
© Imagination Technologies 1

White Paper

The six levels of ray tracing acceleration
By Kristof Beets, Vice President of Technology Insights, Imagination

WHAT’S
YOUR
LEVEL?

January 2023 update

http://www.imaginationtech.com

© Imagination Technologies 2

Ray tracing is a technology that is currently dominating headlines as the next step in
graphics technology and by the end of the year will be widely available to consumers
across desktop personal computers (PCs) and consoles. This primer will introduce the
concept of ray tracing levels to make clear that not all ray tracing solutions are created
equally, and that higher-level ray tracing is more capable and feature-rich than the lower
levels. As the levels are incremental this primer introduces the architectural changes
and capabilities as we build up from Level 0 to Level 5.

This paper assumes a basic knowledge and understanding of the fundamentals of ray
tracing which you can find out more about by reading our ray tracing primer, “Shining a
Light on Ray Tracing”.

The six levels of ray tracing acceleration

BVH traversal, BVH builder
and full coherency sorting

BVH traversal with
full coherency sorting

BVH traversal and
thread coherency sorting

BVH traversal

Ray/Box and
Ray/Triangle Testers

Software only

Legacy
solutions

3

2

1

0

3.5

4

5

Increasing perfo

rm
ance, re

duced power

consumptio
n and bette

r b
andwidth efficiency

https://www.imaginationtech.com/resources/shining-a-light-on-ray-tracing/
https://www.imaginationtech.com/resources/shining-a-light-on-ray-tracing/

© Imagination Technologies 3

Ray tracing is not a new approach to
rendering graphics. The concept has been
around longer than today’s traditional,
mainstream GPU rendering, and has been
in use for quite some years as the rendering
approach of choice for product design,
architectural work, visual effects and movie
rendering. Ray tracing is also fundamental
to artwork creation for games where it is
commonly used offline to bake light and
shadow information into the artwork which
is used in real-time game engines. However,
once “baked”, this light information is static
and cannot change.

As ray tracing is already a building block of
today’s game content, hardware acceleration
to enable ray tracing with full dynamics and in
real-time, has been a long-standing goal for
many companies. Indeed, many have tried to
accomplish this and, until very recently, most
have failed.

Typically, these early attempts at accelerating
ray tracing focused on new and very different
“GPU” architectures, which had to be
matched with equally new and non-standard
proprietary APIs. This divergence was a major

stumbling block for market adoption, as
switching from, say, an OpenGL® (or OpenGL
ES, Vulkan® or DirectX®) ecosystem to
something completely different is expensive
and difficult.

Intel® Embree kernels and Caustic’s OpenRL
are some of the historical examples where
a custom API is presented which has no
easy continuity with the dominant traditional
graphics APIs. Caustics OpenRL was, in
many ways, a first step in the right direction,
as it started from something which looked
like OpenGL and used some of the known
concepts and language, which helped remove
some of the barriers to entry. Ultimately
though, it was still a new and divergent API.
Some ray tracing solutions do not even
consider an API and instead offer a full
rendering engine which you have to use,
which of course is an even bigger hurdle to
adoption by developers.

While without a doubt these early attempts
have helped pave the way to enabling today’s
real-time ray tracing solutions, they have
simply not been successful and hence are
Level 0 solutions.

Ray Tracing Level 0
Legacy Solutions

Vertex
Shader

Ray ShaderFrame Shader

Frame
Buffer

Shaders

Vertex
Data

Texture

Primitive
Objects

Global State
for Frame

Shader

Data Upload Scene Setup

Open RL Data Flow

Frame Rendering
rlRenderFrame()rlGenPrimitives()

rlBindPrimitive()
rlBindTexture()
rlDrawElements()
rlDrawElements()
rlUniform()
rlUseProgram()

rlVertexAttribPointer()
rlTexImage2D()
rlShaderString()

emitRay()

emitRay()

Textiles

Textiles

Shader
Code

Vertex
Data

Shader
Code

accumulate()

Multipass

accumulate()

Optional data
Required data

© Imagination Technologies 4

As the main downfall for Level 0 solutions
was ecosystem and compatibility the most
obvious way to enable a transition path is
to implement ray tracing using the existing
graphics and compute APIs. Indeed, many
software solutions have been offered which
did exactly that, especially in the PC add-in
graphics board market, with many proprietary
effects and implementations deeply
embedded into game engines.

