IMAGINATION
TENSOR TILING

© Imagination Technologies 2

For system designers trying to meet the ever-increasing challenges
in the automotive industry, the need to reduce external DDR system
bandwidth in hardware-accelerated inference systems rank high
on the list. Not only does a decrease in DDR bandwidth equate to a
reduction in power consumption, but it also reduces the processing
latency of the networks running on the system.

This article focuses on how Imagination Tensor Tiling technology
inside the IMG Series4 neural network accelerator (NNA) has been
specifically designed to help SoC designers achieve these aims.

To be as efficient as possible, a deep neural network accelerator
must use as little external memory bandwidth as it can: this reduces
the overall power consumption of the system, and decreases the time
to inference. In most cases the available DDR bandwidth figure given
to a deep neural network accelerator is a theoretical maximum – in
reality, this is often limited to a much lower value.

Introduction

© Imagination Technologies 3

Figure 1 – Goals of Imagination Tensor Tiling and layer fusion

Huge OCM
Minimum BW

Vary IBUF and
CBUF size

Small OCM
Huge BW

DDR
BW

OCM size
∞

∞

With tiling and
layer fusion

Introduction...

To help explain this, the diagram below shows how as we reach the
upper limit in available bandwidth of the system, on-chip memory
(OCM) size has little effect, as significant bandwidth usage allows the
input and coefficient buffers to be serviced with minimum latency.
Conversely, a lower limit in available bandwidth means very large OCM
sizes are needed to execute the network without noticeable latency.

By varying the input and coefficient buffer size, local minima for each
network configuration can be found, but what we actually want is
to shift this bandwidth/OCM plot for all networks to the left – DDR
bandwidth usage and physical OCM size.

From a silicon-area point of view, laying down OCM is costly and can
end up negating other area optimisations to the core.

© Imagination Technologies 4

Introduction...

The Imagination Tensor Tiling (ITT) process can
be split into three phases:

Prediction of the tile size and subsequent tile creation

Phase 3b

Phase 3a

Phase 2

Phase 1

Creation of tile groups (TG) and allocation of on-chip-memory (OCM)

Runtime tile execution (single-core)

Runtime tile execution (multi-core)

Imagination Tensor Tiling (ITT) efficiently packages up tensors into
tiles, processed in groups, where all the intermediate data is stored
in local on-chip memory – thus minimising data transfers between
consecutive layers of the neural network.

The process described in this paper uses a combination of “tiling”,
and “layer fusion”, where tiling divides a complete tensor into tiles for
running in multiple processing passes and layer fusion merges the
tiled operation from multiple layer groups together.

The combination of these two processes (termed Imagination Tensor
Tiling) reduces external DDR bandwidth consumption by up to an
incredible 96.25%, and perfectly complements Imagination’s highly
scalable and flexible IMG Series4 multi-core architecture.

So, let us take a deeper look into how we have achieved this.

© Imagination Technologies 5

Phase 1:
Prediction of the tile size and subsequent tile creation

Figure 2 -Tile size prediction method

Lower Limit

The lower limit is given by a cost function
on the bandwidth aiming to achieve a
positive gain in terms of total bandwidth
with a preference for reducing the required
DDR bandwidth.

Upper Limit

The upper limit is given by a prediction model
for the maximum number of tensor rows a
tile can have, bounded by the OCM size, and
includes continuous layer group buffer size
prediction and degree of variation

Interpolation

Expected Tile Size

A “layer group” is a collection of layers, grouped together, matching
the order with which they are processed by the hardware. This
results in a map of data relationships and dependencies described
in tile-formations, which are chosen to utilise the highest overlap of
reusable data for the network case being compiled for.

The ITT algorithm is based on a concept that we start with the final
layer group configuration (the output from the network) and then
propagate the confines of this configuration as a goal, backwards
through the network layers, building up dependencies and tile size
deltas as we approach the start of the network.

Using a single-shot cost model for predicting the tile sizes, we divide
the tensor to be tiled into base and sub-tiles, where the base tile
expands, but the sub-tiles remain a constant size.

Predicting Tile Sizes

© Imagination Technologies 6

[1, 3, 224, 224]

[1, 64, 56, 56]

Kernel [7, 7]

Kernel [1, 1]

Kernel [1, 1] Kernel [3, 3] Kernel [1, 1]

[1, 64, 56, 56]

LG0

LG1 LG2 LG4

LG3
[1, 256, 56, 56]

CONV
RELU

CONV
RELU

MAX_POOL

CONV
RELU

CONV

CONV
ADD
RELU

[1, 64, 56, 56] [1, 64, 56, 56] [1, 256, 56, 56]

Example:
[Batch, Channel, Height, Width]
[1, 256, 56, 56]