While most of these solutions are not really
an “API” and definitely not a “standard API”
these solutions do broaden the scope
and usability for ray tracing and have been
widespread for many years. However, most
focused on either very high-end cinematic
rendering at slow speeds (think hours per
frame, not frames per second) or applied to
very limited and selected effects enabled
inside a game engine. In many cases these
effects have adopted the name ray tracing
but often they only vaguely used a simplified
version of the concept.

The main issue with pure software for
ray tracing is that ray tracing is inherently
computationally expensive and too complex
to handle it in a generic API-type way. This
means that it allows for very few shortcuts
and these only work if you can keep the

problem-space narrow allowing you to use
lots of tricks. However, with generic API
models that is not possible. Hence while
software ray tracing on GPUs is usually faster
than on CPUs the framerate always remained
low and not truly real-time. Some “ray tracing”
software solutions offer higher speeds – even
real-time – but typically this is achieved by
cutting corners and optimising for those
specific subsets of functionality, and many of
these techniques depend on (pre-calculated)
look-up tables and structures that have
been highly tuned and optimised within the
capability boundaries of the algorithms.

Software solutions play a key role in helping
build up demand for functionality but are
never a long-term solution as software will
inherently rapidly fall orders of magnitude
behind dedicated and tuned hardware
solutions with regards to performance,
power efficiency and bandwidth efficiency;
hence these are Level 1 solutions. They
can support and extend the ecosystem of
higher-level solutions though – for example,
Microsoft offers DXR emulation, which is
very much a Level 1 solution. It allows content
to run on a wider range of platforms but
likely at significantly reduced performance
and/or quality.

Ray Tracing Level 1
Software on Traditional GPUs

© Imagination Technologies 5

When looking at ray tracing processing on
a GPU in software it quickly becomes clear
that most of the cycles invested are in the
processing of the ray-box and ray-triangle
intersections.

Essentially, just doing a ray-box intersection
test using programmable GPU logic, basically
fused multiple adds (FMA), requires 44x
more silicon area than what can be achieved
in a fixed-function block which offers the
same capability. At GDC in 2014, Imagination
illustrated this in an effective visual way
(see below).

It should come as no surprise that using a
much smaller fixed-function block is also
much more power and bandwidth-efficient

and also releases a lot of ALU cycles which
can be used for other shader processing.

A similar benefit can be seen for ray-triangle
testing and it should thus come as no surprise
that adding both of these types of fixed
functionality into a GPU significantly speeds
up the ray tracing capabilities of GPUs. In its
simplest form, this is the foundation which
makes real-time ray tracing possible. These
fixed-function operations can be exposed as
new instructions within the shader programs
and this approach forms the baseline of
adding ray tracing acceleration into the PC
and console graphics solutions launched in
2020, which we describe as a Level 2 solution.

Ray Tracing Level 2
Ray/Box and Ray/Tri Testers

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

USC

44x less area for
equivalent function

© Imagination Technologies 6

Level 2 solutions have the box and triangle
testers, but all other processing remains in the
shader code. Specifically, what remains is the
traversal of the Bounding Volume Hierarchy
(BVH).

The BVH is a hierarchy of bounding volumes
(conceptually usually cubes), which subdivide
the scene in an aim to cut back the amount
of intersection work that has to be done by
quickly culling large parts of the box and
triangle hierarchy. The BVH means that we
avoid testing every ray with every triangle in
the scene which would be excessive. Instead,
we build a hierarchical structure of volumes
which are subdivided into smaller volumes and
which ultimately contain triangles, the standard
primitive for all GPU rendering. By processing a
ray versus this hierarchy, we can quickly reject
large amounts of work since if we do not hit a
bounding volume, we can also reject the full
hierarchy of smaller volumes and triangles
within it.

The traversal code used for this is not a great fit
for the parallel processing nature of GPUs. As a
ray is traced through the BVH data structure the
code has to make a lot of decisions (branches/
divergence) along the way – e.g. you start at the

top and do a box check, based on that check
you trigger more box checks until ultimately
you hit the triangle level of checks. Making
these decisions and triggering instructions
from the shader code is possible but not
efficient. Ultimately, it is a poor use of valuable
shader processing capabilities and is also not
a very good fit for the SIMD nature of all GPUs
as it’s inherently full of branches and decisions,
which are never a good fit for a parallel
processing architecture.

Hence, a logical next step is to extend the ray
tracing hardware to handle the full ray BVH
processing workflow, thus offloading ever
more cycles from the shader code into
dedicated tuned hardware. In this scenario,
the walking through the BVH for each ray is now
fully managed by dedicated logic which includes
the usage of the ray-box and ray-triangle testing
units from the Level 2 hardware. In addition to
offloading more work from the ALUs, this also
adds the benefit that caching and data flow
can be much more optimised and wider-
parallelism efficiency can be achieved by
processing more rays together as they run
through the BVH structure.

Ray Tracing Level 3
BVH Processing in Hardware

Level 2 features a bounding volume hierarchy in
hardware to speed up ray/box, ray/triangle testing.

X
X

X

© Imagination Technologies 7

In 2022, new ray tracing solutions entered the
market, which are a step up from the Level 3
solution described above, but still behind the
Level 4 solution discussed in the next section –
hence the 3.5 classification.

Fundamentally, the actual ray processing of
the Level 3.5 solution is identical to the Level 3
solution, and this includes all the disadvantages.
This means that the BVH traversal is non-
coherent, as in the rays will bounce from one
pixel to the next in different directions, based
on the material properties of that surface. We
refer to this as divergence and the consequence
is that the ray will cross the BVH boxes along
different paths thus causing divergent memory
accesses. This is problematic for conventional
GPUI designs as while they are great at

processing highly parallel workloads their
SIMD architectures only makes sense if those
workloads are coherent and similar.

What the Level 3.5 solution does differently
is the handing back of the hits to the shader
execution unit. Where a Level 3 solution returns
hits as they are, which means divergent and a
mismatch with the efficiency requirements of
the SIMT execution nature of the GPU ALUs, the
Level 3.5 solution inserts a thread sorting block
which regroups the threads into warps with
more optimal SIMT execution characteristics
and hence delivers much improved ALU
utilisation within the GPU itself. There is no
doubt this will deliver a marked efficiency
improvement, but it leaves the ray coherency
problem itself untouched.

Ray Tracing Level 3.5
Thread Sorting in Hardware

M
em

or
y

(B
VH

 S
tr

uc
tu

re
)

Ca
ch

e
H

ie
ra

rc
hy

Bounding Box
Intersection

BVH Traversal
(MIMD)

Triangle
Intersection

MIMD accepts divergence
= Extra processing hardware

= Extra power cost

Ray Input

Return
Hits

SIMD
Friendly
Warps

Still highly divergent memory access
= Long latency and poor cache utilisation

= Low overall utilisation/bubbles

Thread
sorting

© Imagination Technologies 8

Inline ray tracing versus full ray tracing

While this primer is focused on hardware architecture
levels there are also differences on the software side
with two different levels of ray tracing API functionality.
The first, and simpler level, is “inline ray tracing” also
known as “ray queries”. Fundamentally, as the name
implies, this approach to ray tracing sets up a ray
with an associated state and then proceeds with a
ray query: the ray is traced through the BVH and will
report back its result. Essentially, this is exactly what
the Level 2 and Level 3 solutions do in hardware - you
loop through box-ray tests and ultimately ray-triangle
tests and then report back the desired result, which is
simplified as a hit or a miss. A simple example of this
would be to send a ray query to a light source; if the ray
hits an opaque object we know we are in shadow but if
the ray reaches the light source we know the pixel is lit,
and thus, based on this simple ray query, we have now
implemented ray traced shadows:

Setup Ray (myRay)

AnyHit = RayQuery (myRay)

If (AnyHit = TRUE)

		 Execute Shadow code

Else

		 Execute Lit code

While the above is simple it’s not what most people
recognise as ray tracing – i.e. rays bouncing around
within the environment to create complex effects as
a result of these multiple light bounces. This much
more complex form of ray tracing is known as “full ray
tracing” and it does exactly that; as a ray hits/misses
objects it creates new shader programs which execute.

This concept of a ray bouncing around and thus
emitting from a shader program, which hits another
object, which in its turn launches another shader
program, which in its turn launches another ray which
then launches another shader program, and so on, is a

concept known as recursion. The result of recursion is
a stack of shader programs, and the process continues
until somewhere your ray stops bouncing and you wind
back your stack to collect all the processing stages of
tracing the ray around the scene.

Conceptually it’s like this:

EmitRay (Ray1)

	 Hit Object which EmitRay (Ray2)

		 Hit Object which EmitRay (Ray3)

			� Hit Object – execute shader
program

	�	� Execute shader program which takes 		
previous hit data into account

	� Execute shader program taking both the previous
two hits data into account

Original program which takes the whole ray data
flow into account

This type of recursion is complex since, as you can see
from above, the stack of stages has an unknown depth
ahead of time as you do not know what objects the
ray will or will not hit. This makes it a very dynamic and
multi-staged process and each stage requires storage
and resources. This is what is known as “full ray tracing”
and is significantly more capable, but also more
complex, than ray queries. Imagination Technologies,
as one of the ray tracing pioneers, enables an
architecture which supports both inline ray tracing (ray
queries) as well as full ray tracing.