Figure 3 - Phase 1: ResNetV1-50 layer groups

The tensor is tiled by lines, so each tile will always have the original
tensor width. The prediction of tile sizes is based on tensor size,
coefficient size, on-chip ram (OCM) size and some other pre-
computed gradients. We can demonstrate this with an example
of how we might tile a ResNet V1-50 deep neural network to run
on our IMG Series4 neural network accelerator:

© Imagination Technologies 7

Figure 4 - Phase 1: Predict tile size and delineate tile

Figure 5 - Phase 1: Propagate tiles into preceding layer groups

LG4#0

LG4#1

LG4#2

LG3#0

LG3#1

LG3#2

Step 1.B. Propagate Tiles

LG0 - 3
Propagate Tiles into the
preceding layer groups

Data dependency between
tiles must be taken care by
the tile size

LG4#0

LG4#0

LG4#1

LG4#2

LG4#3

LG4#4

LG4#5

Step 1.A. Predict Tiles

LG4
Use cost model to predict Tensor
Divide into Base and Sub Tiles

First, the algorithm would take layer group 4 (LG4 shown in the
diagram above), which is at the end of the layer processing and has
a tensor shape (batch, channel, height and width) of [1, 256, 56, 56],
and subsequently create a tile arrangement comprising a base tile
LG4#0 and sub-tiles LG4#1-LG4#5.

LG4 needs to have 56 lines split into tiles, which for this example
might be 5 sub tiles of 10 lines and 1 base tile of 9 lines. The tile
sizes would depend on the output of the single-shot cost model
shown in figure 1.

© Imagination Technologies 8

Figure 6 - Phase 1: Expanding base tile to create overlap

LG1#1

LG1#0
Overlap

LG1#2

LG2#0

LG2#1

LG2#2

LG4#0

LG4#1

LG4#2

LG1 output LG2 output LG4 output

LG2
K:3x3

LG4
K:1x1

LG1
K:1x1

These tiles are then propagated back-wards through the network
by one tensor processing step and data dependencies are created
so that for example, base tile LG4#0 has a dependency on a base tile
LG3#0 and sub-tiles LG4#1 and LG#2 have dependencies on sub-
tiles LG3#1 and LG3#2 respectively.

The tensor dimensions for LG3 and LG2 are still 56 lines, and the
kernel size [1,1] remains unchanged between processing steps
so the base tile size does not need to change for this step.

However, when we propagate LG2 back to LG1, you can see that the
kernel size changes from [1,1] to [3, 3], requiring an additional line to
be brought forward from LG1 to LG2.

The Base Tile Pass

© Imagination Technologies 9

In response, we resize the base tile on this step from nine lines to 10
lines, resulting in a new tile configuration of five sub tiles of 10 lines,
and one sub tile of 10 lines instead of 9 as per the previous step. This
allows the correct line data to be accessible for processing tensor
LG2, with the kernel size of [3,3] as the network topology dictates.

LG2#0

LG2#1

LG2#2

LG4#0

LG4#1

LG4#2

LG2
K:3x3

LG4
K:1x1

LG1 output LG2 output LG4 output

Figure 7 - Phase 1: Process continues until all layers have been processed in this layer group

This operation continues until we reach the start of the network or a
tile group boundary is hit, where all tile transitions and relationships
will have been mapped.

The Sub Tile Pass

LG1
K:1x1

LG1#1

LG1#0
Overlap

LG1#2

© Imagination Technologies 10

Phase 2:
Creation of tile groups (TG) and allocation of on-chip-memory (OCM)

[1, 3, 224, 224]

[1, 64, 56, 56]

Kernel [7, 7]

Kernel [1, 1]

Kernel [1, 1] Kernel [3, 3] Kernel [1, 1]

DDR bandwidth

OCM bandwidth

[1, 64, 56, 56]

LG0

LG1 LG2 LG4

LG3
[1, 256, 56, 56]

Tile Group 1

CONV
RELU

CONV
RELU

MAX_POOL

CONV
RELU

CONV

CONV
ADD
RELU

[1, 64, 56, 56] [1, 64, 56, 56] [1, 256, 56, 56]

Figure 8 - Phase 2: Create tile groups and allocate OCM

Now that we have performed a goal-based back-propagation
scan of the network, we are able to arrange the tiles that have been
created into optimised tile groups based on tile size, current OCM
space and other tile-grouping rules designed to minimise external
DDR memory bandwidth, while maintaining maximum network
execution performance.

© Imagination Technologies 11

Figure 10 - Phase 2: Allocate OCM as we create optimised tile groups

Step 2.A. Create Tile Group

LG0 - 4
Create optimised tile groups
base on the tiles size, OCM
spaces and other tile grouping.

Figure 9 - Phase 2: Create optimised tile groups

LG1#0

LG1#1

LG1#1

overlap

overlap

OCM
SWAP

OCM
HEAP

OCM
COEF

(Short life
time)

Step 2.B. Allocate OCM

Tile Group 1
While creating tile groups,
allocate the OCM spaces.