© Imagination Technologies 9

While ray tracing is “embarrassingly parallel”
in nature, one of the reasons why real-time ray
tracing has taken so long to become practical
is that the parallelism is there but it’s very often
divergent and non-coherent in nature. This can
be understood from the below illustration.

In the real world, materials have different
properties – some are smooth, but most are
rough – and therefore, for realistic surfaces,
rays will not be reflected in exactly the same
way, but rather bounce in a variety of directions.
This results in divergence; e.g. the ray bounces
from one pixel to the next pixel resulting in rays
going in very different directions. Consequently,
the ray will cross the BVH boxes along different
paths – thus causing divergent memory
accesses – and, logically, rays travelling in
different directions will also intersect with
different triangles, triggering different shader
programs – thus causing divergence in the
shader execution.

Divergence is bad for GPUs as while they are
great at processing highly parallel workloads
their SIMD architectures only makes sense if
those workloads are coherent and similar. If
each pixel wants to do something different,
the tricks upon which GPUs depend for high
execution and bandwidth efficiency fail. This
means you end up with a brute force approach
(i.e. the use of large amounts of ALUs and ray
tracing units), is required to compensate as
the processing flow struggles to use them
efficiently (namely high peak throughput count
on paper, but poor utilisation and thus low
throughput numbers in real-world use).

Now, while rays from one pixel to the next may
be divergent this does not mean that there is
no “coherency” among the soup of rays that are
bouncing around. Again, this is best illustrated in
the image on the next page.

Ray Tracing Level 4
BVH Processing with Coherency Sorting in Hardware

Divergent

Real materials

Coherent

Perfect surface

© Imagination Technologies 10

Ray Tracing Level 4
Continued...

The reflective shape below shows hidden
coherency in the rays, which reflect from this
object e.g. you can see that the person wearing
yellow is reflected many times, meaning those
rays go into the same direction and are, indeed,
coherent. Even more, if we can group those
rays, they will follow a similar path through
the BVH providing us with a high rate of cache
hits and data re-use. They will also ultimately
hit and intersect with the same triangles and
would likely also execute the same or similar
shader programs, consequently delivering
high efficiency in traditional parallel
GPU ALU pipelines.

What we need therefore is a way of capturing
this “hidden” coherency to deliver this efficiency
improvement. Imagination did so with its 2014
PowerVR Wizard GPU architecture, which
pioneered real-time ray tracing within a modern
GPU architecture and introduced concepts
such as hybrid rendering (mixing traditional and
ray traced rendering), by included a coherency
sorting engine.

In terms of innovation, the Coherency Engine
is, in many ways, the equal/sequel to tile-based
rendering, which Imagination pioneered in the
late 1990s in its PowerVR GPUs, which today
is embraced by all modern GPU architectures.

The Coherency Engine finds and sorts coherent rays in a scene
and then packages them up for efficient processing on the GPU.

© Imagination Technologies 11

Ray Tracing Level 4
Continued...

Tile-based rendering also does a coherency
sort: following geometry/vertex shader
processing the triangles are sorted into tiles,
which later ensures that each triangle’s pixels
are processed in coherent pixel groups per tile.
This means that all processing can stay in tile
memory on chip, thus reducing bandwidth and
improving efficiency

The Coherency Engine for rays achieves the
same, sorting rays into coherent bundles
which can share memory accesses effectively
guaranteeing perfect cache hits and thus using
less bandwidth. Of course, this also helps with
power efficiency as data movement is a big

consumer of power. The hardware coherency
gatherer also helps achieve higher performance
efficiency as the SIMD engines will see high
execution efficiency, as these bundles will hit
similar triangle/objects. It is this massive leap in
efficiency that makes this type of architecture
a Level 4 ray tracing solution. For power and
bandwidth-limited designs, for example in
smartphones, this will be absolutely essential to
make real-time ray tracing a practical reality.

What about MIMD architectures?