Buffers are optimised depends
on the life time of each region
of any tiles.

We can see in this example that branches in the network flow can be
fused into the same tile group; all layer groups LG0 to LG4 become
one tile group – this is what we refer to as layer fusion.

As we create new tile groups, we partition and allocate the on-chip
memory. Buffers are optimised based on the lifetime of the tiles and
the region to which they have been allocated.

In this example, normal tiles go into a SWAP region which services
short lifetime buffers, overlap tiles go into a special HEAP region
and the coefficients are stored in the OCM. The resultant memory
configuration is created at compile time, so completely reproducible
for debug purposes.

© Imagination Technologies 12

Phase 3a:
Runtime tile execution (single-core)

DDR bandwidthStep 3.A. Executing base tile

LG0 -4
In run time, executing base tiles in order,
across multiple layer groups inside tile
groups

Saved into
HEAP buffers

LG0#0 LG1#0 LG2#0

LG3#0

LG4#0
Overlap

OCM bandwidth

Figure 11 - Phase 3: Execute base tile

In this phase we execute all base tiles, across all the layer groups
inside the tile group while keeping the overlapped data in the buffer
for the next tile pass.

We can see that the only overlap is LG1 which comes from LG2, and
has a kernel size of [3,3] which requires overlap between tiles in LG1.
We then continue to execute all until all sub-tiles in all layer groups
have been processed.

Figure 11 - Phase 3: Execute base tile

Step 3.B. Executing following tile

LG0 -4
Executing remaining tiles in order,
across multiple layer groups inside
tiles groups. Until all layers groups
are finished.

Saved into
HEAP buffers

Overlap in HEAP buffers
from previous tiles pass

LG0#0 LG1#0 LG2#0

LG3#0

LG4#0
Overlap

Overlap

DDR bandwidth

OCM bandwidth

© Imagination Technologies 13

Figure 12- 4NX-MC, our scalable multicore architecture.

Phase 3b:
Runtime tile execution (multi-core)

Where a tiled network can run on a multi-core cluster such as 4NX-
MC2, 4NX-MC4, 4NX-MC8 and 4NX-MC8, the tiles within each layer
group get distributed across all available cores, where each core
executes different parts in the same layer group.

Control and
synchronisation

© Imagination Technologies 14

Step 3.MC.A multi-core executing

LG0 -4
For multi-core, execute a set of tiles,
one for each core, across multiple
layer groups inside the tile groups

Tile Pass 1

Tile Pass 0

LG0#0

LG0#1

LG1#1 LG2#1

LG3#1

LG0#2

LG1#2 LG2#2

LG3#2

LG1#0 LG2#0

LG4#1

LG4#2

LG4#0

LG3#0

Saved into
HEAP buffers

Core 0

Core 1

Core 2

Overlap

LG3#5

LG0#3

LG0#4

LG1#4 LG2#4 LG4#4

LG3#4

LG0#5

LG1#5 LG2#5 LG4#5

LG1#3 LG2#3 LG4#3

LG3#3

Overlap in HEAP buffers from
previous tile pass

Core 0

Core 1

Core 2

Overlap

 Figure 13 - Phase 3b: Execute tiles on a multi-core system

Additionally, each core in the cluster has its own OCM providing the
most optimised performance and power consumption for the tiles
being executed.

© Imagination Technologies 15

Bandwidth saving

Network Bandwidth Savings on 4NX-MC1 (1024 OCM)

ResnetV1-50 57.60%

InceptionV3 59.58%

MobileNetV1 1.0 224 61.63%

MobileNetV1 (1080p) 52.26%

SRCNN (AI Benchmark v3.0.2) 96.25%

SSD-MobileNetV1-FPN (COCO) 41.10%

YOLOV3 (COCO) 62.79%

2MB OCM, 8-bit data – percentage of original using ITT in brackets

So now that we have had a glimpse inside of Imagination’s Tensor
Tiling algorithm, here is the bit you have all been waiting for –
just how much bandwidth does this Imagination’s Tensor Tiling
algorithm save?

As you can see from the table below - the results are significant,
hitting between 57 and 96% depending on the neural networking
model.

Unsurprisingly, the ADAS and autonomous driving compute
requirements trend is upwards with strong indications that these
requirements will increase by an order of magnitude within the next
3-5 years. If you’d like to find out more about our IMG Series4 NNA
with Imagination Tensor Tiling then feel free to get in touch.

For more information visit:
https://www.imaginationtech.com/vision-ai/img-series4-nna/

Contact us:
https://www.imaginationtech.com/contact-us/

© Imagination Technologies 16

www.imaginationtech.com

enquiries@imgtec.com
UK t: +44 1923 260511
US t: +1 408 530 5000