Some more exotic and mostly historical ray tracing “solutions” have been based on a
MIMD (Multiple Instruction/Multiple Data) architecture and they claim this solves the
coherency issue with ray tracing. However, MIMD is not really a solution – it’s a form of
accepting defeat that there is no coherency in the processing and adapting the ALUs
to be more effective in executing such divergent workloads. The problem with MIMD,
and its universal lack of success as a processing solution, is that MIMD is expensive in
silicon complexity and size. With MIMD, you need to generate ALUs that are all able to
execute different instructions and which also share no data with any other ALUs. It’s akin
to creating a single-threaded GPU where each ALU carries all the overhead to execute
unique instructions with unique data fetches.

As such, MIMD is not an elegant solution, it’s a very expensive way of handling a lack of
coherency. Furthermore, while a MIMD approach can handle the divergence in execution
it does not solve the fact that the data is still divergent – rather now the problem of
divergence has moved from the ALU into the memory subsystem. While modern memory
technologies are very fast and sustain very high data rates, they again only manage this
when the data fetched is coherent; e.g. you read continuous data. When it is random – as
per MIMD – fetching data from memory is orders of magnitude slower. Hence MIMD
is not a real solution for real-time ray tracing.

© Imagination Technologies 12

Up to now most of our focus has been on
accelerating the tracing of rays through the
BVH structure but we have ignored the actual
creation of the BVH itself. The actual approach
and decisions on how to create this structure
can be varied: e.g. how deep is the hierarchy,
and when do you split or subdivide further, etc.

The process and decisions can even be
dynamic and based on heuristics derived
from the workload. Also, the bandwidth
consumption and accuracy of the structure
can be traded against each other. Up to Level
4, the creation of this structure is done in
software, meaning that it is either done using
the CPU and/or using a GPU compute path.
With a Level 5 solution, we move this BVH
creation process into dedicated hardware,
which is optimised to work with the BVH
traversal approach enabled in Level 3 and 4
solutions.

By building the BVH using dedicated hardware
we are further offloading the shader core
of work and executing this work using
more power and processing efficient logic.
Additionally, for PowerVR architecture, the

Scene Hierarchy Generator (SHG) is integrated
inside the GPU, which means the data flow
can go direct from the traditional vertex and
geometry processing phases into the SHG
block to generate the BVH in memory. This
process can even be coupled with traditional
geometry outputs such as a tile pointer list
for tile-based rendering, thus enabling hybrid
rendering in the most efficient way.

A dedicated fine-tuned block is fast and
efficient, and it means this level of ray tracing
accelerator can handle much higher numbers
of dynamic geometry, thus higher scene
complexities including fully dynamic scene
including many complex animated highly
detailed objects.

This BVH hardware builder, such as the
Imagination Scene Hierarchy Generation
block, could theoretically be added to lower
efficiency ray tracing levels. If this was done, in
terms of the levels it would there be indicated
by a “plus”. In this scenario, a Level 2 ray
tracing solution with a BVH builder in hardware,
would, for example, be a “Level 2 Plus” solution
and, of course, not a level 5 solution.

Ray Tracing Level 5
Coherent BVH Processing with Scene Hierarchy Generator in Hardware

Images such as these, featuring realistic, dynamic shadows,
could be possible in real-time on Level 4 ray tracing hardware.

© Imagination Technologies 13

While it is early days for ray tracing, the
realism it provides and the development
efficiencies it brings means that eventually
an increasing percentage of graphics
processing will be done this way. It will
surely revolutionise multiple fields, from
architectural visualisations and engineering
prototyping to TV and movie animation,
and of course, for gaming. The technique
has even been touted for uses other than
just traditional graphics such as for collision
detection, physics acceleration, sound
processing or volume rendering.

However, the fact is that Moore’s Law is
coming to an end and the industry can
no longer rely on hardware becoming
exponentially more powerful every two years.
Therefore, to continue to advance ray tracing,
particularly for power-constrained mobile
platforms, efficiently designed fixed-function
accelerator solutions will be increasingly
essential.

Imagination Technologies is one of the
pioneers of ray tracing and in 2016
demonstrated PowerVR GR6500, a Level 5
real-time ray tracing test board. In the near
future, we will also be launching PowerVR
architecture-based GPUs featuring high-level
hardware ray tracing acceleration, so whether
for mobile platforms or high-power, desktop/
server or Cloud, you will have access to an
advanced, efficient solution that will give your
offering a true competitive edge.

Summary

Global illumination using ray tracing within a mobile power budget

© Imagination Technologies 14

www.imaginationtech.com

Contact us now

http://www.imaginationtech.com
http://www.imaginationtech.com
https://www.imaginationtech.com/contact-us/

